尼龙6的合成工艺研究

2022-12-15

第一篇:尼龙6的合成工艺研究

蒙脱石/尼龙6纳米复合材料制备及性能研究

余丽秀王秋霞田国锋张健斌吴彬

摘要蒙脱石/尼龙6纳米复合材料是性能优异、用途广泛的矿物-聚合物复合材料,本文简要介绍了熔体挤出法蒙脱石/尼龙6纳米复合材料制备、性能、影响因素及应用前景。 关键词蒙脱石尼龙6熔体挤出纳米复合材料制备性能

1 前言

纳米复合材料是指分散相尺度至少有一维小于100nm的复合材料,由于其纳米分散相比 表面积大并同基体有强的结合或偶联作用,因此,在力学、热学、电磁学、光学和气体阻隔性能等方面较常规无机填料/聚合物复合材料有明显的提高,并且具有一些特殊的性能,是近十年来迅速发展的新型功能材料,是当今材料学科的研究热点,其制备技术涉及非金属矿物加工、高分子材料形成的交叉学科领域,其用途广泛[1]。

蒙脱石/尼龙6纳米复合材料用蒙脱石结构是以二个硅氧四面体夹一个铝氧八面体构成单位晶胞,并在二维方向上连接成片、在Z轴方向以一定厚度堆积而成的层状矿物,主要存在于膨润土、累托石等层状或混层状硅酸盐粘土矿物中,能直接或提纯后使用。由于蒙脱石四面体中的硅被铝、八面体中的铝被镁同晶置换,使片层表面具有过剩的负电荷,并通过层间吸附Na+、K+、Ca2+、Mg2+等阳离子达到晶胞电荷平衡。因而从晶层微观结构看,形成了平衡的双电层结构。由于层面的负电性,层间阳离子很容易被其它无机或有机阳离子置换。可用做阳离子交换的有机物种类很多,但不同结构、性能的有机阳离子应用对复合材料基体有不同的要求,其矿物改性和复合材料制备工艺均有较大差别,使得有机化改性蒙脱石成为品种众多、变化复杂、应用面广的矿物功能性材料。

用于复合材料制备的改性蒙脱石由于其层间距增大,在同聚合物单体、聚合物溶液或聚合物熔体混合时,很容易剥离成纳米尺度的基本单元,并均匀分散于聚合物基体中。蒙脱石/尼龙6纳米复合材料是改性蒙脱石用于聚合物纳米复合材料系列效果显著的品种之一,其制备工艺分为熔体挤出法、熔体聚合法(又分两步法、一步法),其中熔体挤出法纳米复合材料具有性能适中、价格低廉、使用量大和便于推广等特点,为功能矿物材料首选大量、经济的用于矿物/聚合物纳米复合材料制备提供了可能[2]。

本文主要讨论了熔体挤出(插层)法蒙脱石/尼龙6纳米复合材料制备、性能、影响因素及应用前景,内容如下。

2 改性蒙脱石制备

2.1 蒙脱石性能特征

用于挤出法尼龙6纳米复合材料制备的改性蒙脱石对矿物性能要求较高,一般要求蒙脱石含量大于90%,其层间可交换阳离子总量(CEC)适中,一般选择0.7-1.3mmol/g为好。而自然界原生膨润土矿等矿种一般蒙脱石含量仅30-60%,因此,提高蒙脱石含量是改性应用的 基础,可根据原矿性质采用干法或湿法提纯。

我们以内蒙某膨润土矿为原料,提纯后化学成分及物化如表

1、表2。

表1 提纯样品主要化学成分

项目 SiO2 Al2O3 CaO MgO Fe2O3 TiO2 Na2O K2O

3.34 H2O 含量/(wt%) 56.47 16.97 2.32 4.78

表2提纯样品重要物化性能

1 0.31 0.088 0.034 15.15

项目 实测值

吸兰量 mmol/g 1.37

蒙脱石含量

wt% 91.33

105℃挥发 wt% 15.15

CEC值 mmol/g 1.10

d001值 nm 1.52

层间距 d001-0.96 nm 0.56

2.2 改性剂选择

能用于熔体挤出法尼龙6纳米复合材料制备的改性蒙脱石用有机物品种很多,可归结为两类:反应型和非反应型。其中,反应型指交换后的有机阳离子仍保留酰胺键(-CONH2)或类似活性集团结构,在热、光、高压等作用下,能进一步自身或参加基体缩聚,反应过程的热作用使蒙脱石晶层均匀解离成片状纳米单元;无机硅酸盐纳米片层和高分子聚合物链段协同作用使复合材料力学、热学性能明显提高;反应型所用有机物多为长碳链氨基酸或醇酰胺,主要用于熔体聚合型纳米复合材料制备,但由于所用氨基酸等目前价格昂贵,并且应用需对现有聚合工艺和设备加以改造,当前大量推广应用较困难,也抑制了反应型有机改性蒙脱石技术发展。非反应改性蒙脱石选择在溶液中能电离出有机阳离子(如季胺盐)或通过质子化加H+能生成有机阳离子(如伯胺RNH

2、仲胺R2NH、叔胺R3N)等作为有机化蒙脱石改性剂,所用有机物中的R基为饱和烷基或含苯环烷基,本身起离子交换、偶联和撑大层间距的作用,熔体挤出法尼龙6纳米复合材料所用改性蒙脱石多属此种类型。非反应型改性蒙脱石用于尼龙系列纳米复合材料性能略差于反应型,但由于成本、使用方便等优势,是当前尼龙6纳米复合材料的主要改性矿物应用类型。

选用的有机改性剂须同时具备以下条件:①容易进入蒙脱石层间并显著增大层间距;②改性剂不仅使处理后的蒙脱石易在聚合物体系中分散、解离,而且改性剂分子所带基团易同蒙脱石界面基团、聚合物基体结合或偶联,协同提高复合材料的整体性能;③价廉易得,最好能用已有工业品。一般常用12-18个碳的单、双、三烷基(苄基)季胺盐、吡啶类衍生物和其它能形成长碳链有机阳离子的有机化合物做改性剂,但不同R基有机物改性的蒙脱石对纳米复合材料性能有较大影响。 2.3 改性蒙脱石制备

将提纯、改型后的钠基蒙脱石,以5-10%浓度分散于水中,根据所用插层剂性质调节溶液PH值,控制溶液温度60-80℃,直接加破碎小块改性剂固体,保温快速搅拌反应1-2h,反应完后冷却、分离、洗涤、干燥、粉碎、筛分即为成品。有机改性剂用量以≥提纯改型后的蒙脱石阳离子交换总量(CEC)为好;同时由于有机插层剂耐热性稍差,改性后的成品控制干燥温度不高于150℃或采用低温真空干燥。

试验选用A、B两种改性剂,按以上工艺制备改性蒙脱石样品,编号分别为NNY-

1、NNY-2,性能如表3。

表3改性蒙脱石性能 样品名称 NNY-1 NNY-2

细度 -0.076mm/%

100 100

105℃挥发 wt% 1.23 1.30

850℃失重 wt% 38.46 39.63

d001值 nm 2.63 2.83

层间距 d001-0.96 nm 1.67 1.87

73.1 73.8 白度

3 蒙脱石/尼龙6纳米复合材料制备 3.1复合用原料

试验用尼龙6相对粘度3.0,广州新会美达公司生产;改性蒙脱石性能见表3;复合稳定剂为工业品自配;其它助剂硬脂酸、白油为市售工业品。 3.2 主要试验和检测设备主要试验和检测设备见表4。

表4 主要试验和检测设备 设备名称 高速混料机 双螺杆挤出机 注塑机 万能材料试验机 冲击试验机 熔融指数测定仪 热变型维卡温度测定仪 3.3纳米复合材料制备

将尼龙6在鼓风干燥机中于95℃干燥8h,按一定比例将尼龙

6、改性蒙脱石、稳定剂、硬脂酸、白油混合均匀,蒙脱石量以小于15%效果为佳,其它助剂量控制在1-5%。用双螺杆挤出机挤出造粒,机筒各段温度分别为200、

210、220、2

25、230、235℃,机头温度240℃,通过控制主螺杆转速,调节物料在挤出机内的停留时间,依靠尼龙6高分子链同蒙脱石改性插层剂有机基团的相互作用及螺杆的剪切力将尼龙6大分子链插入到蒙脱石片层间并将片层解离,使蒙脱石达到纳米尺度的均匀分散,复合形成蒙脱石/尼龙6纳米复合材料。

经X射线衍射及透射电镜观察,蒙脱石片层厚度小于100nm ,主要分布在为20-50nm。改性蒙脱石以平均粒径50μm的普通粉体与尼龙6离子通过挤出复合作用后,在尼龙6基体中在一维方向上实现了纳米尺度分散,对尼龙6力学、热学性能有较大的改变,避免了一般粉体材料分散在聚合物体系中存在的团聚难题,使蒙脱石/尼龙6纳米复合材料能大量、经济的制备。

3.4 纳米复合材料性能

普通填料系列尼龙6复合材料较纯尼龙6材料力学、热学性能等均有降低,而蒙脱石/尼龙6纳米复合材料强度、热变形温度、阻隔、阻燃等性能均有较大提高[3];这是因为改性蒙脱石在尼龙6基体中以一维纳米层状形式存在分散,流动方向的热膨胀系数仅为垂直方向的一半左右,在挤出、成型过程中的剪切力作用下,片层方向与流动方向趋于相同的取向,同时高分子链由于片层的阻隔也于流动方向一致,而纯尼龙6是各向同性的。因此,蒙脱石/尼龙6纳米复合材料的各向异性增强性能为功能化加工应用提供了可能。

表5 纳米复合材料主要性能 项目

缺口冲击强度/KJ/m2 无缺口冲击强度/KJ/m2 拉伸强度/MPa

采用标准 GB1043/T-1993 GB1043/T-1993 GB1040/T-1992

空白样 2.59 25J不断 75.86

NNY-1 8.00 110.75 84.41

NNY-2 3.96 89.37 83.61

规格或型号 25L

TE-35 L/D=36 LY-80 CMT4204 XJJ-50 XNY-400 XWR-300D

制造厂

江苏白熊集团公司 南京科亚公司 张家港利源机械公司 深圳新三思计量技术有限公司 河北承德材料试验机厂 河北承德材料试验机厂 河北承德材料试验机厂

抗弯强度/MPa 弯曲模量/MPa

热变形温度(0.45MPa) /℃ 熔融指数/g/10min 4 应用与发展前景展望

GB9341-1988 GB9341-1988 GB1634-1979 GB3682-1989

87.47 1954.4 175.3 3.28

108.90 2584.1 189.0 1.10

115.40 2648.3 / 0.96

改性有机蒙脱石是一种具有特殊结构和性能的功能性矿物材料,其层板化学组成和尺寸可以根据加工工艺需要进行调整。用于挤出法制备的蒙脱石/尼龙6纳米复合材料根据使用性能要求不同,可制备拉伸强度高、抗冲击、耐热、阻隔性优良的不同品种纳米复合材料,这种复合材料的无机成分含量很少,重量比传统填充材料轻,具有广泛的应用前景和商品化开发价值。

日本已将纳米复合材料用于汽车发动机配件,具有质轻、强度高、热稳定性好、重量轻的特点,是很有发展前途的纳米复合工程塑料材料;同时纳米复合材料良好的阻隔性,可以开发做阻隔材料,用做需要阻隔的包装材料;此外,纳米复合材料具有自熄性能,可用做阻燃材料,用于加工成各种阻燃器件。 参考文献

[1] 陈光明等.聚合物/层状硅酸盐纳米复合材料研究进展[J]. 高分子通报,1999,(4):1-5 [2] 张玉龙等.纳米技术与纳米塑料[M].北京;中国轻工业出版社,2002

[3] 舒中俊等.聚合物阻燃新途径—聚合物/粘土纳米复合材料的特殊阻燃性[J].高分子通报,2000,(4):65-70

Synthesis and Characterization of Nylon 6/Montmorillonite Nanocomposites

( Yu Lixiu Wang Qiuxia Tian guofeng Zhang jianbinWu Bing)

AbstractNylon 6/Montmorillonite nanocomposites are kinds of mineral-polymer with excellent properties and wide applications. In this paper ,the Synthesis,characterization, analysis of thermodynamics and applications prospects of Nylon 6/Montmorillonitesnanocomposites on melt extrusion are reviewed.

KeywordsMontmorillonite, Nylon 6, melt extrusion, nanocomposites, Synthesis, Characterization.

第二篇:煤化工合成氨的工艺

煤化工合成氨的工艺 气化工艺各有千秋

1.常压固定床间歇式无烟煤(或焦炭)气化技术

目前我国氮肥产业主要采用的煤气化技术之一,其特点是采用常压固定床空气、蒸汽间歇制气,要求原料为?准 25~75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风放空气对大气污染严重,属于将逐步淘汰的工艺。 2.常压固定床无烟煤(或焦炭)富氧连续气化技术

其特点是采用富氧为气化剂、连续气化、原料可采用?准 8~10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合用于有无烟煤的地方,对已有常压固定层间歇式气化技术进行改进。 3.鲁奇固定床煤加压气化技术

主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气。其产生的煤气中焦油、碳氢化合物含量约1%左右,甲烷含量约10%左右。焦油分离、含酚污水处理复杂,不推荐用以生产合成气。 4.灰熔聚煤气化技术

中国科学院山西煤炭化学研究所技术。其特点是煤种适应性宽,属流化床气化炉,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状灰渣排出。可以气化褐煤、低化学活性的烟煤和无烟煤、石油焦,投资比较少,生产成本低。缺点是操作压力偏低,对环境污染及飞灰堆存和综合利用问题有待进一步解决。此技术适合于中小型氮肥厂利用就地或就近的煤炭资源改变原料路线。 5.恩德粉煤气化技术

属于改进后的温克勒沸腾床煤气化炉,适用于气化褐煤和长焰煤,要求原料煤不粘结或弱粘结性,灰分<25%~30%,灰熔点高、低温化学活性好。在国内已建和在建的装置共有13套22台气化炉,已投产的有16台。属流化床气化炉,床层中部温度1000~1050℃。目前最大的气化炉产气量为4万m3/h半水煤气。缺点是气化压力为常压,单炉气化能力低,产品气中CH4含量高达1.5%~2.0%,飞灰量大、对环境污染及飞灰堆存和综合利用问题有待解决。此技术适合于就近有褐煤的中小型氮肥厂改变原料路线。 6.GE水煤浆加压气化技术

属气流床加压气化技术,原料煤运输、制浆、泵送入炉系统比干粉煤加压气化简单,安全可靠、投资省。单炉生产能力大,目前国际上最大的气化炉投煤量为2000t/d,国内已投产的气化炉能力最大为1000t/d。设计中的气化炉能力最大为1600t/d。对原料煤适应性较广,气煤、烟煤、次烟煤、无烟煤、高硫煤及低灰熔点的劣质煤、石油焦等均能用作气化原料。但要求原料煤含灰量较低、还原性气氛下的灰熔点低于1300℃,灰渣粘温特性好。气化系统不需要外供过热蒸汽及输送气化用原料煤的N2或CO2。气化系统总热效率高达94%~96%,高于Shell干粉煤气化热效率(91%~93%)和GSP干粉煤气化热效率(88%~92%)。气化炉结构简单,为耐火砖衬里,制造方便、造价低。煤气除尘简单,无需价格昂贵的高温高压飞灰过滤器,投资省。国外已建成投产6套装置15台气化炉;国内已建成投产7套装置21台气化炉,正在建设、设计的还有4套装置13台气化炉。已建成投产的装置最终产品有合成氨、甲醇、醋酸、醋酐、氢气、CO、燃料气、联合循环发电,各装置建成投产后,一直连续稳定长周期运行。装备国产化率已达90%以上,由于国产化率高、装置投资较其他加压气化装置都低,有备用气化炉的水煤浆加压气化与不设备用气化炉的干煤粉加压气化装置建设费用的比例大致为Shell法 : GSP法 : 多喷嘴水煤浆加压气化法 : GE水煤浆法=(2.0~2.5):(1.4~1.6):1.2:1.0。缺点是气化用原料煤受气化炉耐火砖衬里的限制,适宜于气化低灰熔点的煤;碳转化率较低;比氧耗和比煤耗较高;气化炉耐火砖使用寿命较短,一般为1~2年;气化炉烧嘴使用寿命较短。 7.多元料浆加压气化技术

西北化工研究院开发的具有自主知识产权的煤气化技术,属气流床单烧嘴下行制气。典型的多元料浆组成为含煤60%~65%,油料10%~15%,水20%~30%。笔者认为在制备多元料浆时掺入油类的办法不符合当前我国氮肥工业以煤代油改变原料路线的方针,有待改进。

8.多喷嘴(四烧嘴)水煤浆加压气化技术

由华东理工大学、兖矿鲁南化肥厂、中国天辰化学工程公司共同开发。属气流床多烧嘴下行制气,气化炉内用耐火砖衬里。在山东德州华鲁恒生化工股份有限公司建设1套气化压力为6.5MPa、处理煤750t/d的气化炉系统,于2005年6月正式投入运行,至今运转良好。在山东滕州兖矿国泰化工有限公司建设2套气化压力为4.0MPa、处理煤1150t/d的气化炉系统,于2005年7月21日一次投料成功,运行至今。 9.Shell干煤粉加压气化技术

属于气流床加压气化技术。可气化褐煤、烟煤、无烟煤、石油焦及高灰熔点的煤。入炉原料煤为经过干燥、磨细后的干煤粉。干煤粉由气化炉下部进入,属多烧嘴上行制气。目前国外最大的气化炉处理量为2000t/d煤,气化压力为3.0MPa。这种气化炉采用水冷壁,无耐火砖衬里。可以气化高灰熔点的煤,但仍需在原料煤中添加石灰石做助熔剂。国内2000年以来已引进19台,其目标产品有合成氨、甲醇,气化压力3.0~4.0MPa。我国引进的Shell煤气化装置只设1台气化炉单系列生产,没有备用炉,在煤化工生产中能否常年连续稳定运行尚待检验。1套不设备用炉的装置投资相当于设备用炉的GE气化装置或多喷嘴水煤浆气化装置的投资的2~2.5倍,排出气化炉的高温煤气用庞大的、投资高的废热回收锅炉回收显热副产蒸汽后,如用于煤化工,尚需将蒸汽返回后续CO变换系统,如用于制合成氨和氢气,副产的蒸汽量还不够用。同时还需要另设中压过热蒸汽系统用于气化炉的过热蒸汽。笔者认为目前Shell带废热锅炉的干煤粉加压气化技术并不适用于煤化工生产,有待改进。

10.GSP干煤粉加压气化技术

属于气流床加压气化技术,入炉原料煤为经过干燥、磨细后的干煤粉,干煤粉由气化炉顶部进入,属单烧嘴下行制气。气化炉内有水冷壁内件,目前国外最大的GSP气化炉投煤量为720t/d褐煤。因采用水激冷流程,投资比Shell炉省,适用于煤化工生产。正常时要燃烧液化气或其他可燃气体,以便于点火、防止熄火和确保安全生产。目前世界上采用GSP气化工艺技术的有3家,但是现在都没有用来气化煤炭,其中黑水泵煤气化厂只有6年气化褐煤的业绩,没有长期气化高灰分、高灰熔点煤的业绩。神华宁夏煤业集团有限责任公司已决定采用GSP干煤粉加压气化技术建设83万t/a二甲醚,一期60万t/a甲醇项目,单炉投煤量约2000t/d。 11.两段式干煤粉加压气化技术

西安热工研究院开发成功的具有自主知识产权的煤气化技术。可气化煤种包括褐煤、烟煤、贫煤、无烟煤,以及高灰分、高灰熔点煤,不产生焦油、酚等。其特点是采用两段气化,其缺点是合成气中CH4含量较高,对制合成氨、甲醇、氢气不利。废热锅炉型气化装置适用于联合循环发电,其示范装置投煤量2000t/d级两段式干煤粉加压气化炉(废热锅炉流程)已决定用于华能集团“绿色煤电”项目,另一套示范装置投煤量1000t/d级两段式干煤粉加压气化炉(激冷流程)已决定用于内蒙古世林化工有限公司30万t/a甲醇项目。 12.四喷嘴对置式干粉煤加压气化技术

由华东理工大学、兖矿鲁南化肥厂(水煤浆气化及煤化工国家工程研究中心)和中国天辰化学工程公司通力合作开发的具有自主知识产权的煤气化技术。中试装置投煤能力为15~45t/d,建于兖矿鲁南化肥厂。气化炉为热壁炉,内衬耐火砖。干粉煤由气化炉上部经4个烧嘴加入,产生的合成气下行经水激冷后出气化炉。属气流床煤气化炉。以兖矿鲁南化肥厂GE水煤浆气化工业装置生产用煤为原料进行试验。中试装置作了以氮气和CO2为输送载气的试验。气化温度为1300~1400℃,气化压力为2.0~3.0MPa

第三篇:合成氨工艺条件的改进与节能

杨荣

安徽建筑工业学院材化学院应用化学专业 合肥 230601

摘要

本文从合成氨工艺中所存在的一些高能耗问题入手,主要分析了合成氨工艺的改进方法,以及从热力供给系统、反应催化剂及系统优化等方面采取措施从而达到节能降耗的目的。文中所给的针对性措施可实际应用到合成氨工厂中 。

关键词

合成氨

工艺改进

节能降耗

生产流程

改进措施

1 前言

合成氨工业自1901年诞生以来,经历了发明阶段、技术推广阶段、原料结构变迁阶段、单系列大型化自动化阶段和节能降耗阶段,历史近一个世纪。目前正处于节能降耗阶段。

目前,由于世界范围内的能源紧缺,造成了世界能源价格不断上涨,而氮肥的价格却保持相对稳定,因此高能耗的合成氨厂面临着严峻的形势和挑战,这样,合成氨工艺的改进势在必行。

化学工业本来就是个能耗大户,而合成氨又是高能耗产品,目前国内的中小型化肥厂合成氨的能耗普遍高于国外先进制氨工艺厂。工厂的经济效益由工艺的能耗来决定,因此改进合成氨工艺是首要任务。

2 合成氨的工业生产途径

合成工业是能耗较大的工业之一, 根据原料品种和技术先进程度的不同, 单位产品的能耗差别很大, 因此, 所采用的先进技术应以总体生产节能为目标, 也就是说, 合成工艺开发的总目标在于节能,因此要从能量的综合利用方面来考虑节能方案。

2.1 用余热来加热热水以供锅炉或其它工序用 2.2 直接利用余热副产高热值的蒸汽供其它工序用 2.3 利用副产蒸汽发电供全厂用 2.4 本系统内部自热平衡

天然气合成氨工业流程图

3 降低合成氨工厂能耗的措施

中小型工厂一般以天然气为原料制取氨,天然气用量的多少直接决定着工厂能耗,下面列出降低中小型合成氨厂能耗的一些措施: 3.1 合成氨工厂造气工序的节能措施 3.1.1 降低吹风系统的阻力 3.1.2 采用蒸汽自调系统 3.1.3 优化造气操作系统

3.2 合成氨工厂变换工序的节能措施 3.2.1 开发优质低温高效变换催化剂

3.2.2 变换炉合理分段并采用合适的降温措施 3.2.3 防止变换催化剂衰老、中毒与失活 3.2.4 加强保温、降低热损失 3.2.5 系统优化设计与优化操作

3.3 合成氨工厂合成工序的节能措施 3.3.1 开发优质低温高效合成催化剂 3.3.2 开发新型氨合成塔

3.3.3 防止合成催化剂衰老、中毒与失活 3.3.4 加强保温、降低热损失 3.3.5 用吸氨制冷代替压缩制冷 3.3.6 用吸收分氨代替深冷分氨 3.3.7 回收放空气中的氢气和氮气 3.3.8 系统优化设计与优化操作

4 综合考虑上述各方面所提及的节能措施总结出节能方法与具体实施操作

1.造气炉整体改造技术

该技术包括造气炉扩径、夹套加高、出口管的移位、适合不同煤种的专用炉篦、炉底转动装置采用变频器进行调速控制等整体配套改造。改造后可明显提高造气炉的制气强度,降低煤耗。 2.合理选择高效造气鼓风机

要根据各种造气炉炉径、煤种、发气量要求、系统配套设备与管道阻力的不同,综合考虑合理选择风机,既要足够满足制气吹风的风量要求,又要防止风量过大而造成吹风气带出物增多。 3.自动加焦(煤)机技术

使用该技术可节省停炉时间,连续制气、减少热量损失,缩短吹风时间,提高单炉发生量,并有利于稳定炉温与气体成份,降低吨氨煤耗,减轻操作工的劳动强度,减少事故发生。

4.油压微机控制、炉况监测与系统优化技术

使用该技术可合理调节控制造气循环分配时间、入炉蒸汽量、氢氮比和加煤、下灰等,能对造气炉的炉况全面监测并进行闭环调优,进而优化生产状态,达到造气系统高产、稳产、低耗的目的。 5.采用高效除尘器

选用低阻的高效旋风除尘器,可提高煤气的除尘效率,减少飞屑的损失与设备管道的磨损。 6.集中式回收上、下行煤气余热

采用一台集中式对应多台造气炉的热管型余热回收器回收上、下行煤气余热,有利于降低系统阻力及提高余热回收率。 7.集中式高效洗气塔

采用一台集中式高效低阻填料洗气塔来取代常用的一台造气炉配一台的空塔喷淋式洗气塔,有利于降低系统阻力与提高洗涤冷却效果,并可减少15%~20%的冷却水与污水处理量。 8.提高入炉蒸汽品质

入炉蒸汽采用过热蒸汽,有利于制气过程中炉温的稳定,提高蒸汽分解率与单炉发气量5%~8%,降低吨氨原料煤与蒸汽消耗量。 9.吹风气余热回收

借助合成弛放气助燃,采用集中式燃烧炉吹风气回收技术,回收造气吹风气的显热与潜热,副产过热蒸汽。有条件的企业可采用三废流化混燃炉技术将吹风气与造气炉渣结合在一起,回收利用副产过热蒸汽,搞热电联产,有利进一步提高节能效果与经济效益。 10.降低造气系统阻力

单炉发生量提高,对于配套的管道与阀门的口径也需相应放大,管道配置尽量减少弯头,配管流向要合理,对洗气塔的煤气管插入深度等需进行相应的调整,这样有利造气炉的制气与节约鼓风机电耗。 11.回收利用冷凝水

现有使用蒸汽加热而冷凝下来的冷凝水被大量直接排至地沟,要尽可能改造为全部回收利用,既能回收其热量减少锅炉燃料的消耗,又能节省水费与水处理费,降低生产成本。

12.高效脱硫剂与防堵低阻脱硫塔

可采用888或888+栲胶等高效脱硫剂及不易堵塔的低阻脱硫塔,提高脱硫效率,减少脱硫液循环量,降低电耗。 13.节能型全低变与中低低变换工艺

在采用宽温钴钼低变催化剂的前提下,根据企业生产条件的情况不同,可采用节能型全低变或中低低变换工艺。该工艺变换率高、流程简单、阻力小、蒸汽消耗少,吨氨蒸汽消耗分别达到≤250kg与≤350kg。

14.采用改进型的丙碳法、NHD法与变压吸附法(PSA)脱除CO2工艺

这3种工艺均系当前各企业所采用的低能耗脱碳技术,具体选择要从净化气要求,前后工艺条件及技术经济指标结合企业具体情况而定。 15.采用经济合理的合成压力

对于氨合成催化剂生产强度,根据低空速、高净值、低阻力与节能的角度衡量及技术经济分析,建议按18~20t氨/m3·d生产强度选择合成塔与催化剂,使其操作压降低至22M~24MPa(初期还要低2MPa左右),这样可使吨氨节电50kWh左右,还可增加2%~3%的氨产量。

16.采用活性好、宽温、高强度氨催化剂及其相匹配的高效节能型合成塔

可提高氨净值,从而减少循环气的循环量,降低循环机电耗,减少冷冻能耗。 17.塔外提温型合成工艺与二级余热回收技术

对氨合成反应热的回收利用采用该工艺技术,可使合成气工艺余热按位能高低获多级利用,废热锅炉副产蒸汽,软水加热器加热软水,可充分提高余热回收率,减少循环冷却水用量。 18.氨气、氢气回收技术

在合成氨生产过程中,由于生产负荷的变化,为保持合成系统的适宜操作压力,会造成合成系统中的放空气和氨槽弛放气量增加,而这部分气体中均含有大量的氨和氢随之放空,导致合成氨各项消耗增多,成本加大。根据这两种气源的不同组分和特性可分别采用膜分离技术回收放空气中的氢气以及采用无动力氨回收技术回收氨槽弛放中的氨气。 19.制冷系统蒸发式冷凝器

该设备是采用热力学、传热学等工程学的先进技术,对交叉式冷却塔和传统蒸发式冷凝器进行优化组合,具有结构紧凑、占地少、质量轻、安装简便等优点,使用了高效传热元件,提高了换热效率与冷却冷凝效果,达到运转功率小、耗电量少、冷却水消耗少的效果,是取代传统的立式水冷冷凝器的有效节能设备。 20.利用低位能余热采用溴化锂吸收制冷技术

利用尿素、合成氨生产过程的低位能余热(热水、冷凝液等)采用热水型溴化锂吸收式冷水机组制取低温冷水,用于冷却氮氢压缩机一级入口煤气、三级、六七级入口煤气,脱碳吸收液与氨合成循环气等,可充分利用低位能热量提高压缩机打气量,减少脱碳吸收液循环量、降低氨冷、冷冻机负荷,达到增产、降低电耗的效果,在夏天等高温季节效果尤为明显。 21.机泵电机采用变频调速技术

对有负荷变化、经常造成机泵电机“大马拉小车”的转动设备如造气的炉条机、锅炉给煤机、给水泵、空气鼓风机、罗茨鼓风机、甲胺泵、液氨泵等,采用变频调速,实现平滑的无级调速,在生产过程中能获得较佳调速,从而可取得明显的节电效果。对于高压大中容量交流电机的调速,可采用内馈载波调速技术,与高压变频相比,具有效率高、价格低、功率高等优点。 22.氮氢压缩机的节电

氮氢压缩机的耗电占合成氨电耗的70%左右,因此合理选择与使用压缩机对吨氨电耗关系密切。要逐步淘汰落后、高耗的L3.3-

17、4M

8、4H8等陈旧压缩机,结合节能技改选择单机能力≥2万t/a合成氨的大中型机组,使吨氨电耗明显降低。选用可靠的气阀,延长机组无故障运行时间,确保循环油冷却效果,提高一进压力,降低一进温度,提高段间冷却与分离设备效率等技术措施。尽量不采用不同压缩机机型的并机使用,防止由并机不和谐而造成的无效功损失与影响运行故障周期。

23.企业电网系统节电

该节电产品是通过对半导体瞬流控制技术,复合式实时滤波技术和远程跟踪与诊断技术的重大突破,以10-12秒的反应速度对瞬流和高次谐波进行及时的测试和有效的控制,同时能消除设备开关启合引起的高能量突变引起的瞬流,提高电源质量,减少电损,提高系统用电设备的效率。 24.蒸汽管道系统节能

从锅炉房输送至各用汽点的蒸汽管道系统应遵循高压输送、低压使用的原则,可减少管道建设费用、减少散热损失。系统应合理选择与配置足够的疏水阀,疏水阀使用好坏直接影响到蒸汽的消耗,是节能潜力最大的地方。要做好蒸汽管道系统保温工程,减少管网的热损失。

1 改进前生产工艺流程

2 改进后生产工艺流程

参考文献

1 《云南化工》1995年 第1期 合成氨工艺设计的改进与能耗分析李琦 角仕云 2 朱丙辰主编 无机化工反应工程 北京 化学工业出版社,1991 3 李绍芬主编 化学与催化反应工程 北京 化学工业出版社,1987

4 于遵宏等编 大型合成氨厂工艺过程分析 北京 中国石化出版社 1993 5 王建华主编 化学反应器设计 成都 成都科技大学出版社,1989

第四篇:碳酰肼的合成工艺与应用探究

鑫泰水处理 2015.12

在讲碳酰肼的合成工艺与应用之前,小编先普及一下碳酰肼究竟是什么,有什么作用,碳酰肼与我们日常生产有没有很大的联系呢?

碳酰肼是一种重要的化工原料,是肼的衍生品,在工业上主要被用来作为锅炉水的除氧剂,即水处理剂中的除氧剂。这是目前碳酰肼的主要用途。除此之外,还可以作为炼油厂设备的防腐剂,在化纤行业可用作弹性纤维的交联剂。碳酰肼中,由于其与氮原子相连的氢原子易被其他基团取代,所以碳酰肼又是一种重要你化工中间体,可用于医药、农业除草剂、植物生长调节剂、染料等行业。如果用碳酰肼作为配体,可以制备多种聚合物,广泛用于:医药、石油、国防等工业中,价值不言而喻。

碳酰肼的合成工艺

1、 最早是美国科学家在上个世纪60年代用碳酸二酯和过量的肼反应制取碳酰肼。这种方法需要长时间的高温反应,往往会生成其他副产品,重要的是在高温过程中,如果对肼的控制不好把握,在高温过程中肼容易生成爆炸性气体,安全性能差。

2、 近年来,俄罗斯工作者提出了不蒸馏的条件下制备碳酰肼的方法,制备的纯度也高。但是反应时间长达48h也不适合工业化生产。

3、 日本科学工作者提出了用尿素制备,但是也在高温下进行,副产品多,纯度不高,安全性能差。

4、 其他方法还有三聚氰酸和水合肼反应制备,耗时间厂,控制不好。光气和水合肼反应容易生成爆炸性气体,安全性能差。

总之,碳酰肼的制备工艺还需要进一步探究,目前碳酰肼价格比较高,大规模的工业生产受限,因此突破技术是目前降低碳酰肼价格的唯一办法,为此需要科研工作者进一步探索和研究。

碳酰肼的应用降解

1作为水处理剂使用-碳酰肼

除去水中的溶解氧从而保护工业设备是水质控制中重要的一环, 一般是机械与化学除氧相结合,使得溶解氧尽可能的降低。化学除氧剂应具备的条件是在整个水循环中各个温度下都要良好的除氧效率。在水与气之中产生的分解物质对工作人员影响最小更易于控制。众所周知,最早用于除氧剂的是亚硫酸钠,由于在低温下能够高效迅速的同氧气发生反应,从而成为当时主要的除氧剂。但是在后来的锅炉水除氧中发现,亚硫酸钠会导致过热蒸汽管的污染以及凝汽管的龟裂,且锅炉水的固形物增加,因此化学除氧剂改用联氨,但是最近几年联氨又被怀疑有致癌作用,这就促进人们努力的探索新产品,渴望开发出一种无毒、操作方便、又能快速的除氧的新型除氧剂,碳酰肼应运而生,首先在日本得到应用,进而快速推广。 但是,碳酰肼的制备工艺不成熟,加之价格高,使得其推广受到限制,因此,需要科学工作者的进一步努力。

2、树脂整理剂

在纺织品的树脂整理过程中,碳酰肼可用作甲醛的捕捉剂,在酸性介质中碳酰肼可与甲醛反应生成加合物,然后脱水并聚合,因而是不可逆反应,不会释放出甲醛。同时,用碳酰肼处理后的纺织品,对酸性染料有很高的亲和力,即织物容易着色,皱折减少,并且产品具有良好的仿佛像和耐用性。

3、用作含能配合物

主要用于火箭的染料助剂等

第五篇:己内酰胺的合成路线及工艺消耗

一、 己内酰胺生产工艺

早在1899年,Gabriel和Meas就通过加热ε-氨基己酸,首次合成了己内酰胺。但是直到1943年,才由德国I.G.Farben公司实现了己内酰胺的工业化。当时采用的工艺技术称为拉西法,起始原料为苯酚。第二次世界大战后,I.G.Farben公司的技术被公开,世界己内酰胺应用得到了快速的发展。荷兰DSM公司的HPO工艺对拉西法作了重大改进,自上世纪70年代以来在世界上得到了广泛的推广应用,成为己内酰胺生产最重要的工艺技术。此外,德国巴斯夫公司(BASF)的一氧化氮还原工艺、日本东丽公司的光亚硝化法工艺、美国Allied Singal公司的异丙苯/苯酚工艺、意大利SNIA公司的甲苯法工艺、波兰Polimex/Polservice公司的Capropol工艺也各有特色,在己内酰胺工业生产中得到应用。

传统拉西法:德国I.G.FANBEN公司开发,其关键工艺是环己酮与硫酸羟胺发生肟化反应,生成环己酮肟,环己酮肟在发烟硫酸作用下经贝克曼重排反应生成己内酰胺。硫酸羟胺是用硫酸中和亚**,生成脱酯硫酸盐,再发生水解反应产生的。该工艺在羟胺合成、肟化反应、重排反应三道工序都使用硫酸,氨中和后产生大量的副产物硫酸铵,而硫酸铵的经济价值较低。对传统拉西法的改进,主要着眼于降低硫酸铵的副产量。

Allied异丙苯/苯酚工艺:该工艺主要特点是用异丙苯法生产的苯酚为原料。苯酚加氢生成环己酮,环己酮与硫酸羟胺经肟化反应生成环己酮肟,环己酮肟在发烟硫酸作用下经贝克曼重排反应生成己内酰胺。硫酸羟胺是用硫磺、氨、二氧化碳和水经多步工艺生产的,硫酸铵副产量仍然较高。

巴斯夫一氧化氮还原工艺:该工艺的硫酸羟胺是控制氨氧化生成一氧化氮,再在硫酸中用氢气还原而生成的,硫酸铵副产量比传统拉西法少得多。

CAPROPOL工艺:该工艺在环己烷氧化制环己酮环节有一定特点,使用了钯催化剂,降低了氢氧化钠的消耗量和废碱液的生成。环己酮与硫酸羟胺经肟化反应生成环己酮肟,环己酮肟在发烟硫酸作用下经贝克曼重排反应生成己内酰胺。硫酸羟胺是用一氧化氮还原工艺生产的。

DSM-HPO工艺:该工艺的羟胺合成和环己酮肟化两个阶段都是在循环使用的磷酸缓冲液中完成的,不产生硫酸铵。首先用磷酸缓冲液吸收氨氧化产生的二氧化氮气体,生成硝酸;然后用氢气还原磷酸缓冲液中的硝酸根离子,生成羟胺;富含羟胺的磷酸缓冲液再与环己酮逆流接触,经肟化反应生成环己酮肟。该工艺的优势在于仅在环己酮肟重排反应阶段使用硫酸,因而大大降低了硫酸铵副产量。不足之处是设备复杂,分离精制环节多,工艺控制难度大,催化剂较为昂贵。

目前世界上90%以上的己内酰胺都是通过上述几种基于拉西法的工艺生产的。它们的共同特点是都经过环己酮和环己酮肟这两个中间产物,由环己酮与羟胺反应生成环己酮肟,环己酮肟再在发烟硫酸作用下经贝克曼重排生成己内酰胺。环己酮主要是环己烷经空气氧化反应生产,小部分来源于苯酚加氢。

东丽光亚硝化工艺:在水银灯照射下,环己烷与亚硝酰氯和氯化氢生成氯化氢肟,再重排生成己内酰胺。尽管有人认为这项工艺生产己内酰胺的成本最低,但迄今只有日本东丽公司采用该工艺建有两套共170万吨/年的生产装置,且多年来没有扩产的报道。

SNIA甲苯法工艺:该工艺用甲苯氧化生成苯甲酸,苯甲酸加氢生成环己烷羧酸,环己烷羧酸经中和、脱羧及重排生成己内酰胺。该工艺硫酸铵副产量很高,而且原子经济性不佳,有较大的局限性,在意大利的装置已经停产,仅有我国石家庄化纤有限公司的一套原设计为50万吨/年的装置尚在营运。

二、 新工艺的开发应用

到目前为止,己内酰胺生产所采用的工艺都是以芳香族化合物或其衍生物为原料的。近10几年来,国外一些大公司积极研究以非芳香族化合物为原料的工艺路线。DSM、杜邦(Dupont)及壳牌(Shell)合作推出了一项以丁二烯和一氧化碳为原料生产己内酰胺的工艺,巴斯夫公司也申请了类似的专利。巴斯夫公司和杜邦公司合作开发的丁二烯/甲烷工艺,在德国建成了1千吨/年的丁二烯/甲烷工艺的工业实验装置。该工艺用丁二烯、甲烷和氨经多步工艺生产己二腈和己二胺,己二腈单端氰基加氢生产氨基己腈,氨基己腈通过水解和环化生成己内酰胺。后来Rhodia公司也开发了一项类似工艺,并声称有所改进。巴斯夫公司和杜邦公司曾计划于1995年在我国海南省以丁二烯/甲烷工艺建设一套联产15万吨/年己内酰胺、15万吨/年己二胺的大型装置,但该计划一再被推迟,迄今没有实施。而台湾CPDC公司仍然购买DSM的HPO技术,在2000年建成投产一套12万吨/年的己内酰胺装置。相形之下,说明以丁二烯为原料的新工艺对传统工艺并没有明显的竞争优势。

在拉西法技术基础发展的己内酰胺生产工艺,在过去30年来一直比较稳定,现在也面临着重大的突破。环己酮氨肟化工艺、环己酮肟气相重排工艺、环己烷氧化新工艺开始进入工业应用

环己酮氨肟化工艺:该工艺将环己酮、氨、过氧化氢置于同一反应器中,一步合成环己酮肟。与其它工艺相比,具有流程短、环境友好、反应条件温和、设备投资低的优势。该工艺自上世纪60年代就得到关注,意大利Enichem公司和中国石化都已完成了该工艺的中间试验,并拥有相关专利,其技术可靠性和经济可行性都已达到工业应用水平。

环己酮肟气相重排工艺:该工艺是在固体酸催化剂作用下,环己酮肟在气相重排成己内酰胺,由于不使用硫酸和氨,也就不产生副产物硫酸铵,可以大幅度降低生产成本。国外多家公司对这项工艺的进行了研究,石油化工科学研究院和中国石化巴陵分公司也在积极开展研究,重点是提高催化剂的转化率、选择性和寿命。日本住友公司采取流化床反应器,环己酮肟/甲醇/氮气在高温下通过分子筛,转化率为99.3%,己内酰胺的产率为95.3%,研究成果已经达到工业应用水平。

环己烷氧化新工艺:大连化学物理研究所与中国石化巴陵分公司利用自行开发的复合金属氧化物催化剂,研究环己烷非均相催化氧化新工艺生产环己酮,反应温度降低15℃至25℃,环己烷单程转化率提高1倍多,醇酮选择性提高10多个百分点,可显著提高设备效率和生产安全性,大幅度降低物耗、能耗和废液处理量,与目前的环己酮生产工艺相比,竞争优势十分明显。湖南大学和中国石化巴陵分公司使用仿生催化剂也取得了类似的研究成果。这项新技术的研究目前已经完成了中间试验。

日本住友公司采用意大利Enichem公司开发的环己酮氨肟化工艺和自行开发的环己酮肟气相重排工艺,于2002年开工建设一套6.5万吨/年的己内酰胺新装置,2003年2月完成施工,2003年4月投产。

中国石化股份有限公司组织石油化工科学研究院和巴陵分公司等科研、生产、设计单位联合开发的己内酰胺成套新工艺,已经取得了重大突破,并具有自主知识产权。通过环己烷氧化新工艺、环己酮氨肟化工艺、环己酮肟气相重排工艺、己内酰胺精制新工艺的整合,可以较大幅度地降低己内酰胺成本。现已着手对巴陵分公司己内酰胺生产装置分段实施改造,其中环己酮氨肟化制环己酮肟的改造将于2003年完成。这套工艺如果能够顺利实现工业化,大幅度降低生产成本,将给己内酰胺以及下游产品带来活力。

目前主要工艺是环己酮与硫酸羟胺发生肟化反应,生成环己酮肟,环己酮肟在发烟硫酸作用下经贝克曼重排反应生成己内酰胺。

DSM-HPO工艺:该工艺的羟胺合成和环己酮肟化两个阶段都是在循环使用的磷酸缓冲液中完成的,不产生硫酸铵。首先用磷酸缓冲液吸收氨氧化产生的二氧化氮气体,生成硝酸;然后用氢气还原磷酸缓冲液中的硝酸根离子,生成羟胺;富含羟胺的磷酸缓冲液再与环己酮逆流接触,经肟化反应生成环己酮肟。该工艺的优势在于仅在环己酮肟重排反应阶段使用硫酸,因而大大降低了硫酸铵副产量。不足之处是设备复杂,分离精制环节多,工艺控制难度大,催化剂较为昂贵。

主要工艺流程:环己酮肟化;环己酮肟液相贝克曼重排;精制3个工艺单元。

二、 国内己内酰胺总产能在50万吨左右,浙江恒逸的20万吨/年装置正在建设中。

三、 欧洲、美国和日本是传统的己内酰胺生产区域,主要生产厂家有巴斯夫、帝斯曼、霍尼韦尔、日本宇部工业、日本东丽、韩国己内酰胺公司、朗盛化工、住友化学等。 国内只有浙江巨化、巴陵石化、石家庄炼化、南京帝斯曼东方化工有限公司。

四、 菏泽市东巨化工股份有限公司10万吨/年己内酰胺工程

五、 山东方明化工有限公司16万t/a己内酰胺项目

拟建项目己内酰胺生产采用环己酮—羟胺肟化法中的HPO法。HPO法工艺技术先进,原辅材料消耗低,副产硫酸铵少,生产装置安全可靠、易于操作,在国内外被广泛应用。

六、 (1)DSM公司和杜邦公司的Altam工艺。DSM公司和杜邦公司联合开发出基于C4的Altam工艺,新工艺采用丁二烯和一氧化碳(CO)为原料,不会联产硫酸铵,与常规技术相比,可节约费用约30%。首先是丁二烯与一氧化碳和水或醇反应得到3-戊烯酸/甲酯,3-戊烯酸/甲酯异构化生成4-戊烯酸/甲酯,3-戊烯酸/甲酯和4-戊烯酸/甲酯的羰基合成反应,生成5-甲酰基戊酸/甲酯,5-甲酰基戊酸/甲酯还原胺化成6-氨基己酸/甲酯,6-氨基己酸/甲酯环化生成已内酰胺,当6-氨基己酸/甲酯的转化率为97%-98%时,已内酰胺的选择性为97%-99%。对于Altam新工艺来说,要提高转化率和目的产物的选择性,关键在于催化剂的筛选和制备及反应条件的选择。

(2)己二腈工艺。该工艺由巴斯夫与杜邦公司合作开发成功。丁二烯与氢氰酸反应合成己二腈,已二腈部分加氢生成6-氨基己腈和已二胺的混合物,6-氨基己腈与水反应生成己内酰胺。考虑到重组分的循环,已内酰胺的总收率约为93%。该工艺的关键在于己二腈选择性部分加氢,开发成功高性能催化剂,使中间产物和最终产物的转化率和选择性达到高水平。该工艺的主要优点是采用了价格较为低廉的丁二烯,流程较短,物耗能耗较低,不副产硫酸铵,缺点是HCN酸和腈类毒性较大。

(3)住友化学公司生产工艺。日本住友化学公司结合意大利埃尼化学公司许可的氨化工艺,开发出生产己内酰胺的新技术。该新工艺是将一种专用的高硅沸石催化剂FS-1代替硫酸使过氧化氢同氨进行氨氧化直接生产环己酮肟的技术与环己酮肟气相法贝克曼重排反应技术结合起来。新工艺采用流化床反应器,使用甲醇为辅助反应剂,环已酮肟/甲醇/氮气在350℃、0.10MPa下通过分子筛,环已酮肟转化率为99.3%,环己酮肟和甲醇的空速分别为5.04g/g催化剂.h和8.76g/g催化剂.h,己内酰胺产率为95.3%,唯一的副产物是水,甲醇可以回收和循环使用。住友化学公司己在日本爱媛建成一套6.7万吨/年己内酰胺生产装置。该工艺由于不需要羟胺装置,从而降低了投资费用,但过氧化氢费用昂贵,使得必须大规模生产才能显示出其规模经济性和价格优势。

(4)大阪关西大学生产工艺。日本大阪关西(Kansai)大学应用化学系研究人员与Daicel(迪塞尔)化学工业公司合作,开发了一种基于专有的N-羟基邻苯二甲酰亚胺(NHPI)氧化催化剂来合成己内酰胺的新工艺。该新工艺以乙酸乙酯为溶剂,NHPI为催化剂,在60℃,氧气压力为0.1MPa的条件下进行操作,环己酮和环己醇组成的混合物(即KA油)被氧化生成1,1-二羟基二环己基过氧化物(PO)。利用PO制备己内酰胺可以有二种不同的方案:一种是PO与氨反应生成过氧化二环己胺(PDHA),转化率为20%,选择性为90%(基于KA油),PDHA再被LiBr或碱催化转化成已内酰胺。在另一替代路线中,PO在60℃下借助氧化硒催化剂进行反应,先被转化成ε-内酯,基于KA油时转化率为11%,选择性为87%。ε-内酯再与氨反应转化为己内酰胺。尽管该工艺路线目前仍正处于开发阶段,但由于其副产物的硫酸铵量少,故被认为是一种具有发展前景的工艺技术。目前的研究开发重点在于提高产品的转化率。

七、

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:平安综治工作总结3篇下一篇:三年级班级日志记载表