碳纤维增强复合材料

2022-10-26

第一篇:碳纤维增强复合材料

碳纤维增强树脂基复合材料性能的研究

摘 要:碳纤维增强树脂基复合材料以其优异的综合性能成为当今世界材料学科研究的 重点。本文介绍了的碳纤维增强复合材料的性能,简述了增强机理、成型工艺及其应用领 域和发展趋势。

新材料的研究、发展与应用一直是当代高新技术 的重要内容之一。其中复合材料,特别是先进复合材料 在新材料技术领域占有重要的地位,对促进世界各国 军用和民用领域的高科技现代化,起到了至关重要的 作用,因此近年来倍受重视。

复合材料(Composite materials),是以一种材料为基体(Matrix),另一种材料为增强体(reinforcement)组合而成的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。【1】

碳纤维增强复合材料(CFRP)是目前最先进的复合 材料之一。它以轻质高强、耐高温、抗腐蚀、热力学性能 优良等特点广泛用作结构材料及耐高温抗烧蚀材料, ,而这些优 异的性能可使碳纤维成为一种十分良好的增强材 料。目前,碳纤维大部分应用于碳纤维增强树脂基 复 合 材 料 ( Carbon Fiber Reinforced Polymer Composite,简称CFRP)。是其它纤维增强复合材料所无法比拟的。因为环氧树脂的热机械 性能、抗蠕变性能、粘接性能优异而且吸湿性好; 固化收缩率和线膨胀系数小;固化温度较低;较高 温度下稳定性好;尺寸稳定性、综合性能好[2];而 且又与有机材料的浸润性能好等优点,所以近年来 应用最多的就是碳纤维增强环氧树脂复合材料。目 前为止,CFRP 可以应用于航空、航天,体育用品, 交通工具,建筑材料等多个领域。无论是军用还 是民用,随着研究的不断深入和工厂的大规模生产, 其应用领域更为广阔。

碳纤维增强树脂基复合材料的性能【10】

碳纤维增强树脂基复合材料具有一系列的优异性能, 主要表现在以下几个方面。

(1)具有高的比强度和比模量。CFRP的密度仅为 钢材的 1/5,钛合金的 1/3,比铝合金和玻璃钢(GFRP) 还轻,使其比强度(强度 / 密度)是高强度钢、超硬铝、 钛合金的4倍左右,玻璃钢的2倍左右;比模量(模量/ 密度)是它们的3倍以上。CFRP轻而刚、刚而强的特性 是其广泛用于宇航结构材料最基本的性能。

(2)耐疲劳。在静态下,CFRP 循环 105 次、承受 90%的极限强度应力时才被破坏,而钢材只能承受极 限强度的 50%左右。对于碳纤维增强树脂基复合材 料,在应力作用下呈现粘弹性材料的疲劳特性,显示出 耐疲劳特性。CFRP呈现出良好的抗蠕变性能,这可能 与碳纤维的刚性有关。

(3)热膨胀系数小。碳纤维的热膨胀系数α具有 显著的各向异性,使其复合材料的α也具有各向异 性。

(4)耐磨擦,抗磨损。CFRP 有优良的耐疲劳特 性、热膨胀系数小和热导率高的特性,具耐磨擦、抗磨 损的基本性能。再加之碳纤维具有乱层石墨结构,自 润滑性好,适用于摩擦磨损材料。比磨耗量可用以下 三式表示。

Wr=KLª

a=(b+2)/ 3

N=(So /S )/ b

式中Wr 为比磨耗量; K为比例常数; S为循环作 用的应力; So 为材料的拉伸强度; N为断裂时的循环次 数。 CFRP具有高的拉伸强度,是优良的摩擦材料。

(5)耐蚀性。碳纤维的耐蚀性非常优异,在酸、碱、 盐和溶剂中长期浸泡不会溶胀变质。CFRP 的耐蚀性 主要取决于基体树脂。长期在酸、碱、盐和有机溶剂环 境中,刻蚀、溶胀等使其变性、腐蚀,导致复合材料性能 下降。

(6)耐水性好。碳纤维复合材料的耐水性好,可长 期在潮湿环境和水中使用。一般沿纤维方向(0° )的强度 保持率较高,垂直于纤维方向(90º)的保持率较低。这可 能与基体树脂的吸湿、溶胀有关。

(7)导电性好。碳纤维具有导电性能。对于 CFRP 导电性能来自碳纤维,基体树脂是绝缘体。因此,CFRP 的导电性能也具有各向异性。

(8)射线透过性。CFRP对 X射线透过率大,吸收 率小,可在医疗器材(如 X光机)方面应用。

2 增强机理 碳纤维增强树脂基复合材料是以聚合物为基体 (连续相),纤维为增强材料(分散相)组成的复合材料。 纤维材料的强度和模量一般比基体材料高得多,使它 成为主要的承载体。但是必须有一种粘接性能好的基 体材料把纤维牢固地粘接起来。同时,基体材料又能起到使外加载荷均匀分布,并传递给纤维的作用【11】。

这种复合材料的特点是,在应力作用下,使纤维的 应变与基体树脂的应变归于相等,但由于基体树脂的 弹性模量比纤维小得多,且易塑性屈服,因而当纤维和 基体处在相同应变时,纤维中的应力要比基体中的应 力大得多,致使一些有裂口的纤维先断头,然而由于断 头部分受到粘着它的基体的塑性流动的阻碍,断纤维 在稍离断头的未断部分仍然与其周围未断纤维一样承 担相同的负荷。复合增强的另一原因是基体抑制裂纹 的效应,柔软基体依靠切变作用使裂纹不沿垂直方向 发展而发生偏斜,导致断裂能有很大一部分用于抵抗 基体对纤维的粘着力,从而使银纹在 CFRP 整个体积 内得到一致,而使抵抗裂纹产生、生长、断裂以及裂纹 传播的能力都大为提高。因此,CFRP的力学性能得到 很大的改善和提高【12】。

1 实验部分

1.1 实验原料

碳纤维(12K/T-300):台湾台塑厂;环氧树脂 E51:星辰化工无锡树脂厂;固化剂:二乙烯三胺 (DETA)分析纯,国药集团化学试剂有限公司;活 性稀释剂:市售。

1.2 实验仪器及设备 电子天平:H10KS,上海仪器总厂;电热恒温 鼓风干燥箱:DHG-9030 型,上海精密实验设备有 限公司;搅拌器:DF-1 型,荣华仪器制造有限公 司;模具:自制。

1.3 复合材料的制备

(1)将碳纤维干燥,条件为:150 ℃/2 h; (2)按规定配比配制树脂胶液;

(3)采用手糊成型工艺制作层合板,并固化, 固化条件为 100 ℃/3 h + 150 ℃/2 h;

(4)用万能制样机切割标准样条;

其中制作的层合板长宽为 200 mm×200 mm, 厚度为 5 mm 的方形板材,基体树脂每层用量为 20 g,碳纤维每层平铺,一共为 8 层,层与层之间的碳 纤维丝束成十字交叉排列。

试验结果与讨论

2. 1 碳纤维含量对硬度的影响 显微硬度试验结果示于图 1。可以看出, 随着 碳纤维含量的增加, 试样的硬度呈现 S 形增加趋 势, 增加幅度由小到大又由大到小。碳纤维是脆性 材料, 具有高的强度和比模量, 所以加入碳纤维能提 高试样的硬度[ 5] 。基体是树脂材料, 其硬度较低, 当 碳纤维含量较低时, 由于在基体中较分散, 所以对显 微硬度的贡献较小; 当碳纤维含量> 10%, 碳纤维的 作用变的非常明显, 所以硬度有较大幅度的增加; 但 是, 当碳纤维含量> 25% , 碳纤维的增强作用逐渐达 到饱和, 硬度的增加速度开始下降。总之, 碳纤维的 加入对硬度的提高非常明显。

图y为不同碳纤维含量样品的电导率。从中可 以看出, 当碳纤维含量< 10%时, 电阻随纤维含量的 增加急剧下降; 当碳纤维含量> 10%时, 体积电阻的 变化趋于平缓, 电阻值的下降与碳纤维含量的增加 并不成正比, 有一个渗滤阀值, 这个渗滤阀值约为 15% 。这表明, 碳纤维/ 酚醛树脂复合体系在碳纤维 含量为 15%以上, 试样具有一定的导电性能[ 6] 。

上述结果可用以下理论解释, 当复合体系中导 电填料的含量在达到一个临界值前, 其电阻率急剧 下降, 在电阻率导电填料含量曲线上出现一个狭窄 的突变区域。在此区域内, 导电填料含量的任何细 微变化均会导致电阻率的显著改变, 这种现象通常 称为渗滤现象, 导电填料的临界含量称为渗滤阀值。 在突变区域之后, 即使导电填料含量继续提高, 复合 材料的电阻率变化甚小, 这反映在突变点附近导电 填料的分布开始形成导电通路网络。导电高分子材 料的导电现象是由导电填料的直接接触和填料间隙 之间的隧道效应的综合作用产生的; 或者说是由导 电通道、隧道效应和场致发射三种导电机理竞相作 用的结果。在低导电填料含量及低外加电压下, 导 电粒子间距较大, 形成链状导电通道的几率极小, 这 时隧道效应起主要作用; 在低导电填料含量和高外 加电压时, 场致发射理论变得显著; 在高导电填料含 量下, 导电粒子的间距小, 形成链状导电通道几率较 大, 这时导电通道机理的作用明显增大[ 7] 。

碳纤维含量对耐磨性的影响

试样磨损完毕后, 每个试样磨损前、后的质量磨 损量与碳纤维含量的关系如图 3 所示。从图 3 可以 看出, 随着碳纤维含量的增加, 复合材料的磨损率下 降、耐磨性能提高, 且提高程度随着碳纤维含量的增加而减小, 最后趋于不变。

综上所述,碳纤维增强树脂基复合材料品种结构 变化繁多,加工成型技术不断更新,基础理论研究方兴 未艾,应用领域相当广泛,这些事实充分证明了这一材料在工程塑料中的领先地位。随着基础研究和应用研 究的不断深入,该材料在取代金属、节约能源、特殊专 用等方面将发挥独特的作用,其巨大的潜力必将得到 进一步挖掘。

总结碳纤维复合材料的现实应用有以下几个方面: 4.1 航空航天领域的应用[13] 碳纤维复合材料与钢材相比其质量减轻 75%,而 强度却提高 4 倍,其最早最成熟的应用当属在航空航 天领域,如军用飞机、无人战斗机及导弹、火箭、人造卫 星等。早在 1970 年代初期,美国军用 F-14 战斗机就部 分采用碳纤维复合材料作为主承力结构。在民用航空 领域,如波音 767 和空中客车 A310 中,碳纤维复合材 料也占到了结构质量的 3%和 5%左右。近几年随着碳 纤维工业技术和航空航天事业的不断发展,碳纤维在 这一领域的应用更加广泛,如用于制造人造卫星支架、 卫星天线、航天飞机的机翼、火箭的喷焰口、战略导弹 的末级助推器、机器人的外壳等。

4.2 体育休闲领域的应用 体育休闲用品是碳纤维复合材料应用的另一个重 要领域,如高尔夫球杆、滑雪板、滑雪车、网球拍、钓鱼 竿等。用碳纤维复合材料制成的球拍与传统的铝合金 球拍相比,其质量更轻、手感和硬度更好、对震荡和振 动的吸收也更好,且使用寿命大大延长。同时由于复合 材料本身的可设计性,使得制造商在球拍的硬度、弹 性、球感、击球性能的设计上,有了更大的想象空间。而 碳纤维钓鱼竿由于其良好的韧性与耐用性,更是被广 泛青睐。近年来,碳纤维复合材料在运动及休闲型自行 车零组件方面的应用也非常广泛。

4.3 交通运输领域 碳纤维增强复合材料在交通运输方面主要是汽车 骨架、螺旋桨芯轴、轮毂、缓冲器、弹簧片、引擎零件、船 舶的增强材料等,尤其在汽车方面的应用更是潜力巨 大。早在 1979 年,福特汽车公司就在实验车上作了试 验,将其车身、框架等 160 个部件用碳纤维复合材料制 造,结果整车减重 33%,汽油的利用率提高了 44%,同 时大大降低了振动和噪音。

4.5 其他工业领域 防弹产品方面,包括防弹头盔、防弹服、防弹运钞 车和防弹汽车等;电子工业方面,包括各种反射面天 线、印刷电路板、壳架等;生物工程和人体医学方面, 包括人造关节、骨骼、CT扫瞄床板等;地铁车辆、发热 材料和电热用品以及机械制造工业等复合材料产品 多种多样,层出不穷,充分体现了其应用多元化的趋 势和特点。

【1】360百科

[2] 张金祥.新型 BMI/环氧树脂共固化体系的研究[D]. 大连:大连理 工大学,2011.

10张晓虎,孟宇,张炜.碳纤维增强复合材料技术发展现状及趋 势.纤维复合材料,2004,30(1):50~58.

11 王汝敏,郑水蓉,郑亚萍.聚合物基复合材料及工艺.北京:科学 出版社,2004.

12彭树文.碳纤维增强尼龙66的研究.工程塑料应用 13 苏小萍.碳纤维增强复合材料的应用现状.高科技纤维与应 用, 2004,29(5):34~36.

第二篇:碳纤维增强复合材料在汽车上的应用终结版综述

碳纤维增强复合材料在汽车中的应用

摘要

随着汽车工业的飞速发展,减少燃料消耗和降低对环境的污染已成为汽车工业发展和社会可持续发展急需解决的关键问题。汽车的燃料消耗和二氧化碳废气的排放量与汽车重量存在密切的关系,寻找较轻且性能良好的材料代替钢制汽车零件成为一个重要的研究方向。碳纤维增强复合材料具有强度高、重量轻、耐高温、耐腐蚀、热力学性能优良等特点,碳纤维增强复合材料用于制造汽车车身、发动机零件等,可有效降低汽车自重并提高汽车性能,是当前汽车材料轻量化的重要研究发展方向之一。本文介绍了碳纤维增强复合材料的特点、成型工艺及在汽车行业的应用情况,以及碳纤维增强复合材料在汽车应用中存在的问题。

关键词:碳纤维 增强 汽车 应用

1 前言

现在社会汽车已成为人民出行必不可少的交通工具,在汽车给人类带来方便的同时也给环境带来了污染,汽车的燃料消耗和二氧化碳废气的排放量与汽车重量存在密切的关系,美国能源部相关研究表明,美国现有的汽车,如减重25%,每天可节省750,000桶燃油,每年二氧化碳的排放量可减少1.01亿吨,因此汽车轻量化已成为汽车工业技术发展的重要方向。除了对汽车各种零部件结构进行优化设计和改进外,采用高性能轻质材料是实现汽车轻量化的一条重要途径。如选用铝、镁、钛、高强度钢、工程塑料和复合材料等,用以制造汽车车身、底盘、发动机等零部件,可以有效的减轻汽车自重,提高发动机效率。

碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料,是目前最先进的复合材料之一。它以其质量轻、强度高 、耐高温、抗腐蚀、热力学性能优良等特点广泛用作结构材料及耐高温抗腐蚀材料,是其它纤维增强复合材料所无法比拟的。纤维增强复合材料具有高强度、高模量,已在航天航空等领域广泛使用,是制造卫星、导弹、飞机的重要结构零部件的关键结构材料,同时也受到汽车工业广泛重视,碳纤维增强复合材料在汽车方面主要是汽车骨架、缓冲器、弹簧片、引擎零件等,早在1979年,福特汽车公司就在实验车上作了试验,将其车身、框架等160个部件用碳纤维复合材料制造,结果整车减重33%,汽油的利用率提高了44%,同时大大降低了振动和噪音。

碳纤维具有比重小、强度高、模量高、耐腐蚀等特点,可用于制造碳纤维增强聚合物、金属、陶瓷基复合材料,是先进复合材料最重要的增强体。碳纤维增强复合材料用于制造汽车车身、发动机零件等,可有效降低汽车自重并提高汽车性能。本文将简述碳纤维增强复合材料的性能特点,及其在汽车工业应用的前景和存在的问题。由于碳纤维增强复合材料的价格昂贵,严重影响其在汽车工业中的应用。因此,发展廉价的碳纤维和高效率碳纤维增强复合材料的生产方法和工艺已成为汽车轻量化材料研究中的关键课题,美国、日本等已将其列为汽车轻量化材料的研究计划。

2 碳纤维增强复合材料的特性

碳纤维增强复合材料以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。

碳纤维增强复合材料的成型加工技术包括碳纤维的坯体制造、碳基体的制造和基体与纤维的复合。首先,将碳纤维或碳纤维织物制成坯体,根据原料形式不同分为:长纤维缠绕法;碳毡短纤维模压或喷射成型;石墨布叠层。目前,其坯体研制以三向织物为主,三向织物以X、Y、Z方向互成90度正交排列,各方向的碳纤维在织物中保持准直,因此能较好的发挥纤维的力学性能。其次,制作复合材料的基体。碳-碳复合材料的基体有树脂碳和热解碳两种,树脂碳是由合成树脂或沥青经碳化和石墨化获得,热解碳是由烃类气体的气相沉积获得。最后,把坯体与基体复合成型。

碳纤维增强复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。

(1)具有很高的强度和弹性模量(刚性)。它的比重一般为1.70~1.80g/cm3,密度低(1.7g/cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在2200oC时可保留室温强度,强度为1200~7000MPa,;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料。纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现“假塑性效应”即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。

(2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异

(3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部。

3 碳纤维增强复合材料在汽车行业的应用情况

碳纤维增强复合材料具有高强度、高模量,已在航天航空等领域广泛使用,是制造卫星、导弹、飞机的重要结构零部件的关键结构材料。由于碳纤维增强聚合物基复合材料有足够的强度和刚度,它也是适用于制造汽车主结构――车身、底盘最轻的材料,受到汽车工业广泛重视。主要的应用有:发动机系统中的推杆、连杆、摇杆、水泵叶轮,传动系统中的传动轴、离合器片、加速装置及其罩等,底盘系统中的悬置件、弹簧片、框架、散热器等,车体上的车顶内外衬、地板、侧门等。自从1953年第一辆全复合材料车身的汽车问世以来,复合材料在汽车上的应用不断增多。如今在汽车车身、尾翼、汽车底盘,发动机罩、汽车内饰等各个地方我们都能够发现碳纤维复合材料的身影。

碳纤维增强复合材料的应用可使汽车车身、底盘减轻重量40~60%,相当于钢结构重量的1/3~1/6。英国材料系统实验室曾对碳纤维复合材料减重效果进行研究,结果表明碳纤维增强聚合物材料车身重172kg,而钢制车身重量为368kg,减重约50%。但由于碳纤维成本过高,碳纤维增强复合材料在汽车中的应用有限,仅在一些F1赛车、高级轿车、小批量车型上有所应用,如BMW公司的Z-22的车身,福特公司的GT40车身、保时捷GT3承载式车身等,碳纤维增强复合材料以其优异的性能取得了飞速发展并且在社会各领域得到了越来越广泛的应用.增强纤维作为纤维增强复合材料的一个重要组分,其性能如何将直接影响着复合材料的应用层次,而且高性能增强纤维作为高竞争性、高赢利性品种一直是世界各大生产商乐于巨额投资的研发项目品种,它的发展及其在先进复合材料中的适应程度在目前乃至将来都有许多值得探索的地方.在先进复合材料中, 碳纤维增强复合材料是目前最常应用的高性能增强纤维之一,碳纤维复合材料具有足够的强度和刚度以及优良的综合性能,它的应用将可大幅度降低汽车自重达40~60%,对汽车轻量化具有十分重要的意义,已成为汽车轻量化材料的重要发展方向。为提高碳纤维增强复合材料的用量,美国、欧洲、日本等通过加紧研究廉价碳纤维的原丝(高品级聚丙烯晴丝)和碳纤维的低成本、高速率的生产工艺,使碳纤维的价格降低到约3美元/磅。目前碳纤维增强复合材料已用于赛车、重卡、混合动力车的各种零部件的生产。

碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,抗拉强度却达到钢的7-9倍,以其制造的汽车可以节约燃油30%。碳纤维最初只应用于军事、航空航天等高科技领域,随着近年来碳纤维行业的逐步发展,才慢慢向汽车以及其他民用领域扩展。

1992年通用汽车公司介绍了超轻概念车(Ultralite Concept Car),该车的车身采用碳纤维复合材料,由手铺碳纤维预浸料工艺制造,整体车身的质量为191kg。用碳纤维取代钢材制造车身和底盘构件,可减轻质量 68%,从而节约汽油消耗40%。

丰田设计的“1/X”混合动力车,由于车身骨架采用碳纤维材料,创造出百公里耗油仅2.7升的超低燃耗记录。此外,三菱EVO X极致轻量化的车身改造,均缘于大量碳纤维套件的使用,如牌照框、导风罩、散热孔罩等构件均采用碳纤维材料。

卓尔泰克(Zoltek),是美国碳纤维领先制造商,已成立一个新的子公司,称为 Zoltek Automotive(卓尔泰克汽车公司),加快对轻质碳纤维在汽车业大幅应用的领域。这个新子公司将由两位在汽车复合材料应用方面德高望重的专家领导,并有超过12名来自卓尔泰克已有业务中的工程技术人员及其面向全球的销售人员加盟。

卓尔泰克公司董事长兼首席执行官Zsolt Rumy表示:“我们一直把汽车行业看作是我们的低成本、高性能碳纤维的最大的一个潜在市场。虽然我们已积极开发车用碳纤维很多年了,Zoltek Automotive的成立则是我们将产品开发与潜在市场需求更紧密联系的一个新的开始。我们将通过Zoltek Automotive的专业技术,开发新的生产方式,帮汽车行业客户制造性价比更高的碳纤维加工产品,使碳纤维技术的应用和流程更简易高效。”

日本帝人集团的总裁,也同样对进军碳纤维市场充满信心,认为通过未来几年在车辆中使用碳纤维增强塑料(CFRP),能够帮助电动汽车车身减重一半以上。

碳纤维复合材料具有比金属材料更高的刚性和抗冲击性能,还具有极佳的能量吸收能力,进一步保证了碳纤维复合材料汽车的安全性。据介绍,碳纤维复合材料的能量吸收能力比金属材料高4-5倍左右。数年来,F1车队一直采用碳纤维复合材料制造其赛车的碰撞缓冲构件,从而显着减少了这顶级汽车运动项目中的重伤事故。

4 碳纤维增强复合材料在汽车中的应用存在的问题

虽然碳纤维增强复合材料具有高强度、高模量、比重小、耐腐蚀且具有较高的强度和硬度,但碳纤维增强复合材料的价格昂贵,大批量、高效率生产汽车零部件的工艺方法仍需要进一步发展、完善,严重影响其在汽车工业中的应用。除了价格因素之外,碳纤维增强复合材料在汽车中的应用还存着在一些问题需要解决。存在的问题如下:

1. 成本问题。碳纤维增强复合材料所用的纤维和基体材料价格高,是该材料在汽车工业广泛使用最大的障碍。生产碳纤维的原丝――聚丙烯晴丝较贵,美国正在研究以纺织商品级的聚丙烯晴丝为原丝并能够快速生产廉价碳纤维的工艺,可望将碳纤维的价格降至3美元/磅。

2. 缺乏大批量、高生产效率的碳纤维复合材料汽车零部件的生产方法。

需研究能够生产多种形状和性能的汽车零部件工艺方法,由于汽车行业特点,要求工艺成本要低,生产率要高。研究发展高效、低成本的复合材料零件生产工艺意义重大。

3. 缺乏复合材料的快速、大批量连接技术。 4. 复合材料汽车零部件的回收再利用问题。

5. 碳纤维增强热固性树脂基复合材料的回收尚存在一定问题,有待解决。 6. 复合材料汽车零件的设计数据、试验方法、分析工具、碰撞模型等尚不完善。

结束语

碳纤维增强复合材料如此昂贵,还有发展空间吗?答案是肯定的。目前碳纤维增强复合材料在技术等各方面都取得了长足的进展,应用领域也在不断扩展,从以前主要集中在航空航天及代表科技前沿的军事领域,逐步拓展到工业应用领域,特别是近几年以来,碳纤维增强复合材料在土木工程、交通运输、纺织机械等方面的应用大幅增长,尤其在汽车上的应用大幅增加,据相关部门预测,世界碳纤维需求每年将以大约13%的速度飞速增长。谁先掌握先机的技术,研究出高效率,成本低的生产先进工艺就能占领整个市场,因此而获得巨大的经济效益。目前我们需要做的是研究高效、低成本的生产工艺,研究快速、大批量的链接技术,研究回收复合材料的回收再利用技术,完善复合材料汽车零件的设计数据、实验方法、分析工具、碰撞模型等,从这几个方面入手,碳纤维增强复合材料的成本会大大降低。

目前碳纤维材料在民用量产汽车,尤其是中档产品应用也十分广泛,很多厂商也已经开始提供碳纤维材料的小组件,如后视镜壳、内饰门板、门把手、排挡杆、赛车座椅、空气套件等,同时可以原装位安装到发动机舱的风箱、进气歧管等碳纤维改装件也是品种繁多。碳纤维材料在汽车领域的应用越来越多也越来越广泛,相信在不久的未来,汽车排放越来越“低碳”,而汽车本身则会越来越“高碳”。随着碳纤维行业的不断成熟与发展,以及节能减排和汽车轻量化大方向的指引,碳纤维材料或成汽车界“瘦身革命”的领导者。可以预见,碳纤维轻量车身必将掀起一股新的变革潮流,一个新的市场突破点正在形成。

国际上已将碳纤维复合材料在汽车中的应用列为汽车轻量化材料发展计划的关键内容,并取得了重大进展国际碳纤维市场发展迅速,需求量的不断增长也给中国碳纤维行业提供了难得的发展机遇。随着应用研究的进一步深入,未来碳纤维产品将趋向于高性能化,民用、工业用量将继续保持大幅增长趋势。受益于庞大的内需市场,碳纤维增强材料汽车零部件这一细分市场必将有巨大的增长空间。

参考文献

[1]翟国华,候培民.新世纪中国汽车工业用纤维的发展.合成纤维工业,2003,26(3):l一4

[2]贺福. 汽车工业的新型材料——碳纤维增强复合材料[J];世界汽车;1979年05期 [3]陈光大.碳纤维的应用前景.中国投资,2002.3:24~25 [4]冯美斌.汽车轻量化技术中新材料的发展及应用[J];汽车工程;2006年03期

[5]敖辽辉.高精度碳纤维复合材料模具制造技术[A];中国硅酸盐学会2003年学术年会论文摘要集[C];2003年

[6]张鹏.碳纤维的应用及市场.Advanced Materials Industry,2001,(7):27~29. [7]张西奎,王成国,王海庆;碳纤维增强汽车摩擦材料的研究[J];汽车工艺与材料;2003年04期

第三篇:“十三五”重点项目-航空航天用轻量化及结构增强高性能纤维复合

“十三五”重点项目-航空航天用轻量化及结构增强高性能纤维复合材料项目可行性研究报告

编制单位:北京智博睿投资咨询有限公司

0 本报告是针对行业投资可行性研究咨询服务的专项研究报告,此报告为个性化定制服务报告,我们将根据不同类型及不同行业的项目提出的具体要求,修订报告目录,并在此目录的基础上重新完善行业数据及分析内容,为企业项目立项、申请资金、融资提供全程指引服务。

可行性研究报告 是在招商引资、投资合作、政府立项、银行贷款等领域常用的专业文档,主要对项目实施的可能性、有效性、如何实施、相关技术方案及财务效果进行具体、深入、细致的技术论证和经济评价,以求确定一个在技术上合理、经济上合算的最优方案和最佳时机而写的书面报告。

可行性研究是确定建设项目前具有决定性意义的工作,是在投资决策之前,对拟建项目进行全面技术经济分析论证的科学方法,在投

1 资管理中,可行性研究是指对拟建项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。在此基础上,综合论证项目建设的必要性,财务的盈利性,经济上的合理性,技术上的先进性和适应性以及建设条件的可能性和可行性,从而为投资决策提供科学依据。

投资可行性报告咨询服务分为政府审批核准用可行性研究报告和融资用可行性研究报告。审批核准用的可行性研究报告侧重关注项目的社会经济效益和影响;融资用报告侧重关注项目在经济上是否可行。具体概括为:政府立项审批,产业扶持,银行贷款,融资投资、投资建设、境外投资、上市融资、中外合作,股份合作、组建公司、征用土地、申请高新技术企业等各类可行性报告。

报告通过对项目的市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等方面的研究调查,在行业专家研究经验的基础上对项目经济效益及社会效益进行科学预测,从而为客户提供全面的、客观的、可靠的项目投资价值评估及项目建设进程等咨询意见。

报告用途:发改委立项、政府申请资金、申请土地、银行贷款、境内外融资等

关联报告:

航空航天用轻量化及结构增强高性能纤维复合材料项目建议书 航空航天用轻量化及结构增强高性能纤维复合材料项目申请报告

2 航空航天用轻量化及结构增强高性能纤维复合材料资金申请报告

航空航天用轻量化及结构增强高性能纤维复合材料节能评估报告

航空航天用轻量化及结构增强高性能纤维复合材料市场研究报告

航空航天用轻量化及结构增强高性能纤维复合材料商业计划书 航空航天用轻量化及结构增强高性能纤维复合材料投资价值分析报告

航空航天用轻量化及结构增强高性能纤维复合材料投资风险分析报告

航空航天用轻量化及结构增强高性能纤维复合材料行业发展预测分析报告

可行性研究报告大纲(具体可根据客户要求进行调整) 第一章 航空航天用轻量化及结构增强高性能纤维复合材料项目总论

第一节 航空航天用轻量化及结构增强高性能纤维复合材料项目概况

1.1.1航空航天用轻量化及结构增强高性能纤维复合材料项目名称

3 1.1.2航空航天用轻量化及结构增强高性能纤维复合材料项目建设单位

1.1.3航空航天用轻量化及结构增强高性能纤维复合材料项目拟建设地点

1.1.4航空航天用轻量化及结构增强高性能纤维复合材料项目建设内容与规模

1.1.5航空航天用轻量化及结构增强高性能纤维复合材料项目性质

1.1.6航空航天用轻量化及结构增强高性能纤维复合材料项目总投资及资金筹措

1.1.7航空航天用轻量化及结构增强高性能纤维复合材料项目建设期

第二节 航空航天用轻量化及结构增强高性能纤维复合材料项目编制依据和原则

1.2.1航空航天用轻量化及结构增强高性能纤维复合材料项目编辑依据

1.2.2航空航天用轻量化及结构增强高性能纤维复合材料项目编制原则

1.3航空航天用轻量化及结构增强高性能纤维复合材料项目主要技术经济指标

1.4航空航天用轻量化及结构增强高性能纤维复合材料项目可行性研究结论

4 第二章 航空航天用轻量化及结构增强高性能纤维复合材料项目背景及必要性分析

第一节 航空航天用轻量化及结构增强高性能纤维复合材料项目背景

2.1.1航空航天用轻量化及结构增强高性能纤维复合材料项目产品背景

2.1.2航空航天用轻量化及结构增强高性能纤维复合材料项目提出理由

第二节 航空航天用轻量化及结构增强高性能纤维复合材料项目必要性

2.2.1航空航天用轻量化及结构增强高性能纤维复合材料项目是国家战略意义的需要

2.2.2航空航天用轻量化及结构增强高性能纤维复合材料项目是企业获得可持续发展、增强市场竞争力的需要

2.2.3航空航天用轻量化及结构增强高性能纤维复合材料项目是当地人民脱贫致富和增加就业的需要 第三章 航空航天用轻量化及结构增强高性能纤维复合材料项目市场分析与预测

第一节 产品市场现状

第二节 市场形势分析预测

第三节 行业未来发展前景分析

第四章 航空航天用轻量化及结构增强高性能纤维复合材料项目建设规模与产品方案

5 第一节 航空航天用轻量化及结构增强高性能纤维复合材料项目建设规模

第二节 航空航天用轻量化及结构增强高性能纤维复合材料项目产品方案

第三节 航空航天用轻量化及结构增强高性能纤维复合材料项目设计产能及产值预测

第五章 航空航天用轻量化及结构增强高性能纤维复合材料项目选址及建设条件

第一节 航空航天用轻量化及结构增强高性能纤维复合材料项目选址

5.1.1航空航天用轻量化及结构增强高性能纤维复合材料项目建设地点

5.1.2航空航天用轻量化及结构增强高性能纤维复合材料项目用地性质及权属

5.1.3土地现状

5.1.4航空航天用轻量化及结构增强高性能纤维复合材料项目选址意见

第二节 航空航天用轻量化及结构增强高性能纤维复合材料项目建设条件分析

5.2.1交通、能源供应条件 5.2.2政策及用工条件

5.2.3施工条件

6 5.2.4公用设施条件

第三节 原材料及燃动力供应

5.3.1原材料 5.3.2燃动力供应

第六章 技术方案、设备方案与工程方案 第一节 项目技术方案

6.1.1项目工艺设计原则

6.1.2生产工艺

第二节 设备方案

6.2.1主要设备选型的原则 6.2.2主要生产设备 6.2.3设备配置方案 6.2.4设备采购方式 第三节 工程方案

6.3.1工程设计原则

6.3.2航空航天用轻量化及结构增强高性能纤维复合材料项目主要建、构筑物工程方案

6.3.3建筑功能布局 6.3.4建筑结构

第七章 总图运输与公用辅助工程 第一节 总图布置

7.1.1总平面布置原则

7.1.2总平面布置

7.1.3竖向布置

7.1.4规划用地规模与建设指标

第二节 给排水系统 7.2.1给水情况

7.2.2排水情况

第三节 供电系统

第四节 空调采暖

第五节 通风采光系统

第六节 总图运输

第八章 资源利用与节能措施

第一节 资源利用分析

8.1.1土地资源利用分析

8.1.2水资源利用分析

8.1.3电能源利用分析

第二节 能耗指标及分析

第三节 节能措施分析

8.3.1土地资源节约措施

8.3.2水资源节约措施

8.3.3电能源节约措施

第九章 生态与环境影响分析

第一节 项目自然环境

9.1.1基本概况

9.1.2气候特点

9.1.3矿产资源

第二节 社会环境现状

9.2.1行政划区及人口构成 9.2.2经济建设

第三节 项目主要污染物及污染源分析

9.3.1施工期 9.3.2使用期

第四节 拟采取的环境保护标准

9.4.1国家环保法律法规

9.4.2地方环保法律法规

9.4.3技术规范

第五节 环境保护措施

9.5.1施工期污染减缓措施 9.5.2使用期污染减缓措施

9.5.3其它污染控制和环境管理措施

第六节 环境影响结论

第十章 航空航天用轻量化及结构增强高性能纤维复合材料项目劳动安全卫生及消防

第一节 劳动保护与安全卫生

10.1.1安全防护

9 10.1.2劳动保护 10.1.3安全卫生 第二节 消防

10.2.1建筑防火设计依据

10.2.2总面积布置与建筑消防设计

10.2.3消防给水及灭火设备

10.2.4消防电气

第三节 地震安全

第十一章 组织机构与人力资源配置

第一节 组织机构

11.1.1组织机构设置因素分析 11.1.2项目组织管理模式

11.1.3组织机构图

第二节 人员配置

11.2.1人力资源配置因素分析 11.2.2生产班制 11.2.3劳动定员

表11-1劳动定员一览表

11.2.4职工工资及福利成本分析

表11-2工资及福利估算表 第三节 人员来源与培训

10 第十二章 航空航天用轻量化及结构增强高性能纤维复合材料项目招投标方式及内容

第十三章 航空航天用轻量化及结构增强高性能纤维复合材料项目实施进度方案

第一节 航空航天用轻量化及结构增强高性能纤维复合材料项目工程总进度

第二节 航空航天用轻量化及结构增强高性能纤维复合材料项目实施进度表

第十四章 投资估算与资金筹措

第一节 投资估算依据

第二节 航空航天用轻量化及结构增强高性能纤维复合材料项目总投资估算

表14-1航空航天用轻量化及结构增强高性能纤维复合材料项目总投资估算表单位:万元

第三节 建设投资估算

表14-2建设投资估算表单位:万元

第四节 基础建设投资估算

表14-3基建总投资估算表单位:万元

第五节 设备投资估算

表14-4设备总投资估算单位:万元

第六节 流动资金估算

表14-5计算期内流动资金估算表单位:万元

11 第七节 资金筹措

第八节 资产形成

第十五章 财务分析

第一节 基础数据与参数选取

第二节 营业收入、经营税金及附加估算

表15-1营业收入、营业税金及附加估算表单位:万元 第三节 总成本费用估算

表15-2总成本费用估算表单位:万元

第四节 利润、利润分配及纳税总额预测

表15-3利润、利润分配及纳税总额估算表单位:万元 第五节 现金流量预测

表15-4现金流量表单位:万元 第六节 赢利能力分析

15.6.1动态盈利能力分析

16.6.2静态盈利能力分析

第七节 盈亏平衡分析

第八节 财务评价

表15-5财务指标汇总表

第十六章 航空航天用轻量化及结构增强高性能纤维复合材料项目风险分析

第一节 风险影响因素

16.1.1可能面临的风险因素

12 16.1.2主要风险因素识别

第二节 风险影响程度及规避措施 16.2.1风险影响程度评价

16.2.2风险规避措施

第十七章 结论与建议

第一节 航空航天用轻量化及结构增强高性能纤维复合材料项目结论

第二节 航空航天用轻量化及结构增强高性能纤维复合材料项目建议

第四篇:玻璃纤维增强PA66原料投产前含水率的测定

1.在精密天平上用称量瓶取5g玻璃纤维增强PA66原料。

2.将其与其他原料一起放入干燥机内(保证相同的温度和时间)进行干燥处理。

3.达到工艺规定的干燥处理条件后将称量瓶取出放入干燥皿内(避免在空气中吸收水分)冷却。

4.冷却至室温时,在称量其质量并记录数据。其质量损失即为水分的质量。

含水率按下列公式计算:

G1-G2α=————X100%

G1

α:为含水率。

G1:干燥前的塑料质量(g)。

G2:干燥前的塑料质量(g)。

5.填好报告单送成型工段。

第五篇:碳纤维复合材料

摘要:主要介绍了碳纤维复合材料的基本概述,并对它的一些结构性能、应用(主要在航空领域的应用)、发展,并分析了目前我国碳纤维复合材料的研究进展和应用前景。

关键字:碳纤维复合材料、碳纤维树脂基复合材料、碳/碳复合材料、结构性能、发展、航空领域。

1、引言

碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐磨擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的“比强度”。碳纤维属于聚合物碳,是有机纤维经固相反应转变为纤维状的无机碳化合物。碳纤维是一种新型非金属材料,它和它的复合材料具有高强度、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热、比重小和热胀胀系数小等优异性能,碳纤维单独使用时主要是利用其耐热性、耐蚀性、导电性和其它性质。碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP(即碳纤维复合材料)的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。目前,碳纤维不仅广泛应用军事工业,而且在汽车构件、风力发电叶片、核电、油田钻探、体育用品、碳纤维复合芯电缆以及建筑补强材料领域也存在巨大应用空间,而其在航空领域的光辉业绩尤为引人注目。

2、碳纤维的发展

碳纤维的出现是材料史上的一次革命。碳纤维是目前世界首选的高性能材料,具有高强度、高模量、耐高温、抗疲劳、导电、质轻、易加工等多种优异性能,正逐步征服和取代传统材料。现已广泛应用于航天、航空和军事领域。世界各国均把发展高性能碳纤维产业放在极其重要的位置。碳纤维除了在军事领域上的重要应用外,在民品的发展上有着更加广阔的空间,并已经开始深入到国计民生的各个领域。在机械电子、建筑材料、文体、化工、医疗等各个领域碳纤维有着无可比拟的应用优势。

碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的。80年代初期,高性能及超高性能的碳纤维相继出现,这在技术上是又一次飞跃,同时也标志着碳纤维的研究和生产已进入一个高级阶段。经过二十多年的发展,碳纤维及其复合材料已从初创期转入增长发展期,其工业地位已基本确立,美、日、英、法、德等国的碳纤维产量已经占世界产量的绝大部分,并已逐步形成垄断优势。

我国对碳纤维的研究由于起步较晚,技术力量薄弱,虽然碳纤维及其复合材料在我国已被纳入国家“863”和“973”计划,但总体情况不尽理想,我国仍不具备成熟的碳纤维工业化生产技术,国防和民用碳纤维产品基本依赖进口。

3、碳纤维复合材料的性能及主要用途

由于碳纤维主要是由碳元素组成的一种特种纤维,是由含碳量较高、在热处理过程中不熔融的人造化学纤维经热稳定氧化处理、碳化处理及石墨化等工艺制成的。其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐磨擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工性好,沿纤维轴方向表现出很高的强度,且碳纤维比重小。 (1)碳纤维的化学性能

碳纤维是一种纤维状的碳素材料。我们知道碳素材料是化学性能稳定性极好的物质之一。这是历史上最早就被人类认识的碳素材料的特征之一。除强氧化性酸等特殊物质外,在常温常压附近,几乎为化学惰性。可以认为在普通的工作温度≤250℃环境下使用,很难观察到碳纤维发生化学变化。根据有关资料介绍,从碳素材料的化学性质分析,在≤250℃环境下,碳素材料既没有明显的氧化发生,也没有生成碳化物和层间化合物生成。由于碳素材料具有气孔结构,因此气孔率高达25%左右,在加热过程易产生吸附气体脱气情况,这样的过程更有利于我们稳定电气性能和在电热领域的应用。 (2)碳纤维的物理性能 (a)热学性质

碳素材料因石墨晶体的高度各向异性,而不同于一般固体物质与温度的依存性,从工业的应用角度来看,碳素材料比热大体上是恒定的。几乎不随石墨化度和碳素材料的种类而变化 (b) 导热性质

碳素材料热传导机理并不依赖于电子,而是依靠晶格振动导热,因此,不符合金属所遵循的维德曼—夫兰兹定律。根据有关资料介绍,普通的碳素材料导热系数极高,平行于晶粒方向的导热系数可与黄铜媲美 (c)电学性质

碳素材料电学性质主要与石墨晶体的电子行为和不同的处理温度有关,石墨的电子能带结构和载流子的种类及其扩散机理决定了上述性质。碳素材料这类电学性质具有本征半导体所具备的特征,电阻率变化主要与载流子的数量变化有关。

碳纤维的主要用途:

与树脂、金属、陶瓷等基体复合,做成结构材料。碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。在刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。由碳纤维和环氧树脂结合而成的复合材料,由于其比重小、刚性好和强度高而成为一种先进的航空航天材料。最神奇的应用是采用长碳纤维制成的“纳米绳”可以将“太空电梯”由理想变为现实,太空电梯将可以将乘客和各种货物运送到空间轨道站上,也可以用这种“纳米绳”将太空中发射平台与地面固定在一起,在这样的发射平台上发射人造卫星和太空探测器就可以大大降低发射成本。

总结碳纤维复合材料的现实应用有以下几个方面

(一)航天领域

碳纤维复合材料因其独特、卓越的性能,在航空领越特别是飞机制造业中应用广泛。统计显示,目前,碳纤维复合材料在小型商务飞机和直升飞机上的使用量已占70%~80%,在军用飞机上占30%~40%,在大型客机上占15%~50%。 (a)碳纤维树脂基复合材料 碳纤维增强树脂基复合材料(CFRP)具有质量轻

等一系列突出的性能,在对重量、刚度、疲劳特性等有严格要求的领域以及要求高温、化学稳定性高的场合,碳纤维复合材料都具有很大优势。碳纤维增强树脂基复合材料已成为生产武器装备的

重要材料。AV—8B 改型“鹞”式飞机是美国军用飞机中使用复合材料最多的机种,其机翼、前机身都用了石墨环氧大型部件,全机所用碳纤维的重量约占飞机结构总重量的26%,使整机减重9%,有效载荷比AV—8A飞机增加了一倍。数据显示采用复合材料结构的前机身段,可比金属结构减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22 为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。

直升飞机上碳纤维增强树脂基复合材料的用量更是与日俱增。武装了驻港部队并参加了2007 年上海合作组织在俄罗斯反恐军演的直-9 型直升飞机,是我国先进的直升飞机。该机复合材料用量已占到60%左右,主要是CFRP。此外,日本生产的OH-1 “忍者”直升飞机,机身的40%是用CFRP,桨叶等也用CFRP 制造。 在民用领域,世界最大的飞机A380 由于CFRP 的大量使用,创造了飞行史上的奇迹。这种飞机25%重量的部件由复合材料制造,其中22%为碳纤维增强塑料(CFRP)。由于CFRP 的明显减重以及在使用中不会因疲劳或腐蚀受损,从而大大减少了油耗和排放。燃油的经济性比其直接竞争机型要低13%左右,并降低了运营成本,座英里成本比目前效率最高飞机的低15%~20%,成为第一个每乘客每百公里耗油少于三升的远程客机。 (b)碳/碳复合材料

碳/碳复合材料是以碳纤维及其制品(碳毡或碳布)作为增强材料的复合材料。因为它的组成元素只有一个(即碳元素),因而碳/碳复合材料具有许多碳和石墨材料的优点,如密度低(石墨的理论密度为2.3g/cm3)和优异的热性能,即高的热导率、低热膨胀系数,能承受极高的温度和极大的热加速率,有极强的抗热冲击,在高温和超高温环境下具有高强度、高模量和高化学惰性。凭借着轻质难熔的优良特性,碳纤维增强基体的(C/C)复合摩擦材料在航空航天工业中得到了广泛应用。航天飞机轨道的鼻锥和机翼前缘材料,都会选用碳碳复合材料。另外还大量用作高超音速飞机的刹车片,目前,国际上大多数军用和民用干线飞机采均用碳纤维增强基体的复合材料刹车副。这种刹车副不仅质量轻、抗热冲击性好、摩擦系数稳定、使用寿命长,更为方便的是可设计性强,性能便于调节。还可制作发热元件和机械紧固件、涡轮发动机叶片和内燃机活塞等。

(二)、其他领域 1)、高尔夫球棒

用CFRP制成的高尔夫球棒、可减轻重量约10一40%。根据动量守恒定律,可使球获得较大的初速度。另一方面.CFRP具有高的阻尼特性,可使击球时间延长,球被击得更远。 2)、 钓鱼竿

碳纤维增强复合材料制成的钓鱼竿比GFRP制品或竹竿都要轻得多,使其在撒竿时消耗能量少,而且撤竿距比后者远20%左右。CFRP所制的钓鱼竿长而好,刚性大,钓鱼竿在弯曲之后能迅速复原,使其传递诱饵的感觉较为灵敏。现在已有商品销售,用碳纤维增强塑料还可以制成渔具的卷铀,其重量不超过l40克,但它的疲劳强度高,耐摩擦,因而使用寿命长。 3)、赛车

用石墨纤维长丝制成的管材可用来制造比赛车或通用自行车的车架,其特点是重量轻,比钢制架可减重50%左右,使自行车的总重量减轻15%。

碳纤维与玻璃纤维混合增强复合材料可用来制造越野赛汽车,它的特点是重量轻。用金属材料制造的同样车体的总重量为226.8公斤,用CFRP制造时为63.5公斤,用CF/GPRP制造时重量可减轻到31.8至36.5公斤。

在赛车领域,碳纤维复合材料最著名的运用无疑是F1车身。为了使重量保持最小,所有车队都广泛使用碳纤材料,而这些材料的强固性足以支撑车子的重量。

4.我国碳纤维复合材料发展现状

现代的碳纤维是以聚丙烯腈、人造丝或木质素为原丝,将有机纤维跟塑料树脂结合在一起高温分解并且碳化后得到的,还不能直接用碳或石墨来制取。

据了解,目前全球碳纤维产能约3.5万吨,我国市场年需求量6500吨左右,属于碳纤维消费大国。在以“高性能聚丙烯腈碳纤维制备的基础科学问题”为主题的第335次香山科学会议上,会议执行主席、国家自然科学基金委员会师绪院士指出,与国外技术相比,我国碳纤维领域还存在较大差距。2007年,我国碳纤维产能仅200吨左右,而且主要是低性能产品。由于缺少具有自主知识产权的技术支撑,目前国内企业尚未掌握完整的碳纤维核心关键技术。这就使得我国碳纤维在质量、技术和生产规模等方面均与国外存在很大差距,绝大部分高性能增强材料都长期依赖进口,价格非常昂贵。由于缺乏创新与集成和应用领域的拓展,极大地制约了我国碳纤维复合材料工业的发展。

基于我国高性能碳纤维复合材料产业尚不能满足国民经济快速、健康、持续发展的需求,国家发展改革委2008~2009 年组织实施高性能纤维复合材料高技术产业化专项,重点支持碳纤维、芳纶纤维、高强聚乙烯纤维及其高性能复合材料的生产技术及关键装备的产业化示范,以满足国民经济以及航空航天等高技术产业发展的需求,培育一批具有国际竞争力的龙头企业。这一举措将为我国从材料大国转变为材料强国奠定坚实的基础。今年5月,由鹰游纺机自主研发的碳纤维生产线和神鹰碳纤维项目通过国家级验收,标志着我国碳纤维生产已成功实现国产化和产业化。

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:听肖川教授讲座有感下一篇:体系审核员注册准则