湍流模型k模型范文

2024-01-29

湍流模型k模型范文第1篇

“面向发动机的湍流燃烧基础研究”

重大研究计划2014年度项目指南

本重大研究计划面向国家解决先进发动机问题的重大战略需求,以发动机燃烧的共性科学问题为核心,以燃烧反应动力学和湍流燃烧学为基础,旨在揭示燃烧反应和湍流燃烧本质规律,发展湍流燃烧新模型和在线测量新手段,促进我国发动机基础燃烧研究水平的整体提升,支撑国家在发动机领域的科技创新。

一、科学目标

本重大研究计划瞄准国际燃烧研究前沿,拟通过工程热物理、物理化学、力学等多学科的交叉,在燃烧反应微观机制和动力学计算方法、大分子碳氢燃料燃烧反应机理、燃烧和湍流相互作用机理、极端条件燃烧稳定机理、燃烧湍流数值模拟新算法等方面取得突破,发展燃烧反应机理数据共享、燃烧数值模拟、高分辨率多场多组分燃烧流场同步测量等一系列理论和实验平台,为我国发动机可控燃烧技术的发展提供理论支撑,建设一支有国际影响力的研究队伍,提升我国在燃烧研究领域的整体创新能力和国际地位。

二、核心科学问题

为实现上述科学目标,本重大研究计划拟重点研究以下核心科学问题:

湍流模型k模型范文第2篇

计算流体力学(Computational Fluid Dynamics,简称CFD)是利用数值方法通过计算机求解描述流体运动的数学方程,揭示流体运动的物理规律,研究定常流体运动的空间物理特性和非定常流体运动的时空物理特征的学科[}ss}。其基本思想可以归纳为:把原来在时间域和空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关十这些离散点上场变量之间的关系的代数方程组,然后求解代数方程组获得场变量的近似值[f=}}l

计算流体力学可以看作是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制下对流动的数值仿真。通过这种数值仿真,可以得到流场内各个位置上的基本物理量(如速度、压力、温度和浓度等)的分布以及这些物理量随时间的变化规律。

还可计算出相关的其它物理量,如旋转式流体机械的转矩、水力损失和效率等。此外,与CAD联合还可进行结构优化设计等。

过去,流体力学的研究主要有实验研究和理论分析两种方法。实验研究主要以实验为研究手段,得到的结果真实可信,是理论分析和数值计算的基础,其重要性不容低估。然}fu实验往往受到模型尺寸、流场扰动和测量精度等的限制,有时可能难以通过实验的方法得到理想的结果。此外,实验往往经费投入较大、人力和物力耗费较大及周期较长;理论分析方法通常是利用简化的流动模型假设,给出所研究问题的解析解或简化方程。然}fu随着时代的发展,这些方法已不能很好地满足复杂非线性流体运动规律的研究。理论分析方法的优点是所得结果具有普遍适用性,各种影响因素清晰可见,是指导试验研究和验证新的数值计算方法的理论基础。但是,它往往要求对计算对象进行抽象和简化,才有可能得出理论解。}fU对十非线性情况,只有少数流动才能得到解析结果。

计算流体力学方法很好地克服了前面两种方法的弱点,与传统的理论分析方法、实验研究方法一同组成了研究流体流动问题的完整体系。计算流体力学的发展,先后经历

2 FLUENT软件介绍

FLUENT软件是由美国FLUENT公司开发的著名的CFD计算分析软件,在航空、航天、透平机械、汽车、船舶、机械、化工、石化、计算机、半导体、能源、医学等领域得到了广泛的应用。能够解决流动、传热、化学反应、燃烧、多相流、旋涡流动等问题。

FLUENT软件研究的流动模型包括了定常和非定常流动,层流(包括各种非牛顿流模型),紊流(包括最先进的紊流模型),不可压缩和可压缩流动,传热和化学反应等。FLUENT软件设计基于“CFD计算机软件群的概念”,针对每一种流动的物理问题的特点,采用适合于它的数值解法在计算速度、稳定性和精度等各方面达到最佳。不同领域的计算软件组合起来,成为CFD软件群,从而高效率地解决各个领域的复杂流动的计算问题,在各软件之间可以方便地进行数值交换,采用统一的前后处理工具,省去了科研工作者在计算方法、编程、前后处理等方面投入的重复、低效的劳动,而可以将主要精力用十物理问题本身的探索上。

流体有限体积法(Finite Volume Method,简称FVM)是目前计算流体动力学领域内应用最普遍的一种对偏微分方程组的离散方法。FLUENT软件就是采用C语言编写的基于非结构化网格和有限体积法的通用CFD求解器,它推出了多种优化的物理模型,如定常和非定常流动;层流(包括各种非牛顿流模型);紊流(包括最先进的紊流模型);不可压缩和可压缩流动;传热;化学反应等。对每一种物理问题的流动特点,有适合它的数值解法,用户可对显式或隐式差分格式进行选择,以期在计算速度、稳定性和精度等方面达到最佳。

在FLUENT 5.0之后的版本中,都采用GAMBIT的专用前处理软件。GAMBIT软件是面向CFD的专业前处理器软件,它包含全面的几何建模能力,也可以从主流的CAD/CAE软件导入几何体和网格,GAMBIT强大的布尔运算能力为建立复杂的几何模型提供的极大的方便。GAMBIT功能强大的网格划分工具,可以划分出包含边界层等CFD特殊要求的高质量的网格。GAMBIT中专有的网格划分算法可以保证在较为复杂的几何区域直接划分出高质量的六面体网格。GAMBIT中的TGRID方法可以在极其复杂的几何区域中划分出与相邻区域网格连续的完全非结构化的网格,GAMBIT网格划分方法的选择完全是智能化的,在选择一个几何区域后GAMBIT会自动选择最合适的网格划分算法,使网格划分过程变得极为容易。

通用CFD软件包,用来模拟从不可压缩到高度可压缩范围内的复杂流动。由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT能达到最佳的收敛速度和求解精度。灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT在转捩与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等方面有广泛应用。

FLUENT软件具有以下特点:

☆ FLUENT软件采用基于完全非结构化网格的有限体积法,而且具有基于网格节点和网格单元的梯度算法; ☆ 定常/非定常流动模拟,而且新增快速非定常模拟功能;

☆ FLUENT软件中的动/变形网格技术主要解决边界运动的问题,用户只需指定初始网格和运动壁面的边界条件,余下的网格变化完全由解算器自动生成。网格变形方式有三种:弹簧压缩式、动态铺层式以及局部网格重生式。其局部网格重生式是FLUENT所独有的,而且用途广泛,可用于非结构网格、变形较大问题以及物体运动规律事先不知道而完全由流动所产生的力所决定的问题;

☆ FLUENT软件具有强大的网格支持能力,支持界面不连续的网格、混合网格、动/变形网格以及滑动网格等。值得强调的是,FLUENT软件还拥有多种基于解的网格的自适应、动态自适应技术以及动网格与网格动态自适应相结合的技术;

☆ FLUENT软件包含三种算法:非耦合隐式算法、耦合显式算法、耦合隐式算法,是商用软件中最多的; ☆ FLUENT软件包含丰富而先进的物理模型,使得用户能够精确地模拟无粘流、层流、湍流。湍流模型包含Spalart-Allmaras模型、k-ω模型组、k-ε模型组、雷诺应力模型(RSM)组、大涡模拟模型(LES)组以及最新的分离涡模拟(DES)和V2F模型等。另外用户还可以定制或添加自己的湍流模型; ☆ 适用于牛顿流体、非牛顿流体;

☆ 含有强制/自然/混合对流的热传导,固体/流体的热传导、辐射; ☆ 化学组份的混合/反应;

☆ 自由表面流模型,欧拉多相流模型,混合多相流模型,颗粒相模型,空穴两相流模型,湿蒸汽模型; ☆ 融化溶化/凝固;蒸发/冷凝相变模型; ☆ 离散相的拉格朗日跟踪计算;

☆ 非均质渗透性、惯性阻抗、固体热传导,多孔介质模型(考虑多孔介质压力突变); ☆ 风扇,散热器,以热交换器为对象的集中参数模型; ☆ 惯性或非惯性坐标系,复数基准坐标系及滑移网格; ☆ 动静翼相互作用模型化后的接续界面;

☆ 基于精细流场解算的预测流体噪声的声学模型; ☆ 质量、动量、热、化学组份的体积源项; ☆ 丰富的物性参数的数据库;

☆ 磁流体模块主要模拟电磁场和导电流体之间的相互作用问题;

☆ 连续纤维模块主要模拟纤维和气体流动之间的动量、质量以及热的交换问题;

☆ 高效率的并行计算功能,提供多种自动/手动分区算法;内置MPI并行机制大幅度提高并行效率。另外,FLUENT特有动态负载平衡功能,确保全局高效并行计算;

☆ FLUENT软件提供了友好的用户界面,并为用户提供了二次开发接口(UDF); ☆ FLUENT软件采用C/C++语言编写,从而大大提高了对计算机内存的利用率。

1. Fh lent 软件的结构组成 ()1 前 处 理 器 :9幽bit 科u en t软 件包的前处理器是galllbit,galnbit具有前处 理器建模及网格划分的功能,是进行数值模拟计算前处理器 的首选。但是,gambit适合于简单模型的建立,对于复杂模 型,可以采用Pr‘ug等软件进行建模,复杂模型建模完成 后,可以导入ganlbit软件再进行网1各划分。网格划分完成 后保存dbs文件和愉出msh文件。

前处 理 阶 段需耍用户进行如下操作: 定义 计 算 域、绘制简化物理模型 对计 算 域 进行网格划分

定义 域 边 界单元的边界条件 定义 流 体 的属性参数 (2 )求 解 器 : nuent

FLUENT简介

fluent是用于计算流体流动和传热问题的程序。它提供的非结构网格生成程序,对相对复杂的几何结构网格生成非常有效。可以生成的网格包括二维的三角形和四边形网格;三维的四面体 和六面体及混合网格。fluent很能够根据计算的结果调整网格,这种网格自适应能力对于精确求解 有较大梯度的流场有很实际的作用。由于网格自适应和调整只是在需要加密的流动区域里实施,而非整个流场,因此可以节约计算时间。

一、程序的结构

fluent程序软件包由以下几个部分组成:

(1)GAMBIT—用于建立几何结构和网格的生成。

(2)FLUENT—用于进行流体模拟计算的求解器。

(3)prePDF—用于模拟PDF燃烧过程。

(4)TGrid—用于从现有的边界网格生成体网格。

(5)Filter(Translator)—转换其他程序生成的网格,用于FLUENT计算。

利用FLUENT软件进行流体的流动和传热计算的模拟计算的流程一般是,首先利用GAMBIT进行流动区 域几何形状的构建、定义边界类型和生成网格,然后将GAMBIT中的网格文件输出用于FLUENT求解器计算的格式,在FLUENT 中读取所输出的文件并设置条件对流动区域进行求解计算,最后对计算的结果进行后处理。

二、FLUENT 程序可以求解的问题

FLUENT 可以求解计算二维和三维问题,在计算过程中,网格可以自适应调整。fluent软件的应用范围非常广泛,主要范围如下:

(1)用非结构自适应网格模拟2D或者3D流场,它所使用的非结构网格主要有三角形/五边形、四边形/五边形,或者混合网格,其中混合网格有棱柱形和金字塔形。(一致网格和悬挂节点网格都可以)

(2)不可压或可压流动

(3)定常状态或者过渡分析

(4)无粘,层流和湍流

(5)牛顿流或者非牛顿流

(6)对流热传导,包括自然对流和强迫对流

(7)耦合热传导和对流

(8)辐射热传导模型

(9)惯性(静止)坐标系非惯性(旋转)坐标系模型

(10)多重运动参考框架,包括滑动网格界面和rotor/stator interaction modeling的混合界面

(11)化学组分混合和反应,包括燃烧子模型和表面沉积反应模型

(12)热,质量,动量,湍流和化学组分的控制体源

(13)粒子,液滴和气泡的离散相的拉格朗日轨迹的计算,包括了和连续相的耦合

(14)多孔流动

(15)一维风扇/热交换模型

(16)两相流,包括气穴现象

(17)复杂外形的自由表面流动

三、FLUENT程序求解问题的步骤

利用FLUENT求解问题的步骤如下:

(1) 确定几何形状生成计算网格(用GAMBIT,也可以读取其他指定程序生成的网格)。

(2)输入并检查网格。

(3)选择求解器(2D或3D)

(4)选择求解的方程(层流或是湍流、化学组分或化学反应、传热模型等),确定其他需要的模型

(5)确定流体的材料的物性

(6)确定边界的类型及其边界条件(前者在GAMBIT中确定,但在FLUENT中可以修改,后者在FLUENT中实现)

(7)条件计算的控制参数

(8)流场的初始化

(9)求解计算

(10)判断收敛

(11)保存结果并进行后处理

四、关于FLUENT求解器的说明

在打开后会出现如下对话框,对话框中各个项代表的意义是表示求解器的精度。

(1)FLUNT2D—表示二维单精度求解器;

(2)FLUENT3D—表示三维单精度求解器;

(3)FLUENT2ddp—表示二维双精度求解器; (4)FLUENT3ddp—表示三维双精度求解器。

五、FLUENT求解方法的选择

FLUENT中所涉及的求解方法有非耦合求解(segregated)、耦合隐式求解(coupled implicit)和耦合显示求解(coupled explicit)。

非耦合求解方法主要用于不可压缩或低马赫数压缩性流体的流动.耦合求解方法则可以用在高速可压缩流体。fluent默认设置为非耦合求解,但对于高速可压 流动,或需要考虑体积力的流动,求解问题时网格要比较密,建议采用耦合隐式求解方法求解能量和动量方程,可较快地得到收敛解。缺点是需求的内存比较大,大 约是非耦合求解迭代时间的1.5-2.0倍。如果必须要耦合求解,但是机器的内存不够的条件下,可以考虑用耦合显示解法器求解问题。该解法也耦合了动量、 能量及组分方程,但是内存却比隐式求解方法小。缺点是收敛的时间比较长。

而且fluent5.5以前的版本(包括5。5),其物理模型,(比如粘性流体的几个模型)都是预先设定的,所以,对于那些做探索性或者检验新方法而进行的模拟,就不适合用。

同时gambit做网格,对于粘性流体,特别是计算湍流尺度,或者做热流计算来说其网格精度一般是不可能满足 的,除非是很小的计算区域。所以,用fluent做的比较复杂一点的流场(除了经典的几个基本流场)其计算所得热流,湍流,以及用雷诺应力模拟的粘性都不 可能是准确的,这在物理上和计算方法已经给fluent判了死刑,有时候看到很多这样讨论的文章,觉得大家应该从物理和力学的本质上考虑问题。

但是,fluent往往能计算出量级差不多的结果,曾经做了一个复杂的飞行器热流计算,高超音速流场,得到的 壁面热流,居然在量级上是吻合的,但是,从计算热流需要的壁面网格精度来判断,gambit所做的网格比起壁面网格所满足的尺寸的要大了至少2个数量级, 到现在还不明白fluent是怎么搞的。

综上,如果对付老板的一些工程项目,可以用fluent对付过去,但是如果真的做论文,或者需要发表文章,除非是做一些技术性工作,比如优化计算一般用fluent是不适合的。

fluent做力的计算是很不错的,做流场结构的计算,即使得出一些涡,也不是流场本身性质的反应,做低 速流场计算,fluent的优势在于收敛速度快,但是低速流场计算,其大多数的着眼点在于对流场结构的探索,所以计算得到的结果就要好好斟酌一下了,高速 流场的模拟中,一般着眼点在于气动力的结果,压力分布以及激波的捕捉,这些fluent做的很不错。。

对于运用fluent来求解问题,首先要对本身求解的物理模型有充分的了解,只有在这个基础上,才能够选择出正确的,计算模型以及相应的边界条件。

对于fluent计算的方法,确实是采用的有限体积法,不过对基于非结构网格的5.X,觉得其采用的应该 是同位网格而不是交错网格,因为非结构网格情况下,交错网格的方法处理起来比同位网格方法要复杂很多。一般见到的非结构网格下FVM(有限体积法)多半还 是采用的同位网格而非交错网格,这个问题还可以进一步探讨。对于非结构网格而言,目前能够做到的离散精度也只能是二阶精度了,再高精度目前还没法做到,或 者说还没有做到很实用。

对于gambit做网格,确实不是十分的理想,不过这个也不能怪罪gambit,因为非结构网格的生成方法,本 身

在理论上就有一些瑕疵(姑且这样说吧,不能说是错误,呵呵)所以对于一些十分复杂,而且特殊的流场,可能最终生成的网格会很不理想,这个时候多半需要采 取一些其它的迂回的方法,例如将复杂区域分区,分成一些简单的区域,然后在简单区域里面生成网格,最后再组合,而不是将整个复杂区域教给gambit让其 一次生成网格。有时在软件做不到的地方,就需要人想法补上了。

对于壁面网格的问题,gambit中提供了生成边界层网格的方法,恩,不知道是否这个功能也同样不能满足所需。gambit中边界层网格只是在壁面法向进行特别的处理。对于壁面切向方向则是和边界层外网格尺度相当的。

对于fluent的适用范围,本身fluent是一个比较成熟的商业软 件,换句话说,其适用的数值方法,多半也是目前相对比较成熟的方法之一。因此用fluent来做工程项目确实是很适合的,因为它相对效率较高,而且实际上 fluent中有一些对特殊问题的简化处理其目的也是直接针对工程运用的。因此如果是完全的基于fluent做流场分析,然后做论文,这样是不行的。需要 强调的是,fluent仅仅是一种CFD的工具,一个相对好用的工具。

对于fluent做高速可压流动问题,由于有限体积法本身对于求解有间断(激波)的流动问题就存在一定的误差的,有限体积法实际上应该更加的适合于不可压流动问题,因为这个方法本身 的特点就保证了通量的守恒,对于不可压流动,那就是保证了整个流场的质量守恒。对于算激波的问题似乎还是得要实用一些高精度格式,例如 NND,TVD,时空守恒格式等。顺便问stipulation一个问题,在算钝头体(导弹)小攻角来流夸音速流动问题时,在计算中是否有激波的振荡现

对于旋转机械的流动问题,fluent中提供了几种方法,一种是就是很简单用坐标变换的概念化旋转为静止,然后 添加一个惯性力。一种是所谓的多参考坐标系方法,还有就是混合面方法,最后是滑移网格方法。第一种方法自不用说,理论上是精确的,后面三钟方法中, fluent中以滑移网格方法计算的准确度最好,前面两种方法都有很强的工程背景并且是在此基础上简化而来的。但这些方法的运用都有一些前提条件。

fluent公司还有另外的一个工具,MixSim是针对搅拌混合问题的专用CFD软件内置了专用前处理器,可迅速建立搅拌器和混合器的网格及计算模型。

:

解决问题的步骤

确定所解决问题的特征之后,你需要以下几个基本的步骤来解决问题: 1.创建网格. 2.运行合适的解算器:2D、3D、2DDP、3DDP。 3.输入网格 4.检查网格 5.选择解的格式

6.选择需要解的基本方程:层流还是湍流(无粘)、化学组分还是化学反应、热传导模型等 7.确定所需要的附加模型:风扇,热交换,多孔介质等。 8..指定材料物理性质 8.指定边界条件 9.调节解的控制参数 10.初始化流场 11.计算解 12.检查结果 13.保存结果

14.必要的话,细化网格,改变数值和物理模型。

想起CFD,人们总会想起FLUENT,丰富的物理模型使其应用广泛,从机翼空气流动到熔炉燃烧,从鼓泡塔到玻璃制造,从血液流动到半导体生产,从洁净室到污水处理工厂的设计,另外软件强大的模拟能力还扩展了在旋转机械,气动噪声,内燃机和多相流系统等领域的应用。今天,全球数以千计的公司得益于FLUENT的这一工程设计与分析软件,它在多物理场方面的模拟能力使其应用范围非常广泛,是目前功能最全的CFD软件。

FLUENT因其用户界面友好,算法健壮,新用户容易上手等优点一直在用户中有着良好的口碑。长期以来,功能强大的模块,易用性和专业的技术支持所有这些因素使得FLUENT受到企业的青睐。

网格技术,数值技术,并行计算

计算网格是任何CFD计算的核心,它通常把计算域划分为几千甚至几百万个单元,在单元上计算并存储求解变量,FLUENT使用非结构化网格技术,这就意味着可以有各种各样的网格单元:二维的四边形和三角形单元,三维的四面体核心单元、六面体核心单元、棱柱和多面体单元。这些网格可以使用FLUENT的前处理软件GAMBIT自动生成,也可以选择在ICEM CFD工具中生成。

在目前的CFD市场, FLUENT以其在非结构网格的基础上提供丰富物理模型而著称,久经考验的数值算法和鲁棒性极好的求解器保证了计算结果的精度,新的NITA算法大大减少了求解瞬态问题的所需时间,成熟的并行计算能力适用于NT,Linux或Unix平台,而且既适用单机的多处理器又适用网络联接的多台机器。动态加载平衡功能自动监测并分析并行性能,通过调整各处理器间的网格分配平衡各CPU的计算负载。

湍流和噪声模型

FLUENT的湍流模型一直处于商业CFD软件的前沿,它提供的丰富的湍流模型中有经常使用到的湍流模型、针对强旋流和各相异性流的雷诺应力模型等,随着计算机能力的显著提高,FLUENT已经将大涡模拟(LES)纳入其标准模块,并且开发了更加高效的分离涡模型(DES),FLUENT提供的壁面函数和加强壁面处理的方法可以很好地处理壁面附近的流动问题。

气动声学在很多工业领域中倍受关注,模拟起来却相当困难,如今,使用FLUENT可以有多种方法计算由非稳态压力脉动引起的噪音,瞬态大涡模拟(LES)预测的表面压力可以使用FLUENT内嵌的快速傅立叶变换(FFT)工具转换成频谱。Fflow-Williams&Hawkings声学模型可以用于模拟从非流线型实体到旋转风机叶片等各式各样的噪声源的传播,宽带噪声源模型允许在稳态结果的基础上进行模拟,这是一个快速评估设计是否需要改进的非常实用的工具。

动态和移动网格

内燃机、阀门、弹体投放和火箭发射都是包含有运动部件的例子,FLUENT提供的动网格模型满足这些具有挑战性的应用需求。它提供几种网格重构方案,根据需要用于同一模型中的不同运动部件,仅需要定义初始网格和边界运动。动网格与FLUENT提供的其他模型如雾化模型、燃烧模型、多相流模型、自由表面预测模型和可压缩流模型相兼容。搅拌槽、泵、涡轮机械中的周期性运动可以使用FLUENT中的动网格模型(moving mesh)进行模拟,滑移网格和多参考坐标系模型被证实非常可靠,并和其他相关模型如LES模型、化学反应模型和多相流等有很好的兼容性。

传热、相变、辐射模型

许多流体流动伴随传热现象,FLUENT提供一系列应用广泛的对流、热传导及辐射模型。对于热辐射,P1和Rossland模型适用于介质光学厚度较大的环境,基于角系数的surface to surface模型适用于介质不参与辐射的情况,DO模型(Discrete ordinates)适用于包括玻璃的任何介质。DTRM模型(Discrete ray tracing module)也同样适用。太阳辐射模型使用光线追踪算法,包含了一个光照计算器,它允许光照和阴影面积的可视化,这使得气候控制的模拟更加有意义。

其他与传热紧密相关的汽蚀模型、可压缩流体模型、热交换器模型、壳导热模型、真实气体模型、和湿蒸汽模型。相变模型可以追踪分析流体的融化和凝固。离散相模型(DPM)可用于液滴和湿粒子的蒸发及煤的液化。易懂的附加源项和完备的热边界条件使得FLUENT的传热模型成为满足各种模拟需要的成熟可靠的工具。 化学反应模型

化学反应模型,尤其是湍流状态下的化学反应模型在FLUENT软件中自其诞生以来一直占着很重要的地位,多年来,FLUENT强大的化学反应模拟能力帮助工程师完成了对各种复杂燃烧过程的模拟。涡耗散概念、PDF转换以及有限速率化学模型已经加入到FLUENT的主要模型中 :涡耗散模型、均衡混合颗粒模型,小火焰模型以及模拟大量气体燃烧,煤燃烧、液体燃料燃烧的预混合模型。预测NOx生成的模型也被广泛的应用与定制。

许多工业应用中涉及发生在固体表面的化学反应,FLUENT表面反应模型可以用来分析气体和表面组分之间的化学反应及不同表面组分之间的化学反应,以确保表面沉积和蚀刻现象被准确预测。对催化转化、气体重整、污染物控制装置及半导体制造等的模拟都受益于这一技术。

FLUENT的化学反应模型可以和大涡模拟(DES)及分离涡(DES)湍流模型联合使用,这些非稳态湍流模型耦合到化学反应模型中,才有可能预测火焰稳定性及燃尽特性。 多相流模型

多相流混合物广泛应用于工业中,FLUENT软件是在多相流建模方面的领导者,其丰富的模拟能力可以帮助工程师洞察设备内那些难以探测的现象,Eulerian多相流模型通过分

别求解各相的流动方程的方法分析相互渗透的各种流体或各相流体,对于颗粒相流体采用特殊的物理模型进行模拟。很多情况下,占用资源较少的的混合模型也用来模拟颗粒相与非颗粒相的混合。FLUENT可用来模拟三相混合流(液、颗粒、气),如泥浆气泡柱和喷淋床的模拟。可以模拟相间传热和相间传质的流动,使得对均相及非均相的模拟成为可能。

FLUENT标准模块中还包括许多其他的多相流模型,对于其他的一些多相流流动,如喷雾干燥器、煤粉高炉、液体燃料喷雾,可以使用离散相模型(DPM)。射入的粒子,泡沫及液滴与背景流之间进行发生热、质量及动量的交换。

VOF模型(Volume of Fluid)可以用于对界面的预测比较感兴趣的自由表面流动,如海浪。汽蚀模型已被证实可以很好的应用到水翼艇、泵及燃料喷雾器的模拟。沸腾现象可以很容易地通过用户自定义函数实现。 前处理和后处理

FLUENT提供专门的工具用来生成几何模型及网格创建。GAMBIT允许用户使用基本的几何构建工具创建几何,它也可用来导入CAD文件,然后修正几何以便于CFD分析,为了方便灵活的生成网格,FLUENT还提供了TGrid,这是一种采用最新技术的体网格生成工具。这两款软件都具有自动划分网格及通过边界层技术、非均匀网格尺寸函数及六面体为核心的网格技术快速生成混合网格的功能。对于涡轮机械,可以使用G/Turbo,熟悉的术语及参数化的模板可以帮助用户快速的完成几何的创建及网格的划分。

FLUENT的后处理可以生成有实际意义的图片、动画、报告,这使得CFD的结果非常容易地被转换成工程师和其他人员可以理解的图形,表面渲染、迹线追踪仅是该工具的几个特征却使FLUENT的后处理功能独树一帜。FLUENT的数据结果还可以导入到第三方的图形处理软件或者CAE软件进行进一步的分析。 定制工具

用户自定义函数在用户定制FLUENT时很受欢迎。功能强大的资料库和大量的指南提供了全方位的技术支持。FLUENT的全球咨询网络可以提供或帮助创建任何类型装备设施的平台,比如旋风分离器、汽车HVAC系统和熔炉。另外,一些附加应用模块,比如质子交换膜(PEM)、固体氧化物燃料电池、磁流体、连续光纤拉制等模块已经投入使用。

湍流模型k模型范文第3篇

一、品牌延伸概况

品牌延伸是品牌管理的重要组成部分, 它是指在拥有一定知名度与市场影响力的母品牌基础上, 将母品牌沿用到新产品或新服务, 以降低新产品进入市场的风险。作为一种典型的营销策略, 它具有增加新产品可接受性、降低消费者行为的风险性, 提高促销费用的使用效率, 以及满足消费者的多元化需求等多种功能。在品牌延伸的实证研究中, Aaker&Keller的研究是最具代表性的, A&K模型简洁又清晰地概括了三个影响品牌延伸效应的关键因素, 即消费者对母品牌的感知质量、原产品与延伸产品之间的契合度, 以及产品本身的生产过程。

二、品牌延伸需要注意的问题

(一) 母品牌与延伸品牌的契合度

关注母品牌与延伸品牌的契合度, 对于企业实战而言更要强调品牌定位的一致性和连贯性, 要注意保持品牌的核心价值, 避免过度延伸。品牌延伸所伴随的双重作用, 决定了企业在采取品牌延伸策略时, 不仅需要考虑延伸品牌或产品的成功与否, 同时还要关注到品牌延伸之后对于母品牌的反馈效应, 尤其是消费者对于母品牌的忠诚度是否发生了变化。以母品牌的负面反馈效应为代价来换取新品牌或新产品的上市是不可取的, 甚至可能导致消费者对品牌的整体定位和认知变得模糊, 如果因为品牌延伸不当而失去原有的消费者忠诚, 结果反而是得不偿失。品牌延伸的尝试曾让很多企业陷入危机, 比如, 在家电领域取得显著成效的海尔, 推出的“海尔电脑”就反响平平, 还有长虹手机、娃哈哈童装、999冰啤、茅台啤酒等无一不是以失败告终。

(二) 延伸时机和阶段的重要性

品牌延伸除了要考虑契合度之外, 还要注意把握好关键时机。一方面, 新品牌是在母品牌的基础之上延伸而来的, 必定要借助母品牌这一强有力的支撑, 这就需要母品牌自身先在市场中站稳脚跟, 且通过长时间的积淀拥有一定的品牌实力和消费者忠诚。在母品牌尚未成熟的情况下, 轻易地进行品牌延伸是不可取的。另一方面, 把握好品牌延伸的时机, 还要注意时刻关注市场需求并抢先占领市场, 或者试图激发消费者的潜在需求, 创造需求引领市场。“天下武功, 唯快不破”, 把握品牌立足点的市场先机对于品牌而言可以达到事半功倍的效果。TCL最初从固定电话行业成功延伸到彩电行业, 关键转折点是及时把握了当时大屏幕彩电还没有被行业领导品牌所重视的时机;海尔顺利进入彩电行业, 也是在数字可视化技术的出现导致原有的彩电龙头品牌的技术领先优势不再显著的背景下及时抓住时机。

(三) 延伸品类、跨度的把握

“定位”理论创始人阿尔·里斯和劳拉·里斯在《品牌的起源》一书中表示:商业发展的动力是分化, 真正的品牌是某一品类的代表, 而企业创立品牌的正途是延续和发展品类, 以多品牌来驾驭多品类。同时还提出“竞争不在商场, 而是在用户的心智”, “以品类思维打造品牌”的观点, 认为定位是让品牌在变化的市场中迅速找到行动的抓手, 而不是沉浸在自我感觉良好且泛而空的品牌理论中。

例如, 云南白药在消费者心目中是“消炎止血”的代名词, 延伸出的创可贴和牙膏等产品, 延续了品牌的核心价值并取得了满意的市场份额;但品牌延伸失败的概率也不容小觑, 比如霸王最初以“中药防脱”的洗发水站稳脚跟, 延伸出的“霸王凉茶”却惨败而归, 消费者形容“凉茶喝起来感觉有股洗发水的味道”;泸州老窖推出的“顽味”香水, 激起了大众的好奇心和新鲜感, 但热度过后却反响平平, 消费者同样形容香水“感觉有一股白酒的味道”。究其原因, 最主要是品牌定位没有考虑品牌契合度的问题, 跨越品类的延伸给消费者带来最直观的感受就是“不专业”, 在大众的认知里, 一个专业的美妆品牌必定要比一个中途推出美妆产品的饮料品牌更值得信赖。

(四) 关注消费者特征

品牌延伸还应关注目标消费群体特征。学者郑春东表示, 企业在推行品牌延伸策略时, 有必要先了解消费者呈现较高品牌延伸评估的特质类型, 然后充分运用创新扩散理论, 延伸产品先由具有高评估的消费者体验, 再传播至其他消费者, 将有效地提升品牌延伸成功的机率。比如在消费升级的背景下, 潮牌消费持续增长。根据2018年尼尔森发布的“潮牌大数据研究趋势及用户分析报告”显示, Supreme、Airjordan、Champion等口碑较高的潮牌倍受喜爱个性化标签的年轻消费者欢迎, 持续的市场热度也影响到了大众消费者, 因此核心目标群体之外的消费者也会受流行趋势的影响选择购买潮牌。

简而言之, 品牌延伸并非无边无界, 通常在其母品牌延伸边界内更有可能取得成功, 把握好品牌延伸的界限, 并充分考虑品牌延伸的契合度、品牌定位的一致性, 规划好品牌延伸的品类, 关注消费者特征且选择与之适合的营销策略都是品牌延伸最终取得满意成效的着力点。

摘要:在激烈的市场竞争背景下, 品牌延伸策略盛行, 然而它又是一把“双刃剑”, 运用不当反而会适得其反。因而如何把握好品牌延伸的边界, 在其合适的界限范围内开展有效的品牌延伸, 成为企业当下和未来发展中亟待探讨和解决的问题。

关键词:品牌延伸,品牌定位,契合度

参考文献

[1] 王海忠.品牌管理[M].清华大学出版社.2014[2][美]艾·里斯, 劳拉·里斯.品牌的起源[M].机械工业出版社.2013.11

上一篇:教师专题讲座1范文下一篇:第9课海燕教案范文