烟气在线监测范文

2023-11-11

烟气在线监测范文第1篇

关键词:变电设备;在线监测;状态检修

On Line Monitoring Technology and Condition Based

Maintenance of Substation Equipment

HUANG Junliang

当前,变电设备故障原因日趋复杂。对变电设备进行状态检修,要求尽量延长变电设备相应的检修周期,以促进变电设备潜力的充分发挥。对变电设备实施在线监测与状态检修,并对其检修周期进行正确推测,对变电设备的正常运行具有重要意义[1]。因此,有必要采取有效策略强化变电设备在线监测与状态检修,有效保障变电设备的使用安全。

1 变电设备在线监测技术

1.1 智能变电站在线监测系统概述

智能变电站在线监测系统是实现变电设备状态检修管理、提升变电专业生产运行管理精益化水平的重要技术手段,是智能变电站建设的一部分。智能变电站的在线监测系统包括对变压器、GIS、断路器、套管和避雷器等变电设备进行实时在线监测[2]。在软件系统和硬件结构上,系统采用先进的分层分布式系统结构,总体上分为2层:过程层和站控层。过程层安装在变电站现场的各种状态监测终端,在线完成电力设备状态的数据采集,站端状态监测平臺主要为一个软件系统,实现以下功能:统一使用IEC 61850对各种智能组件数据的采集,数据处理、分析、保存和诊断,对外提供统一的基于IEC 61850的通信接口,以及站内数据同远方数据平台的通信[3]。系统应用总线控制技术和模块化设计原理,使系统的扩展性、标准化和稳定性都得到提高,满足了工业现场实用的要求,以标准通信规约(I 1接口-IEC 61850)接收站内各类状态监测装置或状态监测代理的标准化状态信息,站端平台应符合数字化智能变电站通信标准设计的要求,并采用多种形式对采集的数据进行展现,便于及时了解并掌握变电设备的健康状态。

系统可实现对变电站电气设备状态的在线监测,进行数据采集、实时显示、诊断分析、故障报警和参数设置等[4],实现电网变电站电气设备在线监测的系统化和智能化,使各级领导、专业人员能实时直观地了解和掌握电气设备的运行情况,对有异常状况的电气设备及时采取措施,避免事故。

1.2 变压器油中气体及微水在线监测

现场在线色谱仪通过管路与变压器的进出口阀连接即可工作,主变无须停电,实现对变压器油中7种故障组分(H2、CO、CO2、CH4、C2H4、C2H6和C2H2)、油中总含气量及油中微量水分的连续检测,具有检测灵敏度高、分析周期短和实验室数据一致的特点。测试油样技术处理达到要求后再返回变压器本体,确保了返回油的质量,真正做到全过程无污染、无损耗。

1.3 变压器局放监测在线监测

使用特高频(UHF)传感器,安装在变压器箱体的油阀内,通过变压器壳体可有效屏蔽外部干扰,传感器耐高温、耐油、耐腐蚀,密封性好,可带电安装,可以无障碍地检测到变压器内部的局放源[5]。

1.4 铁芯及夹件接地电流在线监测

采用高精度及高稳定性的穿芯式零磁通电流传感器,对变压器铁芯对地的泄漏电流信号进行取样,通过对电流信号的运算和处理,剔除杂波干扰信号,得到实际接地泄漏电流信息。通过阈值判断、预测铁芯绝缘的健康状况。

1.5 GIS设备在线监测

采用特高頻(UHF)法监测,传感器具有密封和屏蔽结构的特点,分为内置式和外置式传感器,安装在GIS封孔盖内侧或绝缘子敞开边缘上,接收放电源传来的电磁波信号。传感器装有前置放大器与过压保护装置,能在各种恶劣的气候(温度、湿度)及现场的强电磁干扰、无线电波干扰和机械振动环境下运行,具有抗干扰能力强,灵敏度高(不低于5pC),性能可靠稳定的特点[6]。系统基于状态预警、跟踪测试、缺陷统计和自动诊断,达到及时发现GIS内部绝缘缺陷隐患与状态预警的目的,通过信息模式识别及故障类型诊断,实现局部放电故障点的准确定位。

1.6 断路器动作特性在线监测

对断路器的状态监测分2个方面:机械状态监测和电寿命监测。断路器机械状态监测主要监测其传动机构和储能电机,对储能电机的监测针对储能电机的日储能次数、单次储能时间长短。对断路器电寿命的监测建立在触头累计磨损量模型的基础上,将电寿命与机械状态、电量和非电量的监测相结合,对高压断路器的在线监测和故障诊断具有很好的效果。

1.7 避雷器及容性设备在线监测

避雷器的绝缘性能采用泄漏电流及阻性电流的增长率阈值作为判断依据。容性设备主要指电流互感器、电容性电压互感器、耦合电容器等[7],容性设备的绝缘性能采用泄漏电流、介损及电容量的增长率阈值作为判断依据。传感器的信号取样采用穿芯结构的有源零磁通设计技术。

2 变电设备状态检修技术

2.1 常见的检修方式

变电设备状态检修主要包括以下3种检修方式。①事故检修方式。该检修方式是指当事故发生后,对变电设备实施进行检修,仅能实现弥补性维修。在对变电设备事故进行检修的过程中,若电力设备规模相对较小,事故仅对电网造成局部性影响,且用户未对用电质量提出较高要求,可采用该检修方式。当前,电网规模日益扩大,且自动化程度显著提高,变电设备故障会严重阻碍电网的正常运行。另外,用户对用电质量提出了较高要求,事故检修方式呈现显著的滞后性。②定期检修方式。该方式是指将变电设备呈现的运行情况作为依据,对变电设备实施等级划分,并制订具有较强针对性的检修计划,对检修周期进行科学设定,定期对变电设备进行检修,实现对设备事故的有效预防。此类检修方式有助于准确掌握变电设备的运行状态,但可能引发对变电设备的重复和过度检修。③状态检修方式。该方式是指借助先进性较强的监测技术,实时监控变电设备相应的运行状态,并对其进行科学评价,实现对变电设备实时运行状态的全面掌握,并在此基础上采取有针对的检修措施[8]。

2.2 状态监测

通过状态监测技术,能实现对变电设备实际运行工况的实时掌握,进而有效避免电力系统出现各类突发状况。状态监测技术,是借助在线监测技术及相关系统实施,对变电设备各系统如信息管理及分散控制等的全程监测,获取变电设备在实际运行状态下呈现的各项参数,并将其与变电设备相应的参考参数对照,进而分析变电设备的运行状态是否正常,实现对变电设备运行状态的有效监控。

2.3 状态预测

状态预测技术是指当变电设备异常现象发生前,将变电设备正常运行状态作为依据,并参照相关人员的实际工作经验,实现对变电设备相应特征向量的准确预报,并对报警阀值进行合理设置,实现对变电设备状态的有效预测。

2.4 故障诊断

对变电设备进行故障诊断,主要采用以下2种方法。①综合法。综合法是对变电设备相关数据进行采集,实现对变压器相应的绝缘状态及运行温度等状况的准确了解,对变电设备相应的开关检测、离线、系统传输等数据进行收集,并对收集的数据进行科学分析和系统整理,进而从整体上对变电设备运行状态进行科学判断,借助认证系统实施匹配,实现对变电设备故障具体位置和实际范围的有效确定。②比较法。比较法是借助振动诊断、射线诊断等方式对数据结果进行获取,并对获取的前后数据结果实施比较,当前后数据结果呈现的差异较大时,表明变电设备运行状态出现异常。

3 加强变电设备在线监测与状态检修的策略

3.1 构建系统完善的变电设备状态检修保证体系

电力企业要针对变电设备状态检修构建系统完善的保证体系,增强变电设备状态检修步骤及相关作业流程的规范性,并明确各岗位的具体职责,秉承以人为本的原则构建变电设备状态检修模式,有效增强变电设备状态检修安全管理[8]。同时,电力企业要针对变电设备状态检修制定配套的验收制度,并设置验收管理的具体部门,负责对变电设备实施自检、初检及预验收,有效保障变电设备的检修质量。另外,要制定相应的变电设备隐患排查治理制度。

3.2 充分应用计算机辅助技术

变电设备状态检修涉及诸多环节,且变电设备故障原因多样化,仅凭人工检修的方式,难以及时对变电设备故障类型进行准确判定。因此,要加强计算辅助技术在状态检修中的应用,具体可从以下方面着手[9]。①对变电设备进行状态检修前,借助计算机辅助技术合理制订变电设备状态检修的具体计划,针对变电设备状态检修构建相应的管理平台,增强状态检修的合理性。②借助计算机辅助技术深入分析变电设备状态检修的相关数据,并制订科学的变电设备状态检修的具体方案。

3.3 优化变电设备状态检修方案

要将变电设备相应的在线监测具体状态和相关试验的实际状况作为依据,对变电设备状态检修的具体时间进行合理安排,并对变电设备状态检修的具体方案进行科学评估,在有效保障变电设备正常运行的基础上对变电设备状态检修的具体方案进行优化。

3.4 提高变电设备状态检修人员的技术水平

电力企业要加强对变电设备状态检修人员的技术培训,有效提高变电设备状态检修人员的技术水平,为变电设备状态检修的各项工作提供有效保障[10]。变电设备状态检修人员要深入学习变电设备的具体构造、相关试验方法,严格遵循相关技术规范的具体要求,灵活运用变电设备状态检修的各项技术,秉承实事求是的原则,对变电设备故障问题进行科学分析,并采取针对性和有效性的故障诊断措施和故障解决措施,有效提升变电设备状态检修效果。

4 结语

通过构建系统、完善的变电设备状态检修保证体系,充分应用计算机辅助技术、优化变电设备状态检修方案,提高变电设备状态检修人员的技术水平等策略,有助于对变电设备的在线监测技术和状态检修技术进行灵活应用,提高变电设备在线监测与状态检修质量,有效保障变电设备的安全可靠运行,降低各类安全事故的发生概率,有效保障供电安全。

参考文献:

[1]殷志良.基于IEC61850的变电站过程总线通信的研究[D].北京:华北电力大学,2005.

[2]谭文恕.变电站通信网络和系统协议IEC6185介绍[J].电网技术,2001(9):8-15.

[3]徐敏,王钢,王智东.基于IEC 61850标准的电抗器保护建模方法[J].电网技术,2008(1):84-86.

[4]杨刚,杨仁刚,郭喜庆.嵌入式以太网在变电站自动化系统智能化电气设备上的实现[J].电力系统自动化,2004(3):74-76.

[5]李映川,王晓茹.基于IEC61850的变电站智能电子设备的实现技术[J].电力系统通信,2005(9):58-60.

[6]罗四倍,黄润长,崔琪,等.基于IEC 61850标准面向对象思想的IED建模[J].电力系统保护与控制,2009(17):88-92.

[7]王昌长,李福祺,高胜友.电力设备的在线监测与故障诊断[M].北京:清华大学出版社,2006.

[8]张晓春.变电站综合自动化[M].北京:高等教育出版社,2006.

[9]刘慧娟.浅谈变电设备在线监测技术与状态检修[J].电子测试,2017(21):102-103.

[10]林小明.变电设备在线监测技术及状态检修的研究[D].北京:华北电力大学,2015.

烟气在线监测范文第2篇

1、培训目的是为了提高烟气在线监测管理人员知识能力和技术水平,以保证烟气在线监测系统的正常运行。

2、管理人员在相关专业技术人员指导培训下需了解污染源自动监控系统的监测原理及方法,并牢固掌握设备常见故障的解决办法,做到脉络清晰、职责分明,以便更好的使污染源自动监控系统达到有效运行。

3、管理人员需加强对运行台账的真实填写,做到逻辑清晰、书面整洁、井然有序、一目了然。

4、管理人员每日巡检及日常维护需按照《烟气监测站房管理人员岗位责任制》和《烟气仪器故障预防与日常维护制度》执行。

5、如管理人员发生岗位变化或离职的情况,原任管理人员应与现任管理人员进行交接工作,并说明工作的性质及注意事项;如新到管理人员对该设施不具备管理条件的,可以重新提交书面申请,申请相关专业技术人员对该设施的工作原理、监测方法及日常维护等内容给予培训。

6、培训人员完整填写培训记录表格,如:培训时间、培训内容、参加人员等;培训表格需得到被培训人员的签字认可方能生效;培训人

烟气在线监测范文第3篇

水质污染自动监测系统(WPMS)是一套以在线自动分析仪器为核心,运用现代传感技术、自动测量技术、自动控制技术、计算机应用技术以及相关的专用分析软件和通信网络组成的一个综合性的在线自动监测体系。WPMS可尽早发现水质的异常变化,为防止下游水质污染迅速做出预警预报,及时追踪污染源,从而为管理决策服务。

水质自动监测在国外起步较早,我国在水质自动监测、移动快速分析等预警预报体系建设方面尚处于探索阶段。1998年以来,我国已先后在七大水系的10个重点流域建成了100个国家地表水水质自动监测站,各地方根据环境管理需要,也陆续建立了400多个地方级地表水水质自动监测站,实现了水质自动监测周报。目前国内所用的自动化监测系统多为国外进口设备,水质自动化监测装置在制造上已不能满足快速发展的水质监测的需要,因此,国产化自动监测仪有广阔的开发前景和潜在的销售市场。

WPMS可以实现监测自动化、实现水污染的预警预报,对于防止污染事件的进一步发展可起到至关重要的作用;WPMS还可以实现水质信息的在线查询和共享,可快速为领导决策提供科学依据。

2 水质在线监测系统的组成

水质在线监测系统由采样单元、分析测试单元(监测仪器)、数据采集与传输单元、监控中心四部分组成。目前,应用比较多的是水质COD、NH3-N、TOC、 TN、TP、五参数、UV等在线监测系统。

2.1 采样单元

目前大多数采用自吸泵或潜水泵方式采样,建议采用 10~20目的金属筛网阻隔,避免漂浮物堵塞采样口。自吸泵扬程应保证大于实际采样高度的2倍。采用潜水泵采样的系统,应保证潜水泵在液位变化情况下能正常工作。

2.2 在线监测仪器

(1)COD在线监测仪器

根据氧化方式不同,可将COD在线监测系统分为两大类,即采用重铬酸钾氧化和非重铬酸钾氧化方式。重铬酸钾氧化方式可分为重铬酸钾消解—光度测量法,重铬酸钾消解—库仑滴定法、重铬酸钾消解—氧化还原滴定法。非重铬酸钾氧化方式可分为臭氧(混合氧化剂)氧化—电化学测量法羟基氧化—电化学测量法。

(2)NH3-N在线监测仪器

NH3-N在线监测仪可分为滴定法、比色法、铵离子选择电极法、氨气敏电极法、电导法等方法。

(3)TOC在线监测仪器

按原理不同,可将TOC在线监测仪器分为燃烧氧化—红外吸收法、紫外催化氧化—红外吸收法和电导法。

2.3 数据采集与传输单元

数据采集传输仪通常采用单片机、可编程控制器或工控机方式,不论哪种方式,通讯协议应全国统一,以方便仪器连接通讯。数据传输方式可采用电话线、 GPRS、GSM、局域网、无线电台等多种方式。

2.4 监控中心

监控中心的主要作用就是接收、汇总、统计各污染源的监测数据。

3 水质在线监测系统的发展历程

目前在我国生产销售水质在线监测系统的厂商约有 50家,通过认证的厂家有30多家。我国水质在线监测系统经过十几年的发展,从技术引进吸收到拥有自主产权的专利产品,从半自动化发展到信息化,从作坊形式发展为监测专用仪器的支柱产业之一,涌现出一批技术精良、服务周到、规模较大的龙头企业,纵观水质在线监测系统的发展历程,大致可以分为以下三个阶段。

3.1 初期阶段

1996年,国家环保局发布的《排污口规范化整治技术要求(试行)》中规定:列入重点整治的污水排放口应安装流量计;一般污水排污口可安装三角堰、矩形堰、测流槽等测流装置或其他计量装置。全国规范化的排污口开始安装流量计和采样器,这可称为最初的在线监测系统。

自上世纪90年代初到2001年,国产水质COD在线监测仪器开始问世,主要生产企业有:北京环科环保技术公司、南京德林环保仪器有限公司、兰州炼化环保科技有限公司、河北先河科技发展有限公司、山东省恒大环保有限公司、广州怡文科技有限公司等,在重点省份、重点行业开始推广应用,为国产COD在线监测系统奠定了基石。此阶段的特点可归纳为以下几点:

(1)产品较单一

最初排污现场仅安装流量计、采样器和水质COD在线监测仪器,因此,根据行业发展需求,各公司推出了自己的产品,但基本都是采用重铬酸钾氧化原理的 COD在线监测仪器。

(2)生产规模小

受市场需求制约以及环境管理对在线自动监测的认识不够等多方面因素的影响,各公司的资金、技术投入较小,生产企业的规模都小于20人,且以手工单台组装调试为主,没有形成规模化生产。

(3)产品质量不稳定

由于当时利用重铬酸钾氧化原理的水质COD在线监测仪器为全新产品,国际上无经验可借鉴,将实验室 COD的手工分析流程浓缩成机械化产品,高温、强酸等因素影响产品的稳定性,加之国内元器件质量不过关,使得整机的稳定性受到影响。

(4)安装量小

2001年前,全国已安装的COD在线监测仪器约百余台,且集中在经济发达省份(如江苏、浙江等),而经济欠发达地区,几乎都没有安装COD在线监测仪器。

3.2 发展阶段

2001年,国家环境保护总局颁布了化学需氧量(COD)自动在线监测仪产品技术要求(HBC6-2001),根据此技术要求,国家环境保护总局环境监测仪器质量监督检验中心对COD在线监测仪器进行了适用性检测,已有30多家企业的产品通过适用性检测。此阶段的特点有:

(1)产品逐渐多样化

根据环境管理要求和市场需求,在此背景下,国内生产企业开始研制其它水质在线监测系统,如 COD、NH3-N、TOC、TN、TP水质五参数等在线监测仪器。

(2)产品质量逐渐稳定

经过几年现场的安装运行,逐渐摸索出适合中国国情的水质COD在线监测系统,从仪器各零部件的选择、采样方式、消解方式、数据传输等多方面对仪器进行了改进,使得仪器的稳定性得到飞速提高。

(3)生产厂家急剧增加

本阶段,国际上知名大企业开始逐渐进入中国市场,如岛津国际贸易有限公司、美国HACH公司等都带来了自己先进的产品,国内生产厂商如雨后春笋般的涌现出来,如江苏就有8家COD生产厂商。

3.3 网络化阶段

2006年以后,尤其是“污染源减排三大体系能力建设”项目实施后,要求占COD污染负荷60%以上的国控重点污染源必须安装在线监测仪器,且必须联网运行。初步形成由地(市)、省、国家的三级网络。安装仪器数量增多、运行管理逐步规范,尤其是出现了一批专业化运营维护队伍,对水质在线监测仪器的发展起到了推动作用。

4 水质在线监测系统的技术前沿

4.1 重金属在线监测技术

由于重金属污染的危害性,建立重金属污染预警系统对重金属污染进行实时监控,变得日益紧迫,重金属在线监测仪器的需求近年来也日益显现,目前重金属在线监测仪器基本依赖进口,进口仪器价格昂贵。为打破对进口仪器的高度依赖,针对重金属在线监测技术难题,不少科技创新企业通过加大科研投入,相继推出一系列重金属在线监测仪,填补了国内空白,结束了国外技术垄断的历史。

六价铬、铜、镍等重金属在线监测仪在电子工业发达地区已有小规模的安装,目前国内的主要生产厂家有南京德林环保仪器有限公司、北京环科环保技术公司等,但重金属在线监测仪品种比较单一,技术和质量与国外相比还有些差距,这方面的市场还有待开发。

4.2 水质毒性在线监测技术

海洋中的明亮发光杆菌经过驯化后,可以作为毒性的判断指标。通过实验逐步确定了氨氮、酚、六价铬、氟、硫化物、COD、H2S、Cl

2、SO2等不同毒物间对发光细菌发光反应的抑制速率的差异,污染水质对发光细菌的影响程度以及与标准毒物HgCl2相对应的毒性等级。

通过测定发光细菌发光度的变化,量度被测水环境样品中由微生物、重金属和有机污染物所造成的急性生物毒性。与传统的将鱼、藻和其它水生生物作为检测指示生物相比,发光细菌法简便、快速、灵敏、适应性强、重复性好、精度高、费用低、用途广。发光细菌毒性检测最显著的特点是一次试验就能够定性或定量鉴别被测水样中的全部有毒物质,具有灵敏度高(ppm级)、准确度好(误差小于10%)、速度快、检测范围宽(包括铬、镉、铜、铅、镍、汞等重金属离子,DDT、有机磷等农药、24D等激素,洗涤剂、溶剂等有机和无机有毒物质)、方法简便,不需生物专业人员、检测费用低、适应性强,可在现场检测,也可在实验室检测等优点。

但目前我国还没有水质综合毒性检测系统的生产厂家。国内企业格维恩科技有限公司、上海艾晟特环保科技有限公司等都是代理销售,还没有形成自己的产品。随着人们对水安全的重视,对水质综合毒性的在线测定变得日益重要,这方面的市场潜力还是相当大的。

4.3 生物传感器的应用

生物传感器测定法是利用生物分子优良的分子识别功能,结合转换功能进行测定的检测方法。利用与待测物质具有良好选择反应的生物分子进行测定。随着反应的进行,生物分子及其反应生成物的浓度会发生变化,通过转换器变为可测定的电信号,从而达到选择性测定待测物质的目的。

目前已经有相当数量的生物传感器投入到大气和水中各种污染物质含量的监测中,在发达国家如英国、法国、德国、西班牙和瑞典,在水质检测过程中都采用了生物冷光型的生物传感器。生物传感器因其具有快速、连续在线监测的优点,将会有更广泛的应用,在测定二恶英等剧毒物质时能够做到安全检测。

4.4 荧光法的应用

荧光法是一种测定水中溶解态有机污染物的方法,用320nm激发波长,在430nm测定荧光强度可获得有机污染物的信息。与260nm测定DOC的UV信息有良好的相关性,且灵敏度和精确度都比UV法好。荧光法在自动监测系统中的应用前景很好,早在“九五”攻关中,中国环境监测总站就使用了排水中油类的直接荧光法自动监测。

目前代理销售的企业主要有北京爱格森自动化有限公司、北京渠道科学器材有限公司、北京首选科技有限公司等。

4.5 酶联免疫法(ELISA)的应用

生物法中,常用的生物分子是酶及抗体,即酶联免疫法(ELISA)、聚合酶链式反应(PCR)、表面胞质团共振检测(SPR)等。常用的转换器有电极、各种光学装置及石英振子等。

日本报道了生物检测法(ELISA)使用二恶英类自动前处理装置。大肠菌群是地表水和饮用水源地的必测指标,其自动监测的实现可大大减少监测人员的工作强度,在其自动监测系统中使用了与培养法完全不同的原理,即生物发光、化学发光法。

以酶联免疫法(ELISA)为原理的检测技术是目前发展的最新领域,用于化学毒性物质检测具有以下特点:

(1)具有很高的灵敏度,仅用少量试样便可完成检测; (2)选择性好,且比仪器分析的试样前处理方法简单,操作简便、快速;

(3)能得出环境污染物对生态影响的直接及综合信息;

(4)设备价廉,能够实现自动化,并可应用于多个试样同时处理,快速检测。

我国已颁布了采用ELISA的水和土壤等中污染物的检测方法。

5 水质在线监测系统的展望

水质在线监测系统在发展历程中主要存在以下问题:

(1)产品集中度过低,企业规模偏小,缺乏长远利益的共识,竞争无序;

(2)产品品种单一,高新技术含量低,功能趋同化严重,质量难以持续稳定;

(3)缺乏产业规制,企业进出条件要求较低;

(4)资金紧缺,限制了发展。

与国外的连续自动监测产业相比,我国的连续自动监测产业尚处于发展初期,针对发展中存在的问题,不论是政府、水质在线监测系统生产企业还是排污企业自身都应该拿出积极稳妥的方案以应对国际和国内的竞争态势。

5.1 加强核心技术的研发,应对日益多样化的环境监测需求

连续自动监测企业应加强与高校和研究部门的合作,提高产品的技术含量,丰富产品种类,使产品功能多样化,增强企业的竞争实力,以应对环境监测和环境管理发展的需要,国家应根据未来环境管理发展的需要,加强技术引导,加大对关键技术的投入力度,提高并加快系统的国产化率,引导企业的技术走向。

5.2 加强企业间合作,促进仪器生产规模化

在配合产业规划,提高行业进入门槛的同时,对现有的连续自动监测仪器企业进行企业间合作和兼并的引导;对重点企业加大支持力度,出台减免税收等优惠政策;促使仪器生产规模化,尽快建立现代企业制度, 淘汰作坊式生产和家族式管理模式,提高产品质量的稳定性。企业间的合作不仅应表现在技术的共同开发上,而是应更多地表现在市场的开拓、销售和运营维护的配合以及技术人员的培训上;兼并也不应仅表现在同类企业之间的以大吃小,而应更多地表现在不同类企业以及上下游企业间的优势互补上。

5.3 制定和修订相关规范

为配合污染源减排三大体系能力建设项目实施,环境保护部相继制定和修订了一系列标准,如《水质在线监测系统安装技术规范》、《水质在线监测系统验收技术规范》等,为规范水质在线监测系统的安装、运行奠定了基础。但是,随着环境管理的不断加强,随着仪器种类的不断增多,还应制定新的规范或标准,对已有不适应要求的规范标准要进行修订,如《水质在线监测仪器安装验收、安装标准》中,验收周期长、工作量大、低浓度指标要求过于严格等问题。

5.4 控制产品质量,执行环境监测仪器认证制度

加大对环境监测仪器的监督管理,建立和完善环境自动监测系统资质认证认可制度。适时完善环境监测仪器的发展规划和技术政策,明确水质环境监测仪器发展方向,指导和规范环境监测仪器的健康发展,避免企业盲从。要通过中国环境监测总站对环境监测仪器的技术水平和质量状况进行适用性检测,并向社会公布。

5.5 规范化运营与管理

在线监测系统的运营与管理是保证在线监测正常运转的基石,规范化的运营已是迫在眉睫。环境保护部对运营单位进行资质认可,对运营人员进行持证上岗考核,出台了《自动在线监测运营管理办法》,逐步规范了在线监测系统的运营。目前在线监测系统的运营已成为在线监测系统经济发展的增长点之一,运营管理已由无序向有序、由“游击”方式向专业化方向转变。

5.6 产业发展

(1)以目前人工采样和实验室分析为主向自动化、智能化和网络化为主的监测方向发展;

(2)由劳动密集型向技术密集型方向发展;

(3)由较窄领域监测向全方位领域监测的方向发展;

(4)由单纯的地面环境监测向与遥感环境监测相结合的方向发展;

(5)环境监测仪器将向高质量、多功能、集成化、自动化、系统化和智能化的方向发展;

(6)环境监测仪器向物理、化学、生物、电子、光学等技术综合应用的高技术领域发展。 文章链

(

烟气在线监测范文第4篇

各科室、作业区、分厂:

为了进一步加强某某河流域水环境的管理,强化集团公司环境保护工作的监察与监测工作,依据《甘肃某某有色金属集团有限公司某某铅锌矿资源整合(100万吨/年采选改扩建)项目环境影响报告书》及《陇南市2014年度国家重点监控企业自测方案的批复》(陇环发【2014】80号)相关要求,安全环保科制定了本监测方案。本方案将某某河重点支流的源头水、某某河重点支流的地表水、各作业区的矿坑涌水、各作业区,各分厂断面水、各分厂车间各产污点、污水处理站进、出口列为本监测方案的内容,就监测点位、监测因子、监测频次等方面作了有关要求,安全环保科严格按照此方案开展工作,促使集团公司环境监察和监测常态化、制度化,具体如下:

一、某某河重点支流的源头水

(一)、监测布点:

1、沙坝4#源头水;

2、狮子沟源头水;

3、邓林河源头水;

4、薛平沟2#尾矿库源头水。

(二)、监测因子:铅、锌。

(三)、监测频率:1次/月,特殊条件下,增加监测频次。

(四)、监测方法:采样和分析按照GB3838-2002《地表水环境质量标准》和《环境监测技术规范》中有关规定执行,在报告中注明方法来源和检出限等相关信息。

二、某某河重点支流的地表水

(一)、监测布点:

1、吊爬沟地表水;

2、梁山下部水渠;

3、黑沟下部水渠;

4、薛平沟1#尾矿库出水;

5、薛平沟2#尾矿库出水;

6、马槽里沟尾矿库涵洞渗水;

7、三分厂污水处理站东部水渠;

8、葡萄沟尾矿库涵洞出水;

9、何家沟尾矿库涵洞出水;

10、曹家沟尾矿库出水;

11、二分厂浴室下方水渠。

(二)、监测因子:铅、锌。

(三)、监测频率:1次/15天,特殊条件下,增加监测频次。

(四)、监测方法:采样和分析按照GB3838-2002《地表水环境质量标准》和《环境监测技术规范》中有关规定执行,在报告中注明方法来源和检出限等相关信息。

三、各作业区矿坑涌水

(一)、监测布点

1、沙坝3#矿坑涌水;

2、某某3#矿坑涌水;

3、某某1#矿坑涌水;

4、1150矿坑涌水;

5、二线上部水渠;

6、二线矿坑涌水;

7、26线矿坑涌水。

(二)、监测因子:铅、锌。

(三)、监测频率:1次/10天,特殊条件下,增加监测频次。

(四)、监测方法:采样和分析按照GB25466-2010《铅、锌工业污染物排放标准》和《环境监测技术规范》中有关规定执行。

四、各作业区、分厂断面水:

(一)、监测布点:

1、沙坝1#、2#下部水渠;

2、沙坝3#下部水渠;

3、某某1#渣台下部

4、一分厂断面水;

5、寺沟里断面水;

6、一分厂污水处理站断面水;

7、田坝断面水;

8、二分厂断面水;

9、杨家沟尾矿库断面水;

10、马槽里沟尾矿库断面水;

11、三分厂断面水;

12、三分厂污水处理站断面水;

13、污水处理站下游断面;

14、大安子尾矿库下游断面;

15、曹家沟尾矿库断面水;

16、五分厂(某某河总)断面水。

(二)、监测因子:铅、锌。

(三)、监测频率:1-3项:1次/10天;4-16项:1次/3天。特殊条件下,增加监测频次。每半年委托有资质的检测单位进行一次检测。

(四)、监测方法:采样和分析按照GB3838-2002《地表水环境质量标准》和《环境监测技术规范》中有关规定执行。

五、各分厂车间产污点

(一)、监测布点:

1、一分厂沉淀池最后一级;

2、一分厂车间事故应急池;

3、一分厂化验室背部水渠;

4、厂区环形水渠;

5、二分厂沉淀池最后一级沉淀池;

6、二分厂车事故应急池。

(二)、监测因子:铅、锌。

(三)、监测频率:1次/4天,特殊条件下,增加监测频次。

(四)、监测方法:采样和分析按照GB25466-2010《铅、锌工业污染物排放标准》和《环境监测技术规范》中有关规定执行。

六、各分厂污水处理站

(一)、监测布点:

1、一分厂污水处理站排口;

2、

二、

三、五分厂污水处理站排口。

(二)、监测因子、检测频率、监测方法按照陇环发【2014】80号文件执行。

七、数据管理

安全环保科对各监测点位的检测数据进行建档管理,每天对检测数据进行比对分析,异常情况及时查找原因,加密监测点位和监测频次,制定措施,落实整改,及时将异常数据上报总经理和分管副总经理。 特此通知

甘肃某某有色金属集团有限公司安委会

烟气在线监测范文第5篇

一、按仪器操作规程对仪器进行定期检查,并根据仪器运行方式、状况及测量数据,判断仪器工作状态,必要时对仪器进行校准。

二、现场维护人员在检查过程中对在线仪器的试剂使用情况要做好记录,确保更换及时。

三、现场维护人员应按仪器的操作手册对自动监测仪器定期进行自动或手动校准,保证在线监测系统监测结果的可靠性和准确性,并作好相关记录。

四、现场维护人员按照环保要求负责仪表的定期校验,主要完成:

 每月应对每个站点所有自动分析仪至少进行1次自动监测方法与实验室标准方法的比对试验;

 每月应对每个站点所有自动分析仪至少进行一次质控样试验; 每季度进行现场校验,包括重复性试验、零点漂移和量程漂移试验。 校验方法与校验结果应满足《水污染源在线监测系统运行与考核技术规范》(试行) HJ/T 355-2007 与《水污染源在线监测系统数据有效性判别技术规范》(试行) HJ/T 356-2007 中相关要求。

五、现场维护人员负责记录校验结果、记录仪表是否可以继续正常运行,并及时将结果汇报总负责人及环境保护相关部门。

上一篇:电压监测仪下一篇:振动监测