矿井通风系统设计范文

2023-09-29

矿井通风系统设计范文第1篇

摘 要:矿井主通风机主要担负着整个矿井或矿井某一区域的通风任务,由于主通风机需要保持长期持续的运转状态,如果出现问题直接影响煤矿的安全,所以,必须通过对风机、温度、振动参数等各种参数采集与监测以达到控制风机正常运转的目的,主要包括根据实际情况对风机的选型、温度传感器的选择、风量的监测方法和风机振动情况的监测等。

关键词:风机 参数 监测

1 矿井通风系统的基本构成

该系统的主通风机有两台,它们之间没有主次之分,两台通风机轮流使用,这样就能够保证一旦主通风机出现故障时,这个通风机系统不至于瘫痪,既能使设备得到及时的保养,又能使系统可靠运行,这种结构就是双冗余结构。风压、温度、瓦斯浓度等数据是该系统控制的重要依据。

该系统主要由两部分构成,即上位机系统和下位机系统。西门子公司WinCC组态软件是上位机系统的控制软件。西门子s7-300作为下位机的处理核心,负责完成各种任务,如数据采集、数据输出和控制算法等,适用于大量的信息处理和高实时性的煤矿通风机监控系统。其中有4个变频器,主要作用是接受指令,调节风机旋转频率,达到控制目的;6个EM277扩展模块,主要作用是将数字量转化为模拟量的模拟量输入模块;两个风压传感器,主要作用是测量矿井下风量的大小;两个温度传感器,主要作用是测量电机的轴承温度和整个运行环境的温度;两个瓦斯传感器,监测巷道内的瓦斯浓度。

2 矿井主通风机的选择

2.1 按气体流动方向的不同,通风机的分类

(1)离心式风机:空气流入风机叶轮,离心力使其被轴向压缩,然后径向流动。

(2)轴流式风机:气体沿着主承轴进入到叶片通道,在旋转的过程中,形成圆柱形的气流,气体在其上面流动。

(3)混流式风机:气体在进入叶道时,不与主轴平行,而是有一定角度,这样在旋转式就形成锥形气流。

(4)横流式风机:气体以垂直于主轴的方向进入叶道,旋转时气体受到叶片作用产生压力。

对于我国的大中型矿井来说,采用较多的还是轴流式通风机,主要是原因是该系列风机具有结构简单,稳固可靠、噪声小和功能选择范围广等特点。

2.2 对旋式轴流风机具有的优缺点为:

(1)传动的效率十分高。

(2)对旋轴流式风机最高压力点值较高。

(3)静压力的效率高。

(4)对旋式轴流风机能够逆向送风。

2.3 矿井主通风机的有关参数的计算和处理

2.3.1 风量

通风机风量就是在单位时间内,气体流入通风机的体积。

2.3.2 风压

在通风机系统中,风压就是单位体积内,空气所具有的势能。风压可分为全压、动压和静压。

2.4 风机的特性曲线

随着通风机内气体流量的变化,通风的效率、风压和轴功率也发生变化,它们之间存在一定的关联。由此得到的曲线就是通风机的特性曲线(图1)。

3 矿井主通风机主要传感器的选择

能够确保煤矿生产一直处于一个安全稳定的条件下,即风机运行过程中的,必须实时监测,主要包括风机的后轴承温度、负压的大小、风速的大小等。

3.1 温度传感器

在整个煤矿通风机监测系统中,对温度的监测是其中一项参数指标。铂热电阻是热电阻中应用比较广泛的,它在复杂环境下和高温状态下工作稳定,铂热电阻制成标准温度的基准仪,其温度测量区间在-200 ℃~+600 ℃。Ptl00是该系统选用的温度传感器。

通风机电机运行时的轴承温度,它的实时数据也是必须采集的一种参数。整个温度数据采集的过程,先由温度传感器测量温度,将采集来的数据转化成可传输的信号,经过信号整定,再将模拟量转化为数据量,最后传给PLC。

3.2 风机振动参数的测量

在风机运行过程中产生振动,如果振动轻微,不会对系统产生影响。但振动的幅度太大或者振动不规律,就可能造成风机停机或损坏。在测量振动时,要选取合理的测量量,如振动位移、振动加速度和振动速度等。

根据系统的要求,选取风机主轴承的振动速度作为反映测量振动参数好坏的依据。振动速度快则噪音大,振动速度慢则噪音小。在通风机监控系统中,对风机主轴承振动的测量,分为水平和垂直振动两种。

通过历史使用经验法可以知道,如果用振动位移作为测量参量,就应该使用电涡流式传感器;如果用振动速度作为测量参量,就应该使用速度式传感器;如果用振动加速度值作为测量参量,就应该使用加速度式传感器。

3.3 风机风量的测量

风量是监测通风机运行状况好坏的一个重要指标。要测量风量主要有两个途径,一个是通过风速来测量风量,另一个是通过测压管来测量风量。

3.3.1 风速监测风量

通过测量风速的大小来确定风量的大小,所以要得到风量的测量值,只要测量出风速的大小就可以了,这样就需要使用风速传感器。

在矿井中需要测量风速的地方主要有:通风机的井口、每一个巷道和各种风口等处。这些地方的风速大小都是通过GFWl5风速传感器测量出来的,最后通过这些测量数据来计算风量的大小,调整矿井通风机的运行状态,保证矿井的安全。

3.3.2 测压管监测风量

应用测压管监测风量,其原理是只要能够测出管内一点的动压值,根据下面的计算公式就能够算出这一点的风速。这是一种十分简便可行的方法。

计算公式如下:

4 結语

该文主要介绍了矿井主通风机的主要结构特点,通过对通风机性能特性的比较,选择了对旋式轴流通风机作为该系统的矿井主通风机。该文还详细了介绍了实时监测方法的特点和功能,分析了矿井主通风机的各种实时运行参数的监测方法,选取合理的传感器构成整个风机系统。

参考文献

[1] 安赛,林柏泉.主要通风机远程监测系统的设计[J].工矿自动化,2012(1):4-7.

[2] 张红.热电偶测温系统误差剖析及处理对策[J].安徽工程科技学院学报:自然科学版,2010(2):63-66.

矿井通风系统设计范文第2篇

尊敬的各位领导、各位专家:

上午好!首先欢迎各位领导、专家莅临我矿进行通风专业验收工作。在此,我谨代表山西华润鸿福煤业有限公司全体员工对您们的到来,表示诚挚的问候和衷心的感谢。

下面由我对本次我矿的通风系统具体情况作出如下汇报:

一、矿井通风基本情况:

矿井通风方式为中央并列式,通风方法为机械抽出式,主斜井、副斜井进风,回风斜井回风。井下布置三条大巷,分别为皮带下山、轨道下山进风,回风下山回风。矿井配备两台同等能力、同等型号FBCDZ№23/A-2×132kW防爆抽出式对旋轴流式主要通风机,一台工作,一台备用。全矿井需风量为2208m3/min,矿井实际风量为3630m3/min,满足矿井生产需求。

矿井共布置1个综采工作面和1个综掘工作面,计划风量分别为474m3/min、206m3/min;实际风量分别为882m3/min、241m3/min。满足矿井生产要求。根据采区巷道布置和采煤方法,回采工作面采用独立通风系统。采煤工作面采用“U”型通风方法,新鲜风流由工作面皮带进风顺槽进入,冲洗工作面后,乏风经工作面轨道回风顺槽→工作面回风巷→回风暗斜井→回风斜井→地面。该通风系统结构简单,风流稳定,抗灾能力强,管理方便。

井下掘进工作面采用压入式局部通风。选用2台型号为FBD№5.6功率为2×11KW的局部通风机供风,其中一台运转,一台备用,并实现了双风机、双电源自动切换。风筒直径为Φ600mm,均为抗静电抗阻燃风筒。

二、矿井通风系统概况

1、通风系统方面

1)矿井通风系统设计合理,风量充足,风流稳定,可靠,通风设施齐全完好,符合《规程》各项要求。局部通风管理到位,局扇安装、使用符合规定,实现双风机、双电源自动切换。

2)2014年12月份我矿请煤炭科学技术研究院有限公司安全检测中心对我矿进行了通风阻力测定工作,实测矿井通风阻力192.3Pa;矿井等积孔为4.83m2,矿井属于通风容易矿井。

3)井下各处设置的通风设施均符合相关规定。现有风桥两处,分别位于皮带下山和80101进风顺槽;风门5处,分别位于回风井口、运输回风联巷、主斜井绕道、80101回风顺槽联巷、80102回风顺槽联巷;风窗5处,分别位于中央变电所、回风下山、运输回风联巷、80101回风顺槽联、皮轨联巷;永久密闭9处,分别位于上山行人绕道(5处)、回风下山(3处)、皮带下山;测风点(测风站)22处,分别位于主井、副井、回风井、皮带下山上部、下部、回风下山、工作面运输巷、工作面回风巷、轨道下山上部、轨道下山下部、80101回风顺槽联巷、80101进风顺槽、80101回风顺槽、清理撒煤斜巷、中央变电所、井下调度室、避难硐室、消防材料库、采区水泵房、采区变电所、人车等候硐室、80102进风顺槽。

2、瓦斯管理方面

1)矿井设立瓦斯工作防治领导小组。并配备一名通风副总工程师。瓦斯防治实行“一井一策、一面一策”,并编制瓦斯治理技术方案、安全措施计划,按规定备案并严格执行。 2)现安装一套型号为KJ160N矿用安全监控系统,安装6台监控分站,分别位于中央变电所、皮带下山、工作面运输巷(两台)、主通风机房和监控室。安装各类传感器52台,分布在各主要监控点及采掘工作面,系统运行正常,瓦斯管理监控有效,传感器调校严格按照要求执行。

3)井下瓦斯巡回检查线路分2条线路:

检查路线1:主斜井机尾→煤仓→中央变电所→井底水泵房→ 井底水仓通道→80101工作面移变→80101工作面→80101工作面上隅角→80101回风顺槽→主斜井机尾→煤仓→中央变所→ 井底水泵房→井底水仓通道→80101工作面移变→80101工作面→80101工作面上隅角→80101回风顺槽

检查路线2:80102进风顺槽掘进面→80102进风顺槽掘进面回风→工作面运输巷移变→工作面回风巷→总回风井→回风下山 →采区变电所→采区水仓通道→采区水泵房→80102进风顺槽掘进面→80102进风顺槽掘进面回风→工作面运输巷移变→工作面回风巷 →总回风井→回风下山→采区变电所→采区水仓通道→采区水泵房

瓦检员配备12人,符合相关要求。

4)2012年我矿由山西公信安全技术有限公司进行瓦斯等级鉴定,鉴定矿井绝对瓦斯涌出量为1.20m3/min,属瓦斯矿井。同时,按照要求矿井在联合试运转产期间做瓦斯等级鉴定,公司已与山西省监测中心签订鉴定合同,此项工作正在进行中(转产验收前拿回瓦斯等级鉴定报告)。

5)2014年11月由煤炭科学研究总院对8#、9#煤层瓦斯基础参数进行测定,测定8#煤层瓦斯含量为2.6259m3/t-2.8079m3/t。

3、综合防尘方面

1)我矿现有容量300*2m3的 静压水池向井下供水,主管路采用DN108无缝管,在皮带运输巷每50m设三通,其它主要巷道每100m设三通用作洒水灭尘及消防。在主斜井安装3道净化水幕、副斜井安装3道净化水幕、皮带下山安装6道净化水幕、轨道下山安装3道净化水幕、回风下山安装3道净化水幕、工作面运输巷安装3道净化水幕、工作面回风巷安装3道净化水幕、80101进风顺槽安装3道净化水幕、80101回风顺槽安装4道净化水幕、80102进风顺槽安装2道净化水幕,共计33道。各皮带机头、溜头等各转载点均已安装转载点喷雾装置。采煤机与掘进机的内外喷雾装置均正常使用。

2)现轨道下山安装2组主要隔爆水槽,皮带下山安装2组主要隔爆水槽,回风下山安装2组主要隔爆水槽,工作面运输巷安装2组主要隔爆水槽,工作面回风巷安装2组主要隔爆水槽,80101进风顺槽、回风顺槽各安装辅助隔爆水袋1组,安装位置、长度、水量等均符合相关要求。

3)80101工作面选用了两台5BZ-33/15型煤层注水泵已投入使用。设计注水孔直径75mm,孔深80m,孔距20m,采用单侧注水方式进行注水。共9个注水孔,截止目前已注水至第四个注水孔,贮水量约为140m3。

4)2015年由中煤科工集团重庆研究院有限公司对8#煤层进行煤尘爆炸性鉴定,鉴定结果煤尘具有爆炸性,煤尘爆炸指数24.95%。

4、防灭火方面

1)建立自然发火预测预报制度,对采空区密闭、老巷密闭内、工作面上隅角等可能自然发火的地点严格按规定进行预测预报。 2)回采工作面采用3BZ-36-3型阻化剂喷射泵2台,工作面回采期间,在空巷内喷洒阻化剂,防止自燃发火。

3)采用2台ZHJ-6/3型井下移动式注浆装置建立灌浆系统,对气体异常或有发火危险的地段进行注浆。

4)矿井装备有火灾束管监测系统,由色谱分析系统(型号GC950)和采样系统(型号KYSC-1)组成,对矿井采空区进行气体监测,预防自燃发火。

5)井下各主要机电设备硐室、材料库、井底车场、带式输送机及采掘工作面附近的巷道中和机电设备群处按规定配备齐全灭火器材。

6)2015年由中煤科工集团重庆研究院有限公司对8#煤层进行自燃倾向性鉴定,鉴定结果煤层自燃倾向性等级为Ⅱ类,属自燃煤层。

5、“六大系统”方面 1)供水施救系统

我矿现有容量300*2m3的 静压清水池向井下供水,现井下各地点安装供水施救装置(型号:KGS)共10套。其中井底车场1套,皮带下山2套,工作面运输巷3套,80101皮带进风顺槽、80101轨道回风顺槽各2套,全部按照设计安装完成。 2)压风自救系统

我矿安装3台AED132A-10型双螺杆式空气压缩机向井下供风,2台工作,1台备用,AED132A-10双螺杆式空气压缩机额定排气量20m3/min,额定排气压力1.0Mpa。现井下各地点安装供水施救装置(型号:ZYJ)共10套。其中井底车场1套,皮带下山2套,工作面运输巷3套,80101皮带进风顺槽、80101轨道回风顺槽各2套,全部按照设计安装完成。系统自投运以来,运行稳定可靠,满足安全需要。 3)紧急避险系统

紧急避险系统于2014年12月份安装完成,其中:紧急避难硐室设备由北京天地公司生产及安装,可以满足井下96人同时避难。联合试运转期间系统运行稳定可靠,待验收。

4)通讯联络系统. 在调度总机房内安装有一台HA-8000型调度通讯系统和一套KTK125通讯广播系统,同时还安装了一套KT109R型矿用无线通讯系统,调度通讯系统与2013年1月通过了太原市煤矿安全信息中心的验收,广播系统于2013年12月通过了太原市煤矿安全信息中心的验收,井下无线通信联络系统于2013年10月通过了太原市煤矿安全信息中心的验收。系统自投运以来,运行稳定可靠,满足安全需求。 5)安全监控系统

现安装一套型号为KJ160N矿用安全生产监控系统,该系统于2012年通过了太原市煤矿安全信息中心的验收。全矿井共安装6台分站;各类传感器52台,分布在各主要监控点及采掘工作面(详见下表),系统自投运以来,运行正常,监测数据准确可靠。

各类传感器设置明细表

6)人员定位系统

安装一套美安公司生产的型号为KJ301矿用人员定位系统,该系统于2012年通过太原市煤矿安全信息中心的验收。井下共安装14台读卡器,分别分布在煤仓、80101进风顺槽、上山行人绕道、主井、副斜井上部、中部、下部、工作面运输巷、回风井、回风暗斜井、采区变电所、紧急避难硐室前门、后门、80101回风顺槽。系统运行稳定可靠。

6、管理制度方面

根据相关规定现已建立完善了“一通三防”管理制度、岗位责任制、操作规程等各项管理制度和相关台帐、记录,并严格落实、严格把关。

7、人员配备方面

结合我矿实际情况成立了通风领导组织机构和管理组织机构。通风科设:副总兼科长1名、副科长2名、通风技术员3名、瓦斯员12名、兼职救护队员9名,监测检测员16名,共计43人。以上人员都持证上岗,符合安全生产要求。

希望各位领导、专家提出宝贵意见和建议,谢谢!

山西华润鸿福煤业有限公司

2015年4月29日

山西华润鸿福煤业有限公司通风专业验收

汇报材料

矿井通风系统设计范文第3篇

尊敬的各位领导、各位专家:

上午好!首先欢迎各位领导、专家莅临我矿进行通风专业验收工作。在此,我谨代表山西华润鸿福煤业有限公司全体员工对您们的到来,表示诚挚的问候和衷心的感谢。

下面由我对本次我矿的通风系统具体情况作出如下汇报:

一、矿井通风基本情况:

矿井通风方式为中央并列式,通风方法为机械抽出式,主斜井、副斜井进风,回风斜井回风。井下布置三条大巷,分别为皮带下山、轨道下山进风,回风下山回风。矿井配备两台同等能力、同等型号FBCDZ№23/A-2×132kW防爆抽出式对旋轴流式主要通风机,一台工作,一台备用。全矿井需风量为2208m3/min,矿井实际风量为3630m3/min,满足矿井生产需求。

矿井共布置1个综采工作面和1个综掘工作面,计划风量分别为474m3/min、206m3/min;实际风量分别为882m3/min、241m3/min。满足矿井生产要求。根据采区巷道布置和采煤方法,回采工作面采用独立通风系统。采煤工作面采用“U”型通风方法,新鲜风流由工作面皮带进风顺槽进入,冲洗工作面后,乏风经工作面轨道回风顺槽→工作面回风巷→回风暗斜井→回风斜井→地面。该通风系统结构简单,风流稳定,抗灾能力强,管理方便。

井下掘进工作面采用压入式局部通风。选用2台型号为FBD№5.6功率为2×11KW的局部通风机供风,其中一台运转,一台备用,并实现了双风机、双电源自动切换。风筒直径为Φ600mm,均为抗静电抗阻燃风筒。

二、矿井通风系统概况

1、通风系统方面

1)矿井通风系统设计合理,风量充足,风流稳定,可靠,通风设施齐全完好,符合《规程》各项要求。局部通风管理到位,局扇安装、使用符合规定,实现双风机、双电源自动切换。

2)2014年12月份我矿请煤炭科学技术研究院有限公司安全检测中心对我矿进行了通风阻力测定工作,实测矿井通风阻力192.3Pa;矿井等积孔为4.83m2,矿井属于通风容易矿井。

3)井下各处设置的通风设施均符合相关规定。现有风桥两处,分别位于皮带下山和80101进风顺槽;风门5处,分别位于回风井口、运输回风联巷、主斜井绕道、80101回风顺槽联巷、80102回风顺槽联巷;风窗5处,分别位于中央变电所、回风下山、运输回风联巷、80101回风顺槽联、皮轨联巷;永久密闭9处,分别位于上山行人绕道(5处)、回风下山(3处)、皮带下山;测风点(测风站)22处,分别位于主井、副井、回风井、皮带下山上部、下部、回风下山、工作面运输巷、工作面回风巷、轨道下山上部、轨道下山下部、80101回风顺槽联巷、80101进风顺槽、80101回风顺槽、清理撒煤斜巷、中央变电所、井下调度室、避难硐室、消防材料库、采区水泵房、采区变电所、人车等候硐室、80102进风顺槽。

2、瓦斯管理方面

1)矿井设立瓦斯工作防治领导小组。并配备一名通风副总工程师。瓦斯防治实行“一井一策、一面一策”,并编制瓦斯治理技术方案、安全措施计划,按规定备案并严格执行。 2)现安装一套型号为KJ160N矿用安全监控系统,安装6台监控分站,分别位于中央变电所、皮带下山、工作面运输巷(两台)、主通风机房和监控室。安装各类传感器52台,分布在各主要监控点及采掘工作面,系统运行正常,瓦斯管理监控有效,传感器调校严格按照要求执行。

3)井下瓦斯巡回检查线路分2条线路:

检查路线1:主斜井机尾→煤仓→中央变电所→井底水泵房→ 井底水仓通道→80101工作面移变→80101工作面→80101工作面上隅角→80101回风顺槽→主斜井机尾→煤仓→中央变所→ 井底水泵房→井底水仓通道→80101工作面移变→80101工作面→80101工作面上隅角→80101回风顺槽

检查路线2:80102进风顺槽掘进面→80102进风顺槽掘进面回风→工作面运输巷移变→工作面回风巷→总回风井→回风下山 →采区变电所→采区水仓通道→采区水泵房→80102进风顺槽掘进面→80102进风顺槽掘进面回风→工作面运输巷移变→工作面回风巷 →总回风井→回风下山→采区变电所→采区水仓通道→采区水泵房

瓦检员配备12人,符合相关要求。

4)2012年我矿由山西公信安全技术有限公司进行瓦斯等级鉴定,鉴定矿井绝对瓦斯涌出量为1.20m3/min,属瓦斯矿井。同时,按照要求矿井在联合试运转产期间做瓦斯等级鉴定,公司已与山西省监测中心签订鉴定合同,此项工作正在进行中(转产验收前拿回瓦斯等级鉴定报告)。

5)2014年11月由煤炭科学研究总院对8#、9#煤层瓦斯基础参数进行测定,测定8#煤层瓦斯含量为2.6259m3/t-2.8079m3/t。

3、综合防尘方面

1)我矿现有容量300*2m3的 静压水池向井下供水,主管路采用DN108无缝管,在皮带运输巷每50m设三通,其它主要巷道每100m设三通用作洒水灭尘及消防。在主斜井安装3道净化水幕、副斜井安装3道净化水幕、皮带下山安装6道净化水幕、轨道下山安装3道净化水幕、回风下山安装3道净化水幕、工作面运输巷安装3道净化水幕、工作面回风巷安装3道净化水幕、80101进风顺槽安装3道净化水幕、80101回风顺槽安装4道净化水幕、80102进风顺槽安装2道净化水幕,共计33道。各皮带机头、溜头等各转载点均已安装转载点喷雾装置。采煤机与掘进机的内外喷雾装置均正常使用。

2)现轨道下山安装2组主要隔爆水槽,皮带下山安装2组主要隔爆水槽,回风下山安装2组主要隔爆水槽,工作面运输巷安装2组主要隔爆水槽,工作面回风巷安装2组主要隔爆水槽,80101进风顺槽、回风顺槽各安装辅助隔爆水袋1组,安装位置、长度、水量等均符合相关要求。

3)80101工作面选用了两台5BZ-33/15型煤层注水泵已投入使用。设计注水孔直径75mm,孔深80m,孔距20m,采用单侧注水方式进行注水。共9个注水孔,截止目前已注水至第四个注水孔,贮水量约为140m3。

4)2015年由中煤科工集团重庆研究院有限公司对8#煤层进行煤尘爆炸性鉴定,鉴定结果煤尘具有爆炸性,煤尘爆炸指数24.95%。

4、防灭火方面

1)建立自然发火预测预报制度,对采空区密闭、老巷密闭内、工作面上隅角等可能自然发火的地点严格按规定进行预测预报。 2)回采工作面采用3BZ-36-3型阻化剂喷射泵2台,工作面回采期间,在空巷内喷洒阻化剂,防止自燃发火。

3)采用2台ZHJ-6/3型井下移动式注浆装置建立灌浆系统,对气体异常或有发火危险的地段进行注浆。

4)矿井装备有火灾束管监测系统,由色谱分析系统(型号GC950)和采样系统(型号KYSC-1)组成,对矿井采空区进行气体监测,预防自燃发火。

5)井下各主要机电设备硐室、材料库、井底车场、带式输送机及采掘工作面附近的巷道中和机电设备群处按规定配备齐全灭火器材。

6)2015年由中煤科工集团重庆研究院有限公司对8#煤层进行自燃倾向性鉴定,鉴定结果煤层自燃倾向性等级为Ⅱ类,属自燃煤层。

5、“六大系统”方面 1)供水施救系统

我矿现有容量300*2m3的 静压清水池向井下供水,现井下各地点安装供水施救装置(型号:KGS)共10套。其中井底车场1套,皮带下山2套,工作面运输巷3套,80101皮带进风顺槽、80101轨道回风顺槽各2套,全部按照设计安装完成。 2)压风自救系统

我矿安装3台AED132A-10型双螺杆式空气压缩机向井下供风,2台工作,1台备用,AED132A-10双螺杆式空气压缩机额定排气量20m3/min,额定排气压力1.0Mpa。现井下各地点安装供水施救装置(型号:ZYJ)共10套。其中井底车场1套,皮带下山2套,工作面运输巷3套,80101皮带进风顺槽、80101轨道回风顺槽各2套,全部按照设计安装完成。系统自投运以来,运行稳定可靠,满足安全需要。 3)紧急避险系统

紧急避险系统于2014年12月份安装完成,其中:紧急避难硐室设备由北京天地公司生产及安装,可以满足井下96人同时避难。联合试运转期间系统运行稳定可靠,待验收。

4)通讯联络系统. 在调度总机房内安装有一台HA-8000型调度通讯系统和一套KTK125通讯广播系统,同时还安装了一套KT109R型矿用无线通讯系统,调度通讯系统与2013年1月通过了太原市煤矿安全信息中心的验收,广播系统于2013年12月通过了太原市煤矿安全信息中心的验收,井下无线通信联络系统于2013年10月通过了太原市煤矿安全信息中心的验收。系统自投运以来,运行稳定可靠,满足安全需求。 5)安全监控系统

现安装一套型号为KJ160N矿用安全生产监控系统,该系统于2012年通过了太原市煤矿安全信息中心的验收。全矿井共安装6台分站;各类传感器52台,分布在各主要监控点及采掘工作面(详见下表),系统自投运以来,运行正常,监测数据准确可靠。

各类传感器设置明细表

6)人员定位系统

安装一套美安公司生产的型号为KJ301矿用人员定位系统,该系统于2012年通过太原市煤矿安全信息中心的验收。井下共安装14台读卡器,分别分布在煤仓、80101进风顺槽、上山行人绕道、主井、副斜井上部、中部、下部、工作面运输巷、回风井、回风暗斜井、采区变电所、紧急避难硐室前门、后门、80101回风顺槽。系统运行稳定可靠。

6、管理制度方面

根据相关规定现已建立完善了“一通三防”管理制度、岗位责任制、操作规程等各项管理制度和相关台帐、记录,并严格落实、严格把关。

7、人员配备方面

结合我矿实际情况成立了通风领导组织机构和管理组织机构。通风科设:副总兼科长1名、副科长2名、通风技术员3名、瓦斯员12名、兼职救护队员9名,监测检测员16名,共计43人。以上人员都持证上岗,符合安全生产要求。

希望各位领导、专家提出宝贵意见和建议,谢谢!

山西华润鸿福煤业有限公司

2015年4月29日

山西华润鸿福煤业有限公司通风专业验收

汇报材料

矿井通风系统设计范文第4篇

本标准规定了井工煤矿通风能力核定的条件、要求、方法和技术要求。 本标准适用于晋煤集团所属矿井。 2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

煤矿安全规程

AQ1028-2006 煤矿井工开采通风技术条件

AQ1056-2008 煤矿通风能力核定标准

Q/JM J 1.0001-2013 煤矿矿井风量计算方法

Q/JM J 1.0006-2013 局部通风机管理标准 3 术语和定义

3.1

通风能力核定

矿井通风动力、通风网络、用风地点有效风量、稀释瓦斯所能满足的正常年生产煤量。

3.2

有效风量

送到采掘工作面、硐室和其他用风地点的风量之总和。

3.3

通风需风系数

平衡矿井内部漏风和配风不均匀等因素而采用的系数。 3.4 通风能力系数

根据矿井等积孔平衡矿井产量,并结合当地煤炭企业实际情况恰当选取确保矿井通防安全的系数。 4 核定要求

4.1 矿井每年应进行通风能力核定。

4.2 矿井转入新水平生产或改变一翼通风系统后,应及时重新核定矿井通风能力。

4.3 矿井更换主要通风机,对主要通风机技术改造,主要通风机参数发生变化时,应重新核定矿井通风能力。

4.4 采掘生产工艺发生变化后,应重新核定矿井通风能力。

4.5 矿井瓦斯等级发生变化或瓦斯赋存条件发生重大变化后,应重新核定矿井通风能力。 4.6 实施改建、扩建、技术改造的矿井,应重新核定矿井通风能力。

4.7 矿井有多个独立通风系统时,应按照每一个主要通风机通风系统分别进行通风能力核定,矿井的通风能力为每一通风系统能力之和。矿井应按照每一通风系统能力合理组织生产。 5 核定条件

5.1 矿井应有完整独立的通风、防尘、防灭火、安全监控及抽采系统。

5.2 矿井应采用机械通风,运转风机和备用风机应具备同等能力,矿井主要通风机经具备资质的检测检验机构测试合格。

5.3 矿井通风安全检测仪器、仪表齐全可靠。

5.4 矿井局部通风机的安装和使用应符合相关规定。 5.5 矿井瓦斯管理符合规定。

5.6 采掘工作面的串联通风应符合《煤矿安全规程》对串联通风的有关规定,以及对串联通风采掘工作面的甲烷传感器的设置和管理规定。 6 通风系统能力核定的主要内容

矿井通风系统能力核定的主要内容应包括以下部分:

a) 核查采煤工作面、掘进工作面、井下独立用风地点、各风井服务区域的风量、通风能力基本状况;

b) 核查主要通风机的运转、通风网络能力情况; c) 核查进风大巷、回风大巷、井筒的有效风量情况; d) 核查各地点瓦斯浓度情况。 7 通风能力核定方法

7.1 矿井需要风量计算

按晋煤集团《煤矿矿井风量计算方法》(Q/JM J 1.0001-2013)的要求计算矿井总需风量、采煤工作面(包括备用工作面)、掘进工作面、硐室、以及其他用风巷道等用风地点的实际需要风量。现有通风系统应保证各用风地点稳定可靠供风。 7.2 矿井通风能力计算

矿井通风能力核定采用由里向外核算法计算。

7.2.1 根据矿井总进风量与矿井各用风地点的需风量(包括按规定配备的备用工作面)计算出采掘工作面个数。

7.2.2 单个采煤工作面年产量计算: A采i33010-6l采ih采ir采ib采ic采i (1) 式中:

A采i—第i个采煤工作面年产量,Mt/a; l采i—第i个采煤工作面平均长度,m;

h采i—第i个采煤工作面煤层平均采高,放顶煤开采时为采放总厚度,m; r采i—第i个采煤工作面的原煤视密度,t/m3; b采i—第i个采煤工作面平均日推进度,m/d;

c采i—第i个采煤工作面回采率,%,按矿井设计规范和实际回采率选取小值。 7.2.3 单个掘进工作面年产量计算: A掘i33010-6S掘iri掘b掘i

式中:

(2) A掘i—第i个掘进工作面年产量,Mt/a; S掘i—第i个掘进工作面纯煤面积,m2;

r掘i—第i个掘进工作面的原煤视密度,t/m3; b掘i—第i个掘进工作面平均日推进度,m/d。

7.2.4 矿井通风能力计算 ApcA采iA掘j

i1j1m1m2(3) 式中:

A采i-第i个回采工作面正常生产条件下的年产量,Mt/a;

A掘j-第j个掘进工作面正常掘进条件下的年进尺换算成煤的产量,Mt/a;

m1-回采工作面的数量,个;

m2-掘进工作面的数量,个;m

1、m2应符合合理采掘比。 8 矿井通风能力验证方法

8.1 矿井主要通风机性能验证

按照矿井主要通风机的实际特性曲线对通风能力进行验证,主要通风机实际运行工况点应处于安全、稳定、可靠、合理的范围内。 8.2 通风网络能力验证

利用矿井通风阻力测定的结果对矿井通风网络进行解算,验证通风阻力与主要通风机性能是否匹配、各用风地点风量够不够,能否满足安全生产实际需要。 8.3 用风地点有效风量验证

采用矿井有效风量验证用风地点的供风能力,核查矿井内各用风地点的有效风量是否满足风量需要,井巷中风流速度、温度应符合《煤矿安全规程》规定。 8.4 稀释瓦斯能力验证

利用瓦斯等级鉴定结果以及矿井现场检测的结果,验证矿井通风稀释排放瓦斯的能力,各地点瓦斯浓度应符合《煤矿安全规程》的有关规定。 9 矿井通风能力核定结果

9.1 按照以上方法所计算的通风能力为矿井初步通风能力,凡不符合《煤矿安全规程》有关规定的,以及有下列情况的,应从矿井通风能力中扣减相应部分的通风能力,扣减后的通风能力为最终矿井核定通风能力。

9.1.1 高瓦斯矿井、突出矿井没有专用回风巷的采区,没有形成全风压通风系统、没有独立完整通风系统的采区的风量。

9.1.2 采掘工作面通风系统不完善、不合理的,没有形成全风压通风系统的回采工作面和没有独立完整通风系统的掘进工作面的通风能力,应从矿井通风能力中扣减。

9.1.3 存在不符合有关规定的串联通风、扩散通风、采空区通风的用风地点的通风能力,应从矿井通风能力中扣减。 9.1.4 通风能力最终计算 AApcAdc式中:

(8) A—矿井最终通风能力,万吨每年; Adc—扣除区域的年产量,万吨每年。 10 其它

10.1生产矿井通风能力核定报告应按附录A编写,核定报告经总工程师审核,加盖矿上公章后上报集团公司备案。

10.2 高瓦斯、突出矿井的通风能力核定报告按省、国家规定周期由有资质单位编写,但矿方应按本规定每年至少核定一次。

A.1 通风概况

附 录 A (资料性附录)

煤矿通风能力核定报告编写提纲 A.1.1 通风方式,通风方法,进、回风井筒数量、名称、形状、支护形式、断面、风量、及风速,矿井需要风量、实际进、回风量、有效风量。

A.1.2 采区巷道布置情况,是否按规定布置使用专用回风巷,采区主要进回风量及用风地点布置情况。

A.1.3 矿井瓦斯等级鉴定。瓦斯和二氧化碳的绝对、相对涌出量。 A.1.4 煤层自然发火等级鉴定、煤尘爆炸鉴定情况。

A.1.5 主扇型号,电机功率,叶片角度,运行参数,风量,风压,通风阻力,等积孔。 A.1.6 各主扇担负区域。主扇担负区域各层别、采区可采储量和可布置工作面数量情况。 A.1.7 矿井抽放系统情况。抽采泵型号、数量、装机功率、抽放量、负压,配套管路主管、分管、支管管径,以及矿井抽采量与抽采率。

A.1.8 矿井监测监控系统。监控系统型号,厂家,井上下分站数量,瓦斯传感器设置地点。 A.1.9 矿井上实际产量,矿井设计能力。 A.2 矿井需要风量计算 A.2.1 A.2.2 A.2.3 A.2.4 A.2.5 A.2.6 矿井需要风量计算原则。

采煤工作面(包括备用工作面)实际需要风量的计算。 掘进工作面实际需要风量的计算。 硐室实际需要风量的计算。

其他用风巷道实际需要风量的计算。 矿用防爆柴油机车实际需要风量的计算。

A.3 矿井通风能力计算 A.3.1 计算公式。 A.3.2 参数选取。 A.3.3 能力计算。 A.4 矿井通风能力验证 A.4.1 A.4.2 A.4.3 A.4.4 矿井通风动力验证。 矿井通风网络能力验证。 矿井用风地点有效风量验证。 矿井稀释瓦斯能力验证。

A.5 煤矿通风能力核定结果

附 录 B (资料性附录) 煤矿通风能力核查程序

B.1 现场调查 B.2 核查、收集有关资料

B.2.1 核查采煤工作面、掘进工作面及井下独立用风地点的基本状况。 B.2.2 核查矿井主要通风机的运转状况。

B.2.3 实行瓦斯抽排的矿井,应核查矿井抽放瓦斯系统的稳定运行情况。 B.2.4 核查矿井当月和上的配风计划。

B.2.5 核查矿井当前的通风系统示意图、安全监测装置布置图以及防尘、防火注浆、抽放瓦斯等管路系统图。

B.2.6 核查当月(上月)和上的通风月报、旬报以及瓦斯日报。 B.2.7 核查当年(上年)瓦斯等级鉴定资料。 B.2.8 核查当年(上年)度矿井反风演习报告。 B.2.9 核查矿井上实际产量。

B.2.10 核查矿井上三实际产量、实际需要风量和生产天数(年产量<30 万吨), B.2.11 如果矿井生产不正常,可以收集矿井前三月实际产量、实际需要风量和生产天数。 B.2.12 核查矿井生产计划、工作面接续安排和矿井后三年内采掘接替安排。 B.2.13 核查矿井通风阻力测定报告(经具备资质的检测检验机构测定)。

B.2.14 核查矿井主要通风机性能测定报告(经具备资质的检测检验机构测定)。 B.2.15 同时要注意资料的真实性、可靠性和时效性。

矿井通风系统设计范文第5篇

尊敬的各位领导、各位专家:

上午好!首先欢迎各位领导、专家莅临我矿进行通风专业验收工作。在此,我谨代表山西华润鸿福煤业有限公司全体员工对您们的到来,表示诚挚的问候和衷心的感谢。

下面由我对本次我矿的通风系统具体情况作出如下汇报:

一、矿井通风基本情况:

矿井通风方式为中央并列式,通风方法为机械抽出式,主斜井、副斜井进风,回风斜井回风。井下布置三条大巷,分别为皮带下山、轨道下山进风,回风下山回风。矿井配备两台同等能力、同等型号FBCDZ№23/A-2×132kW防爆抽出式对旋轴流式主要通风机,一台工作,一台备用。全矿井需风量为2208m3/min,矿井实际风量为3630m3/min,满足矿井生产需求。

矿井共布置1个综采工作面和1个综掘工作面,计划风量分别为474m3/min、206m3/min;实际风量分别为882m3/min、241m3/min。满足矿井生产要求。根据采区巷道布置和采煤方法,回采工作面采用独立通风系统。采煤工作面采用“U”型通风方法,新鲜风流由工作面皮带进风顺槽进入,冲洗工作面后,乏风经工作面轨道回风顺槽→工作面回风巷→回风暗斜井→回风斜井→地面。该通风系统结构简单,风流稳定,抗灾能力强,管理方便。

井下掘进工作面采用压入式局部通风。选用2台型号为FBD№5.6功率为2×11KW的局部通风机供风,其中一台运转,一台备用,并实现了双风机、双电源自动切换。风筒直径为Φ600mm,均为抗静电抗阻燃风筒。

二、矿井通风系统概况

1、通风系统方面

1)矿井通风系统设计合理,风量充足,风流稳定,可靠,通风设施齐全完好,符合《规程》各项要求。局部通风管理到位,局扇安装、使用符合规定,实现双风机、双电源自动切换。

2)2014年12月份我矿请煤炭科学技术研究院有限公司安全检测中心对我矿进行了通风阻力测定工作,实测矿井通风阻力192.3Pa;矿井等积孔为4.83m2,矿井属于通风容易矿井。

3)井下各处设置的通风设施均符合相关规定。现有风桥两处,分别位于皮带下山和80101进风顺槽;风门5处,分别位于回风井口、运输回风联巷、主斜井绕道、80101回风顺槽联巷、80102回风顺槽联巷;风窗5处,分别位于中央变电所、回风下山、运输回风联巷、80101回风顺槽联、皮轨联巷;永久密闭9处,分别位于上山行人绕道(5处)、回风下山(3处)、皮带下山;测风点(测风站)22处,分别位于主井、副井、回风井、皮带下山上部、下部、回风下山、工作面运输巷、工作面回风巷、轨道下山上部、轨道下山下部、80101回风顺槽联巷、80101进风顺槽、80101回风顺槽、清理撒煤斜巷、中央变电所、井下调度室、避难硐室、消防材料库、采区水泵房、采区变电所、人车等候硐室、80102进风顺槽。

2、瓦斯管理方面

1)矿井设立瓦斯工作防治领导小组。并配备一名通风副总工程师。瓦斯防治实行“一井一策、一面一策”,并编制瓦斯治理技术方案、安全措施计划,按规定备案并严格执行。 2)现安装一套型号为KJ160N矿用安全监控系统,安装6台监控分站,分别位于中央变电所、皮带下山、工作面运输巷(两台)、主通风机房和监控室。安装各类传感器52台,分布在各主要监控点及采掘工作面,系统运行正常,瓦斯管理监控有效,传感器调校严格按照要求执行。

3)井下瓦斯巡回检查线路分2条线路:

检查路线1:主斜井机尾→煤仓→中央变电所→井底水泵房→ 井底水仓通道→80101工作面移变→80101工作面→80101工作面上隅角→80101回风顺槽→主斜井机尾→煤仓→中央变所→ 井底水泵房→井底水仓通道→80101工作面移变→80101工作面→80101工作面上隅角→80101回风顺槽

检查路线2:80102进风顺槽掘进面→80102进风顺槽掘进面回风→工作面运输巷移变→工作面回风巷→总回风井→回风下山 →采区变电所→采区水仓通道→采区水泵房→80102进风顺槽掘进面→80102进风顺槽掘进面回风→工作面运输巷移变→工作面回风巷 →总回风井→回风下山→采区变电所→采区水仓通道→采区水泵房

瓦检员配备12人,符合相关要求。

4)2012年我矿由山西公信安全技术有限公司进行瓦斯等级鉴定,鉴定矿井绝对瓦斯涌出量为1.20m3/min,属瓦斯矿井。同时,按照要求矿井在联合试运转产期间做瓦斯等级鉴定,公司已与山西省监测中心签订鉴定合同,此项工作正在进行中(转产验收前拿回瓦斯等级鉴定报告)。

5)2014年11月由煤炭科学研究总院对8#、9#煤层瓦斯基础参数进行测定,测定8#煤层瓦斯含量为2.6259m3/t-2.8079m3/t。

3、综合防尘方面

1)我矿现有容量300*2m3的 静压水池向井下供水,主管路采用DN108无缝管,在皮带运输巷每50m设三通,其它主要巷道每100m设三通用作洒水灭尘及消防。在主斜井安装3道净化水幕、副斜井安装3道净化水幕、皮带下山安装6道净化水幕、轨道下山安装3道净化水幕、回风下山安装3道净化水幕、工作面运输巷安装3道净化水幕、工作面回风巷安装3道净化水幕、80101进风顺槽安装3道净化水幕、80101回风顺槽安装4道净化水幕、80102进风顺槽安装2道净化水幕,共计33道。各皮带机头、溜头等各转载点均已安装转载点喷雾装置。采煤机与掘进机的内外喷雾装置均正常使用。

2)现轨道下山安装2组主要隔爆水槽,皮带下山安装2组主要隔爆水槽,回风下山安装2组主要隔爆水槽,工作面运输巷安装2组主要隔爆水槽,工作面回风巷安装2组主要隔爆水槽,80101进风顺槽、回风顺槽各安装辅助隔爆水袋1组,安装位置、长度、水量等均符合相关要求。

3)80101工作面选用了两台5BZ-33/15型煤层注水泵已投入使用。设计注水孔直径75mm,孔深80m,孔距20m,采用单侧注水方式进行注水。共9个注水孔,截止目前已注水至第四个注水孔,贮水量约为140m3。

4)2015年由中煤科工集团重庆研究院有限公司对8#煤层进行煤尘爆炸性鉴定,鉴定结果煤尘具有爆炸性,煤尘爆炸指数24.95%。

4、防灭火方面

1)建立自然发火预测预报制度,对采空区密闭、老巷密闭内、工作面上隅角等可能自然发火的地点严格按规定进行预测预报。 2)回采工作面采用3BZ-36-3型阻化剂喷射泵2台,工作面回采期间,在空巷内喷洒阻化剂,防止自燃发火。

3)采用2台ZHJ-6/3型井下移动式注浆装置建立灌浆系统,对气体异常或有发火危险的地段进行注浆。

4)矿井装备有火灾束管监测系统,由色谱分析系统(型号GC950)和采样系统(型号KYSC-1)组成,对矿井采空区进行气体监测,预防自燃发火。

5)井下各主要机电设备硐室、材料库、井底车场、带式输送机及采掘工作面附近的巷道中和机电设备群处按规定配备齐全灭火器材。

6)2015年由中煤科工集团重庆研究院有限公司对8#煤层进行自燃倾向性鉴定,鉴定结果煤层自燃倾向性等级为Ⅱ类,属自燃煤层。

5、“六大系统”方面 1)供水施救系统

我矿现有容量300*2m3的 静压清水池向井下供水,现井下各地点安装供水施救装置(型号:KGS)共10套。其中井底车场1套,皮带下山2套,工作面运输巷3套,80101皮带进风顺槽、80101轨道回风顺槽各2套,全部按照设计安装完成。 2)压风自救系统

我矿安装3台AED132A-10型双螺杆式空气压缩机向井下供风,2台工作,1台备用,AED132A-10双螺杆式空气压缩机额定排气量20m3/min,额定排气压力1.0Mpa。现井下各地点安装供水施救装置(型号:ZYJ)共10套。其中井底车场1套,皮带下山2套,工作面运输巷3套,80101皮带进风顺槽、80101轨道回风顺槽各2套,全部按照设计安装完成。系统自投运以来,运行稳定可靠,满足安全需要。 3)紧急避险系统

紧急避险系统于2014年12月份安装完成,其中:紧急避难硐室设备由北京天地公司生产及安装,可以满足井下96人同时避难。联合试运转期间系统运行稳定可靠,待验收。

4)通讯联络系统. 在调度总机房内安装有一台HA-8000型调度通讯系统和一套KTK125通讯广播系统,同时还安装了一套KT109R型矿用无线通讯系统,调度通讯系统与2013年1月通过了太原市煤矿安全信息中心的验收,广播系统于2013年12月通过了太原市煤矿安全信息中心的验收,井下无线通信联络系统于2013年10月通过了太原市煤矿安全信息中心的验收。系统自投运以来,运行稳定可靠,满足安全需求。 5)安全监控系统

现安装一套型号为KJ160N矿用安全生产监控系统,该系统于2012年通过了太原市煤矿安全信息中心的验收。全矿井共安装6台分站;各类传感器52台,分布在各主要监控点及采掘工作面(详见下表),系统自投运以来,运行正常,监测数据准确可靠。

各类传感器设置明细表

6)人员定位系统

安装一套美安公司生产的型号为KJ301矿用人员定位系统,该系统于2012年通过太原市煤矿安全信息中心的验收。井下共安装14台读卡器,分别分布在煤仓、80101进风顺槽、上山行人绕道、主井、副斜井上部、中部、下部、工作面运输巷、回风井、回风暗斜井、采区变电所、紧急避难硐室前门、后门、80101回风顺槽。系统运行稳定可靠。

6、管理制度方面

根据相关规定现已建立完善了“一通三防”管理制度、岗位责任制、操作规程等各项管理制度和相关台帐、记录,并严格落实、严格把关。

7、人员配备方面

结合我矿实际情况成立了通风领导组织机构和管理组织机构。通风科设:副总兼科长1名、副科长2名、通风技术员3名、瓦斯员12名、兼职救护队员9名,监测检测员16名,共计43人。以上人员都持证上岗,符合安全生产要求。

希望各位领导、专家提出宝贵意见和建议,谢谢!

山西华润鸿福煤业有限公司

2015年4月29日

山西华润鸿福煤业有限公司通风专业验收

汇报材料

矿井通风系统设计范文第6篇

所谓系统,是由若干相互联系、相互作用的单元组成的具有一定功能的有机整体。根据系统处理的信号形式的不同,系统可分为三大类:连续时间系统、离散时间系统和混合系统。而系统按其工作性质来说,可分为线性系统与非线性系统、时变系统与时不变系统、因果系统与非因果系统。信号分析的内容十分广泛,分析方法也有多种。目前最常用、最基本的两种方法是时域法与频域法。时域法是研究信号的时域特性,如波形的参数、波形的变化、出现时间的先后、持续时间的长短、重复周期的大小和信号的时域分解与合成等、频域法,是将信号变换为另一种形式研究其频域特性。信号与系统总是相伴存在的,信号经由系统才能传输。

最近我们学到了傅里叶级数。由于上一学期在《高等数学》中对这一方面知识有了一定的学习,我对这一变换有了一点自己的感悟与认知。以下就是我对傅里叶级数的一点总结:

1.物理意义:付里叶级数是将信号在正交三角函数集上进行分解(投影),如果将指标系列类比为一个正交集,则指标上值的大小可类比为性能在这一指标集上的分解,或投影;分解的目的是为了更好地分析事物的特征,正交集中的每一元素代表一种成分,而分解后对应该元素的系数表征包含该成分的多少 2.三角函数形式:f(t)可以表示成:

f(t)a0a1cos(w1t)a2cos(2w1t)ancos(nw1t)b1sin(w1t)b2sin(2w1t)bnsin(nw1t)a0[an10ncos(nw1t)bnsin(nw1t)]

其中,a被称为直流分量

ancos(nw1t)bnsin(nw1t)被称为

n次谐波分量。

a0T1/2T1/2f(t)dt1T1K0T1/2T1/2f(t)dt

2T1anT1/2T1/2f(t)cos(nw1t)dtKanT1/2T1/2f(t)cos(nw1t)dt

f(t)sin(nw1t)dtbnT1/2T1/2f(t)sin(nw1t)dtKbn2T1T1/2T1/2

注:奇函数傅里叶级数中无余弦分量;当f(t)为偶函数时bn=0,不含正弦项,只含直流项和余弦项。

3.一般形式:

f(t)cn0ncos(nwtn)

或者:

f(t)dn0nsin(nwtn)

c0d0a0cndn

22anbn narctg(4.指数形式:

bnan),

narctg(anbn)

f(t)1nFnejnw1t

f(t)ejnw1tFn

以上就是我目前对这门学科的认识。信号与系统作为一门专业课,其重要性不言而喻。在接下来学习中,我将继续深入的去学习这门学科。我希望能真正的掌握这门极其有用的学科,在不远的将来,把它运用于实践中去。

上一篇:建行网银安装步骤范文下一篇:领导班子谈话记录范文