生物质能利用及展望范文

2024-04-18

生物质能利用及展望范文第1篇

1碳纳米材料在医学生物领域的应用现状分析

(1) 组织工程中的应用碳纳米材料尤其是碳纳米管道的使用有效的解决了组织修复中存在的一些问题。碳纳米管作为一种新型的纳米材料分为单壁纳米管、双壁纳米管和多壁纳米管三种类型。它独特的理化特性, 如具有很高的强度和韧度, 是一种超强的增强材料。目前, 碳纳米材料在骨组织工程中的应用取得了重大的进步, 碳纳米材料在使用的过程中, 为骨骼细胞的吸附、生长提供了良好的支撑。众所周知, 羟基磷灰石作为骨骼生长的成分之一, 它的力学能力比较弱, 并不能用作重新植入材料的依附载体。所以, 科学家为了解决这一难题, 将纳米材料和羟基磷灰石结合起来, 在保持其生物性能不变的情况下, 有力的提高了其力学性能, 大大弥补了羟基磷灰石力学性能弱的特点。这种使用方法为骨组织的修复提供了充足的条件。此外, 在富勒烯的发明下有效的抑制了骨细胞的分化, 为关节炎及滑膜炎的治疗起了重要的作用。

(2) 神经组织工程中的应用由于碳纳米管具有很强的韧度和力度, 而且具有较高的电学、磁学、吸收的性能, 这一特点引起了神经领域方面专家的极大兴趣。在生物学领域的应用中, 碳纳米管的应用很好的修复了神经缺损的运动技能, 而且, 相关专家发现在进行此项神经修复手术后发现, 再生神经电生理与组织学指标检测结果与自体神经移植材料的功能作用的发挥基本上相符合。这一发现, 大大证明了碳纳米管复合型材料是到目前为止修复周围神经的最理想的材料。此外, 在现今医学领域阿尔茨海默病俗称老年痴呆症的出现, 也给医学领域的发展带来了极大的挑战, 碳纳米材料的研究使用发现, 其中一种重要的类型富勒烯具有清除自由基的能力, 其在神经系统中的应用能够有效的减少神经元的死亡, 抑制神经细胞的衰老、分化, 对神经组织周围的氧自由基的清除起着关键的作用, 保护神经组织不受损害, 并能够有效的抑制谷氨酸受体作用的发挥, 对脑缺血损伤等神经疾病的治疗有着重要的作用。

(3) 药物、基因在体中碳纳米材料的使用碳纳米管由于其物理特性的独特, 在承载生物特异性分子、运输药物等方面发挥着重要的作用。虽然这一应用成就无可否认, 但是碳纳米材料不能溶于任何溶剂的特点, 也极大的限制了其应用领域的拓展。在科学家不断的研究下, 对碳纳米材料外壁进行修复, 力图改变其发展特点, 现今, 碳纳米材料在运输药物的时候具有很强的穿透性, 并能提高药物在血液中停留的时间, 极大的提高了药物作用发挥的时间, 这一方面的优势在抑制肿瘤细胞, 治疗癌症方面具有很大的突破。此外, 富勒烯的应用能够穿过一些生物屏障, 到达一些药物不能到达的人体组织及各个细胞中, 为医学领域疾病治疗的突破提供重要的药物运输载体。

2碳纳米材料在基因载体、生物成像等其他方面也发挥着重要的作用

笔者只是针对碳纳米材料在骨组织、神经组织、药物载体中的应用进行了具体的论述, 下面笔者将对碳纳米材料的未来发展前景作出简要的叙述。

(1) 由于现今世界上获得肿瘤疾病的人大有所在, 而且, 目前针对癌症的治疗并没有研究处重要的解决办法。而且, 随着现今环境的不断恶化, 人类生存质量的下降, 癌症的发病率正在处于逐年上升的趋势, 针对这一发展现状, 碳纳米材料在未来的人类战胜癌症的治疗中发挥着重要的作用。 (2) 上文作者提到过, 碳纳米材料虽然在众多的领域取得了重要的发展成果, 但是其引起的安全问题成为热议的话题。如碳纳米材料在人体中的使用会发生排异反应、中毒症状等不良反应的出现。所以, 在未来碳纳米材料等的使用时, 应针对其安全性问题事先进行评估预测, 并积极研究克服负面效应的办法, 以保证碳纳米材料在未来的使用中能够取得更大的进展。

3结语

综上所涉, 碳纳米材料在生物医学领域的发展取得了重大的进步, 但是其应用的安全性问题尚未解决, 所以, 相关研究人员必须在化学、生物学等各个学科的鼎力相助下共同为碳纳米材料的进一步发展清除障碍, 使碳纳米材料更好的为人类做贡献。

摘要:纳米材料的发明及使用在世界上的影响范围是非常大的, 且引起了生产领域的重大变化。碳纳米材料作为纳米材料的一种, 由于其独特的物理特性和化学特性, 在生物学领域的应用研究非常的广泛, 同时, 碳纳米材料的使用有效的促进了生物学领域的发展, 为人类的生产生活带来了重大的变革。本文写作的关键是对碳纳米材料在生物学领域的发展现状进行简要的分析及对其未来的发展前景做了简要的论述。

关键词:碳纳米材料,生物学领域,现状,展望

参考文献

[1] 张金超.碳纳米材料在生物医学领域的应用现状及未来展望[J].化学进展, 2013, (08) .

[2] 王冬华.纳米材料在生物医学领域的应用[J].合成材料来华与应用, 2015, (10) .

生物质能利用及展望范文第2篇

1 利用现状

金华是浙江省中部的城市,农业种植面积22万hm2,年产农作物各类农作物约200万t,其中粮油作物种植面积11.9万hm2,蔬菜瓜果种植面积5.9万hm2,年产粮油作物约64万t,蔬菜瓜果约136万t。按粮油作物平均草谷比1.5、蔬菜瓜果作物废弃物产生系数为1计算,年产生粮油作物秸秆约96万t、蔬菜废弃物约136万t。全市生猪存栏约53万头,奶牛存栏约1.7万头,家禽存栏656.3万只,这些畜禽年产生排泄物约91.8万t。

不同农作物秸秆特性千差万别,产生时间、利用方式也各不相同。粮油作物主要集中在夏季和冬季收割,其秸秆含水率偏低,相对较易收集、储存和运输,收集利用率可达90%以上,规模种植的粮油作物基本可以做到机械收割,农作物秸秆可以同时收割打捆待用或直接粉碎还田。畜禽排泄物常年产生较均匀,也较易收集,但由于商品肥料的推广和利用,以及用肥存在的淡旺季,存在区域性和季节性过剩问题[1]。

金华地区农作物秸秆种类繁多、利用方式多种多样。粮油作物秸秆主要利用方式为:一是秸秆肥料化还田,如机械收割的可以部分或全部机械粉碎还田,部分人工收割的采用堆沤后还田;二是秸秆饲料化养殖,水稻、玉米等农作物秸秆部分被周边奶牛养殖户收去作为养殖饲料;三是燃料化利用,金华偏远山区部分农户有用农作物秸秆炊事的习惯,但是随着生活习惯的改变和薪柴获得越来越容易,山区农户用秸秆炊事的越来越少;四是能源化利用,金华部分地区粮油作物秸秆被送到兰溪热电厂用于生物质发电,这有效解决了部分难以就地利用的秸秆出路问题;五是原料化利用,金华市还有一些纸箱厂、水果包装企业、合作社,会收集部分农作物秸秆用于生产纸箱、包装水果等。这些粮油作物秸秆利用方式,基本上解决了粮油作物秸秆的出路问题,确保了金华地区农作物秸秆禁燃工作的有序开展。蔬果伴生废弃物的利用主要是种植户自行处理:部分绿叶被周边养殖户收购用作饲料,部分腐烂黄叶则通过堆沤后用于肥料,还有部分根茎等难以处理的秸秆则是堆放在田间地头,或作为垃圾混入农村生活垃圾。

2 存在的问题

浙江作为全国首个生态循环农业试点省,生态循环农业是浙江现代农业的发展方向,金华是生态循环农业的践行地,对发展生态循环农业非常重视[2]。农产品伴生物利用好则是资源,随意丢弃或焚烧便是一大环境污染源,农产品伴生物的资源化利用,实现变废为宝,是发展生态循环农业的必然要求。但在取得成效的同时也存在一些阻碍发展的问题:一是在产生时间和空间上相对分散,收集成本高,收集需付出较多的劳动力、设备,农民收集意愿普遍较低;二是收集利用主动性较差,多数地方的收集利用主要通过行政部门施压推动,不仅需要投入较大的人力、资金,而且难以持续,一旦政府部门放松督查,随意丢弃和就地焚烧现象就会发生;三是高效利用技术和设施相对欠缺,农业伴生物资源化利用推进配套的项目的实施主要靠政府部门扶持推进,但由于技术和设施上的欠缺,相对收益较差,示范效应不高;四是农民的环保意识相对不高,随意丢弃和就地焚烧时间仍时有发生。

3 对策和建议

现结合浙江金华农产品伴生物资源化利用工作实际,探讨如何推进农产品伴生物回收利用,并提出几点建议。

3.1 重视就地肥料化还田利用

就地肥料化还田利用是当前最经济有效的利用方式。随着近年来农村土地流转、“机器换人”的推进,规模化生产和机械化生产的推广,粮油作物秸秆就地机械粉碎深耕还田已在技术上非常成熟,金华地区秸秆收割粉碎一体机也列入了农机补贴范畴,大多数粮油种植大户和合作社基本实现了秸秆就地粉碎还田,但在具体操作时应注意以下两点:一是病虫害的防治,农作物秸秆、枯枝烂叶上常常寄生有一些病虫害虫卵,就地粉碎翻耕并不能杀害大部分病虫害,因此需要配合采取一些防虫害措施;二是秸秆还田量过大或不均匀易发生土壤微生物与作物幼苗争夺养分的矛盾,甚至出现黄苗、死苗、减产等现象;在秸秆直接还田时,建议适当增施一些氮肥,缺磷的补施磷肥。

3.2 重视瓜果蔬菜等农产品伴生物的资源化利用

瓜果蔬菜等农产品伴生物含水率高,若采用填埋的处置方式,可能导致渗滤液的增加,给填埋场的后续处理增加压力。若采用焚烧的方式,由于含水率高,技术不可行,而在蔬菜垃圾中添加大量辅助燃料,经济上均不合理,因此建议和生活垃圾分开处置,如可以直接同堆肥厂对接用于堆肥,或者就近对接蔬菜基地的处置中心进行处置。瓜果蔬菜等含水率高的农产品伴生物资源化利用应注意以下两点:一是就地还田利用,一般鲜叶(果)不建议直接还田,建议以家庭农场、合作社等为单位,建立瓜果蔬菜伴生废弃物集中处置点,配套粉碎机、堆沤池等,通过处置腐熟后再还田利用;二是对接畜禽养殖场的果蔬种植基地,应在收割处置时避免使用农药、并确保瓜果蔬菜等农产品伴生物未腐烂,确保饲料安全。

摘要:农业生产过程中产生的农作物秸秆、枯枝烂叶、劣质农产品等如果不科学处置,将对环境造成不利影响。科学、规范处置这些农产品伴生物,是发展生态循环农业的必然要求。基于此,分析农产品伴生物资源化利用情况,浅谈如何做好农产品伴生物资源化利用。

关键词:农产品,生物资源,对策

参考文献

[1] 张桃林.农产品加工业如何挑起现代农业大梁[J].小康,2016(11):28-30.

生物质能利用及展望范文第3篇

摘要:现代生物技术在制药产业中发挥了重要作用,海洋生物技术的出现和发展推动了海洋生物药物的研究,是今后生物技术药物的发展方向。综述了生物技术在海洋药物开发中的应用,并展望了新世纪海洋生物制药的前景。

关键词: 海洋生物药物生物技术基因工程研究展望

海洋生物是巨大的生物资源库,由于海洋环境的特殊性和科学技术手段的限制,以往人们对海洋生物的研究和开发受到严重的限制。现代生物技术的迅速发展为研究和开发海洋生物搭建的平台,提供了锐利的武器。海洋生物技术是将现代生物技术的各种技术手段,基因工程技术、细胞工程技术、微生物技术、酶工程技术、生化分离技术等应用于海洋生物领域形成的现代生物技术的重要分支[1]。

海洋药物研究经历近半个世纪的探索和发展,已经获得了许多宝贵的经验积累和丰富的研究资料,特别是近年来生物技术的迅猛发展,为海洋药物开发提供了新的研究方法、研究思路和发展方向。现代的化学研究方法与多种生物技术越来越紧密地结合,已成为当今海洋药物研究发展的主流,并且是今后数十年海洋药物研究的主要趋势。随着海洋开发步伐的加快和现代生物技术的广泛应用,从海洋生物中发现活性天然产物,并将其开发成新型药物得到了研究人员的普遍重视。

(一)海洋生物活性成分的研究

1、海洋生物药物

21世纪人类社会面临着“人口剧增、资源匮乏、环境恶化”三大问题的严峻挑战,一直以来作为药物主要来源的陆地生物正面临着被开发殆尽的危险。向海洋进军,开发海洋药物迫在眉睫。海洋作为一个特殊的生态系统,在某种意义上,本身就是一个复杂的培养体系。海洋生物处于高盐、高压、低温和无光照的环境中,相互间的生态作用多是通过物种间化学作用物质如信息素(pheromones)、种间激素(kairomones)、拒食剂(feeding deterrents)等来实现,远比陆生生物复杂和广泛,这导致海洋生物,特别是深海生物体内含有与陆地生物无法比拟的化学结构奇特、新颖并具有高活性、高药效的先导化合物,为新药研发提供了大量模式结构和药物前体[3]。

2、海洋天然活性成分的发现

海洋天然活性成分的研究是海洋药物开发的基础和源泉。海洋生物种类繁多,存在着许多特殊的次生代谢产物。然而,目前对海洋生物中活性成分的发现还仅仅处在开始阶段,[2]

经过较系统的化学成分研究的海洋生物还不到总数1%,还有大量海洋生物有待于进行系统的化学成分研究和活性筛选。研究重点主要集中在无脊椎动物等低等的海洋生物。海洋天然活性成分往往具有复杂的化学结构而且含量极低,建立快速、微量的提取分离和结构测定方法以及应用多靶点的生物筛选技术发现新的生物活性成分是当前科学家面临的挑战。

(二)开展海洋化学生态学研究

海洋化学生态学是结合海洋天然产物化学和生态学方法,探讨海洋生物化学防御机制、追踪活性天然产物的生物源头及其生态学作用,揭示海洋生态系统的化学本质。研究海洋生态环境中活性化学物质在生物间的信息传递方式、化学防御机制、生物间的相互关系以及食物链关系等,从生态的宏观角度探讨生物活性物质的作用机制。

1、海洋药物基因工程

海洋药物基因工程,是指利用分离自海洋生物的有药用价值的基因或以规模化养殖的海洋生物作为表达受体进行遗传操作,从而大量获得高值廉价的药物。根据其供体基因和表达受体的不同,可以分为3个方面:

(1)将海洋药物基因转入陆地生物中表达。将药物目的基因重组入适当的载体后,借鉴微生物基因工程、植物基因工程和动物基因工程的方法,可在陆地微生物、植物或动物中表达。

(2)将来自陆地的药物基因转入海洋生物中表达。某些海藻的养殖,如海带,已经形成大规模的产业,在产量上相对于某些高产的陆地作物也具有很大的优势。可以将海洋生物作为来自陆地的药物基因的理想表达受体,生产人们所需要的药物。

(3)将海洋药物基因转入海水养殖生物中表达。将稀有昂贵的药物基因转入产业化的海水养殖生物中表达,不仅可以获得药物,还可以促进多种优良性状的优化组合,培育海水养殖新品种,带动现代海水养殖业向纵深发展。

目前,利用基因工程技术,将克隆的海洋药物取得了一定的进展。存在于某些藻类藻胆体中的藻胆蛋白具有显著的抗癌、抗辐射以及促进造血功能等多方面的生物活性,并能提高患癌生物的存活率。秦松等在克隆到别藻蓝蛋白(APC)基因后,将该基因转化到大肠杆菌后获得高效表达基因重组别藻蓝蛋白— — 镭普克(rAPC),该药物具有明显的抑制小鼠S,舯肉瘤的活性,相关的药理药效研究正在进行之中。中国药科大学生物技术中心在从鲨鱼肝脏中分离纯化肝刺激物质(sHSS),测定N.端氨基酸残基序列,根据序列分析结果合成简并引物并获得sHSS的cDNA序列。在此基础上,构建了该基因的原核表达载体质粒,转化大肠杆菌BL21后,利用半乳糖诱导,获得了重组产物。中山大学生命科学院海洋生物

功能基因组开放实验室从南海侧花海葵(Anthopleura sp.)触手毒腺cDNA文库中筛选、经基因工程技术改造后获得新型重组海葵肽类毒素hk2a,通过建立新西兰兔CCHF模型,给药后可即刻增加左室射血分数(LVEF),具有起效快、作用强,持续时间长,对心率无明显影响等特点,是一种新型的潜在正性肌力药物[4];中国科学院上海生化细胞研究所克隆了芋螺毒素(Conotoxin)的cDNA,是神经科学研究的有力工具药和新药开发的新来源。

目前,在海洋药物的开发研究领域走在前列的是美国、日本等科技发达国家,在我国,对海洋药物的研究尚是一个方兴未艾的领域。

有关资料显示,我国目前已有6种海洋药物获国家批准上市:藻酸双酯钠、甘糖酯、河豚毒素、角鲨烯、多烯康、烟酸甘露醇等;另有10种获健字号的海洋保健品。我国正在开发的抗肿瘤海洋药物有6-硫酸软骨素、海洋宝胶囊、脱溴海兔毒素、海鞘素A(BC)、扭曲肉芝酯、刺参多糖钾注射液和膜海鞘素等药物,但其长期疗效还有待于进一步观察评价。此外,尚有多个拟申报一类新药的产品进入临床研究,如新型抗艾滋病海洋药物“911”、抗心脑血管疾病药物“D-聚甘酯”和“916”等,国家二类新药治疗肾衰药物“肾海康”等。

(三)海洋生物制药研究展望

21世纪的海洋生物技术,将向着水产养殖、天然产物获取和新能源开发3个方向发展 ,海洋生物技术的兴起,大大繁荣海洋药物的研究与开发。今后海洋生物制药的主要发展方向有:

(1)开发海洋生物基因工程药物。用细菌、酵母、蓝藻作为表达系统,选择海洋生物中药理活性强的多肽和蛋白质类物质为突破口,开展基因工程研究,促进基因工程药品的发展。如不仅从受体生物中分离纯化单一成分的目的产物,还可以直接以海产品为口服性药物,进行海洋基因工程疫苗研究。

(2)开发海洋生物细胞工程药物。选择海藻细胞为突破口,通过筛选和改良,选取药用价值高的细胞株,利用相应的生物反应器,进行规模化生产。

(3)增强海洋天然产物的活性。以基因工程、细胞工程和酶工程为手段,培育出生长快、活性高、抗病性强的海洋药材新品种,并利用生物技术防治海洋药材人工养殖中的病虫害。

随着人类对海洋资源的依赖和开发,海洋生物技术的研究及应用对生产生活的影响日益增加。海洋生物技术是海洋药物产业化的主导技术和关键手段,随着生物技术向海洋生物研究领域的渗透,必将加速海洋药物的产业化进程。

海洋生物制药产业化,应当坚持“务实、高效”的原则,一方面通过政府政策鼓励和

宏观管理,增加在海洋生物技术尤其是海洋生物医药产业方面的投入;另一方面在大学、研究所和企业间建立密切联系,发挥各自在人力、智力、财力上的优势,协调合作,重点发展几个社会效益高、市场前景广阔的项目。最终形成在基础研究方面不断取得进展,并将研究成果迅速转化为现实的生产力,反过来支持和促进基础研究这一良性循环的局面。

现代生物技术应用于海洋药物的研究,改变了以往单纯从海洋生物中提取活性物质制药的模式,解决了海洋药物开发中规模化和合理化的矛盾,使生物技术制药进入一个新的时代,为海洋科学和制药产业的发展以及人类可持续地开发海洋资源开辟了新的道路。

参考文献

[1] 姚文兵、吴梧桐 生物技术制药概论(第二版)中国医药科技出版社

[2]关美君,林文翰,丁源.海洋药物一二十一世纪中国药学研究的新热点.中国海洋药物,20Ol,20(1):1—5

[3] 相建海.跨越新世纪的海洋生物高技术前沿.高技术通讯,2000,10(7):1—4

生物质能利用及展望范文第4篇

1.概况生物质燃气是一种用生物质为原料的,在高温缺氧条件下使生物质发生不完全燃烧和热解产生可燃气体或是在厌氧条件下被厌氧菌利用产生的沼气。目前全球每年水陆生物质产量约为全球总能耗的6—10倍左右。据统计,生物质资源潜力可达100亿吨,仅森林,草原和耕地这三项的产量就达50亿吨干生物质,相当干20亿吨干标准煤。二我国农业生物质资源丰富,可利用性价值可观。而目前生物质能发电技术的加速发展,实现了大量废弃生物质能的利用。

生物质燃烧发电技术作为一种重要的能源获取手段用于实际的历史并不长久。从20世纪90年代起,丹麦、奥地利等欧洲国家开始对生物质能发电技术进行开发和研究/81。经过多年努力,已研制出用于木屑、秸秆、谷壳等发电的锅炉。目前,我国对生物质燃料燃烧所进行的理论研究很少,对生物质成型燃料的燃烧机理及动力学特性研究才刚刚开始,关于生物质成型燃料燃烧理论与数据还没有人系统地提出。关于生物质成型燃料燃烧设备的设计与研究几乎是个空白。一些单位为燃用生物质成型燃料,在未弄清生物质成型燃料燃烧理论的情况下,盲目地把原有的燃煤设备改为生物质成型燃料燃烧设备,致使燃烧设备的燃烧效率及热效率较低,出力及工质参数下降,排烟中污染物含量高。为了使生物质成型燃料能稳定、充分、直接地燃烧,根据生物质成型燃料燃烧理论重新进行系统设计,以及研究生物质成型燃料专用燃烧设备是非常重要的,也是非常紧迫的。

生物质气化发电技术在发达国家已受到广泛重视111-13J,生物质能在总能量消耗中所占的比例增加相当迅速,一些发展中国家,随着经济发展也逐步重视生物质气化发电的开发利用,增加生物质能的生产,扩大其应用范围,提高其利用效率我国生物质气化发电技术的研究始于上世纪60年代,具有代表性的是稻壳气化发电装置。近年我国开展了1 MW生物质气化发电系统的研究,目标在于中等规模的生物质利用技术。我国对生物质气化技术的深入研究始于上世纪80年代,经过20多年的努力,我国生物质气化技术日趋完善。

生物质能利用及展望范文第5篇

(中经评论·北京)

一、中国生物质能源开发利用现状

20世纪70年代,国际上第一次石油危机使发达国家和贫油国家重视石油替代,开始大规模发展生物质能源。生物质能源是以农林等有机废弃物以及利用边际土地种植的能源植物为主要原料进行能源生产的一种新兴能源。生物质能源按照生物质的特点及转化方式可分为固体生物质燃料、液体生物质燃料、气体生物质燃料。中国生物质能源的发展一直是在“改善农村能源”的观念和框架下运作,较早地起步于农村户用沼气,以后在秸秆气化上部署了试点。近两年{TodayHot},生物质能源在中国受到越来越多的关注,生物质能源利用取得了很大的成绩。沼气工程建设初见成效。截至2005年底,全国共建成3764座大中型沼气池,形成了每年约3.4l亿立方米沼气的生产能力,年处理有机废弃物和污水1.2亿吨,沼气利用量达到80亿立方米。到2006年底,建设农村户用沼气池的农户达2260万户,占总农户的9.2%,占适宜农户的15.3%,年产沼气87.0亿立方米,使7500多万农民受益,直接为农民增收约180亿元。生物质能源发电迈出了重要步伐,发电装机容量达到200万千瓦。液体生物质燃料生产取得明显进展,全国燃料乙醇生产能力达到:102万吨,已在河南等9个省的车用燃料中推广使用乙醇汽油。

(一)固体生物质燃料

固体生物质燃料分生物质直接燃烧或压缩成型燃料及生物质与煤混合燃烧为原料的燃料。生物质燃烧技术是传统的能源转化形式,截止到2004年底,中国农村地区已累计推广省柴节煤炉灶1.89亿户,普及率达到70%以上。省柴节煤炉灶比普通炉灶的热效率提高一倍以上,极大缓解了农村能源短缺的局面。生物质成型燃料是把生物质固化成型后采用略加改进后的传统设备燃用,这种燃料可提高能源密度,但由于压缩技术环节的问题,成型燃料的压缩成本较高。目前,中国(清华大学、河南省能源研究所、北京美农达科技有限公司)和意大利(比萨大学)两国分别开发出生物质直接成型技术,降低了生物质成型燃料的成本,为生物质成型燃料的广泛应用奠定了基础。此外,中国生物质燃料发电也具有了一定的规模,主要集中在南方地区的许多糖厂利用甘蔗渣发电。广东和广西两省(区)共有小型发电机组300余台,总装机容量800兆瓦,云南也有一些甘蔗渣电厂。中国第一批农作物秸秆燃烧发电厂将在河北石家庄晋州市和山东菏泽市单县建设,装机容量分别为2×12兆瓦和25兆瓦,发电量分别为1.2亿千瓦时和1.56亿千瓦时,年消耗秸秆20万吨。

(二)气体生物质燃料

气体生物质燃料包括沼气、生物质气化制气等。中国沼气开发历史悠久,但大中型沼气工程发展较慢,还停留在几十年前的个体小厌氧消化池的水平,2004年,中国农户用沼气池年末累计1500万户,北方能源生态模式应用农户达43.42万户,南方能源生态模式应用农户达391.27万户,总产气量45.80亿立方米,相当于300多万吨标准煤。到2004年底,中国共建成2500座工业废水和畜禽粪便沼气池,总池容达到了88.29万立方米,形成了每年约1.84亿立方米沼气的生产能{HotTag}力,年处理有机废物污水5801万吨,年发电量63万千瓦时,可向13.09万户供气。

在生物质气化技术开发方面,中国对农林业废弃物等生物质资源的气化技术的深入研究始于20世纪70年代末、80年代初。截至2006年底,中国生物质气化集中供气系统的秸秆气化站保有量539处,年产生物质燃气1.5亿立方米;年发电量160千瓦时稻壳气化发电系统已进入产业化阶段

(三)液体生物质燃料

液体生物质燃料是指通过生物质资源生产的燃料乙醇和生物柴油,可以替代由石油制取的汽油和柴油,是可再生能源开发利用的重要方向。近年来,中国的生物质燃料发展取得了很大的成绩,特别是以粮食为原料的燃料乙醇生产已初步形成规模。“十五”期间,在河南、安徽、吉林和黑龙江分别建设了以陈化粮为原料的燃料乙醇生产厂,总产能达到每年102万吨,现已在9个省(5个省全部,4个省的27个地(市))开展车用乙醇汽油销售。到2005年,这些地方除军队特需和国家特种储备外实现了车用乙醇汽油替代汽油。

但是,受粮食产量和生产成本制约,以粮食作物为原料生产生物质燃料大规模替代石油燃料时,也会产生如同当今面临的石油问题一样的原料短缺,因此,中国近期不再扩大以粮食为原料的燃料乙醇生产,转而开发非粮食原料乙醇生产技术。目前开发的以木薯为代表的非食用薯类、甜高粱、木质纤维素等为原料的生物质燃料,既不与粮油竞争,又能降低乙醇成本。广西是木薯的主要产地,种植面积和总产量均占全国总量的80%,2005年,木薯乙醇产量30万吨。从生产潜力看,目前,木薯是替代粮食生产乙醇最现实可行的原料,全国具有年产500万吨燃料乙醇的潜力。

此外,为了扩大生物质燃料来源,中国已自主开发了以甜高粱茎秆为原料生产燃料乙醇的技术(称为甜高粱乙醇),目前,已经达到年产5000吨燃料乙醇的生产规模。国内已经在黑龙江、内蒙古、新疆、辽宁和山东等地,建立了甜高粱种植、甜高梁茎秆制取燃料乙醇的基地。生产1吨燃料乙醇所需原料--甜高粱茎秆收购成本2000元,加上加工费,燃料乙醇生产成本低于3500元,吨。由于现阶段国家对燃料乙醇实行定点生产,这些甜高粱乙醇无法进入交通燃料市场,大多数掺入了低质白酒中。另外,中国也在开展纤维素制取燃料乙醇技术的研究开发,现已在安徽丰原生化股份有限公司等企业形成年产600吨的试验生产能力。目前,中国燃料乙醇使用量已居世界第三位。生物柴油是燃料乙醇以外的另一种液体生物质燃料。生物柴油的原料来源既可以是各种废弃或回收的动植物油,也可以是含油量高的油料植物,例如麻风树(学名小桐子)、黄连木等。中国生物柴油产业的发展率先在民营企业实现,海南正和生物能源公司、四川古杉油脂化工公司、福建卓越新能源发展公司等都建成了年生产能力l万~2万吨的生产装置,主要以餐饮业废油和皂化油下脚料为原料。此外,国外公司也进军中国,奥地利一家公司在山东威海市建设年生产能力25万吨的生物柴油厂,意大利一家公司在黑龙江佳木斯市建设年生产能力20万吨的生物柴油厂。预计中国生物柴油产量2010年前约可达每年100万吨。

二、中国生物质能源发展政策

为了确保生物质能源产业的稳步发展,中国政府出台了一系列法律法规和政策措施,积极推动了生物质能源的开发和利用。

(一)行业标准规范生产,法律法规提供保障

本世纪初,为解决大量库存粮积压带来的财政重负和发展石化替代能源,中国开始生产以陈化粮为主要原料的燃料乙醇。2001年,国家计划委员会发布了示范推行车用汽油中添加燃料乙醇的通告。随后,相关部委联合出台了试点方案与工作实施细则。2002年3月,国家经济贸易委员会等8部委联合制定颁布了《车用乙醇汽油使用试点方案》和《车用乙醇汽油使用试点工作实施细则》,明确试点范围和方式,并制定试点期间的财政、税收、价格等方面的相关方针政策和基本原则,对燃料乙醇的生产及使用实行优惠和补贴的财政及价格政策。在初步试点的基础上,2004年2月,国家发展和改革委员会等8部委联合发布《车用乙醇汽油扩大试点方案》和《车用乙醇汽油扩大试点工作实施细则》,在中国部分地区开展车用乙醇汽油扩大试点工作。同时,为了规范燃料乙醇的生产,国家质量技术监督局于2001年4月和2004.年4月,分别发布GBl8350-2001《变性燃料乙醇》和GBl8351-2001《车用乙醇汽油》两个国家标准及新车用乙醇汽油强制性国家标准(GBl835l一2004)。在国家出台相关政策措施的同时,试点区域的省份均制定和颁布了地方性法规,地方各级政府机构依照有关规定,加强组织领导和协调,严格市场准入,加大市场监管力度,对中国生物质燃料乙醇产业发展和车用生物乙醇汽油推广使用起到了重大作用。

此外,国家相关的法律法规也为生物质能源的发展提供保障。2005年,《中华人民共和国可再生能源法》提出,“国家鼓励清洁、高效地开发利用生物质燃料、鼓励发展能源作物,将符合国家标准的生物液体燃料纳入其燃料销售体系”。国家“十一五”规划纲要也提出,“加快开发生物质能源,支持发展秸秆、垃圾焚烧和垃圾填埋发电,建设一批秸秆发电站和林木质发电站,扩大生物质固体成型燃料、燃料乙醇和生物柴油生产能力”。

(二)运用经济手段和财政扶持政策推动产业发展

除制定相应法律法规和标准外,2002年以来,中央财政也积极支持燃料乙醇的试点及推广工作,主要措施包括投入国债资金、实施税收优惠政策、建立并优化财政补贴机制等。一是投入国债资金4.8亿元用于河南、安徽、吉林3省燃料乙醇企业建设;二是对国家批准的黑龙江华润酒精有限公司、吉林燃料乙醇有限公司、河南天冠燃料乙醇有限公司、安徽丰原生化股份有限公司4家试点单位,免征燃料乙醇5%的消费税,对生产燃料乙醇实现的增值税实行先征后返;三是在试点初期,对生产企业按保本微利的原则据实补贴,在扩大试点规模阶段,为促进企业降低生产成本,改为按照平均先进的原则定额补贴,补贴逐年递减。

为进一步推动生物质能源的稳步发展,2006年9月,财政部、国家发展和改革委员会、农业部、国家税务总局、国家林业局联合出台了《关于发展生物质能源和生物化工财税扶持政策的实施意见》,在风险规避与补偿、原料基地补助、示范补助、税收减免等方面对于发展生物质能源和生物化工制定了具体的财税扶持政策。此外,自2006年1月1日《可再生能源法》正式生效后,酝酿中与之配套的各项行政法规和规章也开始陆续出台。财政部2006年10月4日出台了《可再生能源发展专项资金管理暂行办法》,该办法对专项资金的扶持重点、申报及审批、财务管理、考核监督等方面做出全面规定。该《办法》规定:发展专项资金由国务院财政部门依法设立,发展专项资金的使用方式包括无偿资助和贷款贴息,通过中央财政预算安排。

三、中国生物质能源发展中存在的主要问题

尽管中国在生物质能源等可再生能源的开发利用方面取得了一些成效,但由于中国生物质能源发展还处于起步阶段,面临许多困难和问题,归纳起来主要有以下几个方面。

(一)原料资源短缺限制了生物质能源的大规模生产

由于粮食资源不足的制约,目前,以粮食为原料的生物质燃料生产已不具备再扩大规模的资源条件。今后,生物质燃料乙醇生产应转为以甜高粱、木薯、红薯等为原料,特别是以适宜在盐碱地、荒地等劣质地和气候干旱地区种植的甜高粱为主要原料。虽然中国有大量的盐碱地、荒地等劣质土地可种植甜高粱,有大量荒山、荒坡可以种植麻风树和黄连木等油料植物,但目前缺乏对这些土地利用的合理评价和科学规划。目前,虽然在西南地区已种植了一定数量的麻风树等油料植物,但不足以支撑生物柴油的规模化生产。因此,生物质燃料资源不落实是制约生物质燃料规模化发展的重要因素。

(二)还没有建立起完备的生物质能源工业体系,研究开发能力弱,技术产业化基础薄弱

虽然中国已实现以粮食为原料的燃料乙醇的产业化生产,但以其他能源作物为原料生产生物质燃料尚处于技术试验阶段,要实现大规模生产,还需要在生产工艺和产业组织等方面做大量工作。以废动植物油生产生物柴油的技术较为成熟,但发展潜力有限。后备资源潜力大的纤维素生物质燃料乙醇和生物合成柴油的生产技术还处于研究阶段,一些相对成熟的技术尚缺乏标准体系和服务体系的保障,产业化程度低,大规模生物质能源生产产业化的格局尚未形成。

(三)生物燃油产品市场竞争力较弱

巴西以甘蔗生产燃料乙醇1980年每吨价格为849美元,1998年降到300美元以下。中国受原料来源、生产技术和产业组织等多方面因素的影响,燃料乙醇的生产成本比较高,目前,以陈化粮为原料生产的燃料乙醇的成本约为每吨3500元左右,以甜高粱、木薯等为原料生产的燃料乙醇的成本约为每吨4000元。按等效热值与汽油比较,汽油价格达到每升6元以上时,燃料乙醇才可能赢利。目前,国家每年对102万吨燃料乙醇的财政补贴约为15亿元,在目前的技术和市场条件下,扩大燃料乙醇生产需要大量的资金补贴。以甜高粱和麻风树等非粮食作物为原料的燃料乙醇和生物柴油的生产技术才刚刚开始产业化试点,产业化程度还很低,近期在成本方面的竞争力还比较弱。因此,生物质燃料成本和石油价格是制约生物质燃料发展的重要因素。

(四)政策和市场环境不完善,缺乏足够的经济鼓励政策和激励机制

生物质能源产业是具有环境效益的弱势产业。从国外的经验看,政府支持是生物质能源市场发育初期的原始动力。不论是发达国家还是发展中国家,生物质能源的发展均离不开政府的支持,例如投融资、税收、补贴、市场开拓等一系列的优惠政策。2000年以来,国家组织了燃料乙醇的试点生产和销售,建立了包括燃料乙醇的技术标准、生产基地、销售渠道、财政补贴和税收优惠等在内的政策体系,积累了生产和推广燃料乙醇的初步经验。但是,由于以粮食为原料的燃料乙醇发展潜力有限,为避免对粮食安全造成负面影响,国家对燃料乙醇的生产和销售采取了严格的管制。近年来,虽有许多企业和个人试图生产或销售燃料乙醇,但由于受到现行政策的限制,不能普遍享受到财政补贴,也难以进入汽油现有的销售渠道。对于生物柴油的生产,国家还没有制定相关的政策,特别是还没有生物柴油的国家标准,更没有生物柴油正常的销售渠道。此外,生物质资源的其它利用项目,例如燃烧发电、气化发电、规模化畜禽养殖场大中型沼气工程项目等,初始投资高,需要稳定的投融资渠道给予支持,并通过优惠的投融资政策降低成本。中国缺乏行之有效的投融资机制,在一定程度上制约了生物质资源的开发利用。

四、中国生物质能源未来的发展特点和趋势

(一)逐步改善现有的能源消费结构,降低石油的进口依存度

中国经济的高速发展,必须构筑在能源安全和有效供给的基础之上。目前,中国能源的基本状况是:资源短缺,消费结构单一,石油的进口依存度高,形势十分严峻。2004年,中国一次能源消费结构中,煤炭占67.7%,石油占22.7%,天然气占2.6%,水电等占7.0%;一次能源生产总量中,煤炭占75.6%,石油占13.5%,天然气占3.O%,水电等占7.9%。这种能源结构导致对环境的严重污染和不可持续性。中国石油储量仅占世界总量的2%,消费量却是世界第二,且需求持续高速增长,1990年的消费量刚突破1亿吨,2000年达到2.3亿吨,2004年达到3.2亿吨。中国自1993年成为石油净进口国后,2005年进口原油及成品油约1.3亿吨,估计2010年将进口石油2.5亿吨,进口依存度将超过50%。进口依存度越高,能源安全度就越低。中国进口石油的80%来自中东,且需经马六甲海峡,受国际形势影响很大。

因此,今后在厉行能源节约和加强常规能源开发的同时,改变目前的能源消费结构,向能源多元化和可再生清洁能源时代过渡,已是大势所趋,而在众多的可再生能源和新能源中,生物质能源的规模化开发无疑是一项现实可行的选择。

(二)生物质产业的多功能性进一步推动农村经济发展

生物质产业是以农林产品及其加工生产的有机废弃物,以及利用边际土地种植的能源植物为原料进行生物能源和生物基产品生产的产业。中国是农业大国,生物质原料生产是农业生产的一部分,生物质能源的蕴藏量很大,每年可用总量折合约5亿吨标准煤,仅农业生产中每年产生的农作物秸秆,就折合1.5亿吨标准煤。中国有不宜种植粮食作物、但可以种植能源植物的土地约l亿公顷,可人工造林土地有311万公顷。按这些土地20%的利用率计算,每年约可生产10亿吨生物质,再加上木薯、甜高粱等能源作物,据专家测算,每年至少可生产燃料乙醇和生物柴油约5000万吨,农村可再生能源开发利用潜力巨大。生物基产品和生物能源产品不仅附加值高,而且市场容量几近无限,这为农民增收提供了一条重要的途径;生物质能源生产可以使有机废弃物和污染源无害化和资源化,从而有利于环保和资源的循环利用,可以显著改善农村能源的消费水平和质量,净化农村的生产和生活环境。生物质产业的这种多功能性使它在众多的可再生能源和新能源中脱颖而出和不可替代,这种多功能性对拥有8亿农村人口的中国和其他发展中国家具有特殊的重要性。

(三)净化环境,进一步为环境“减压”

随着中国经济的高速增长,以石化能源为主的能源消费量剧增,在过去的20多年里,中国能源消费总量增长了2.6倍,对环境的压力越来越大。2003年,中国二氧化碳排放量达到8.23亿吨,居世界第二位。2025年前后,中国二氧化碳排放量可能超过美国而居首位。2003年,中国二氧化硫的排放量也超过了2000万吨,居世界第一位,酸雨区已经占到国土面积的30%以上。中国二氧化碳排放量的70%、二氧化硫排放量的90%、氮氧化物排放量的2/3均来自燃煤。预计到2020年,氧化硫和氮氧化物的排放量将分别超过中国环境容量30%和46%。《京都议定书》已对发达国家分配了2012年前二氧化碳减排8%的指标,中国是《京都议定书》的签约国,承担此项任务只是时间早晚的问题。此外,农业生产和废弃物排放也对生态环境带来严重伤害。因此,发展生物质能源,以生物质燃料直接或成型燃烧发电替代煤炭以减少二氧化碳排放,以生物燃油替代石化燃油以减少碳氢化物、氮氧化物等对大气的污染,将对于改善能源结构、提高能源利用效率、减轻环境压力贡献巨大。

(四)技术逐步完善,产业化空间广阔

从生物质能源的发展前景看,第一,生物乙醇是可以大规模替代石化液体燃料的最现实选择;第二,对石油的替代,将由E85(在乙醇中添加15%的汽油)取代E10(汽油中添加10%的乙醇);第三,FFVs(灵活燃料汽车)促进了生物燃油生产和对石化燃料的替代,生物燃油的发展带动了传统汽车产业的更新改造;第四,沼气将规模化生产,用于供热发电、(经纯化压缩)车用燃料或罐装管输;第五,生物质成型燃料的原料充足,技术成熟,投资少、见效快,可广泛用于替代中小锅炉用煤,热电联产(CHP)能效在90%以上,是生物质能源家族中的重要成员;第六,以木质纤维素生产的液体生物质燃料(Bff。)被认为是第二代生物质燃料,包括纤维素乙醇、气化后经费托合成生物柴油(FT柴油),以及经热裂解(TDP)或催化裂解(CDP)得到的生物柴油。此外,通过技术研发还将开拓新的资源空间。工程藻类的生物量巨大,如果能将现代生物技术和传统育种技术相结合,优化育种条件,就有可能实现大规模养殖高产油藻。一旦高产油藻开发成功并实现产业化,由藻类制取生物柴油的规模可以达到数千万吨。

据专家预测估计,到2010年,中国年生产生物燃油约为600万吨,其中,生物乙醇500万吨、生物柴油100万吨:到2020年,年生产生物燃油将达到1900万吨,其中,生物乙醇1000万吨,生物柴油900万吨。

(五)生物质燃料流通体系和相关政策进一步健全完善

随着生物质产业的进一步发展,现有的以粮食为原料的燃料乙醇的销售体系,将会扩大到以甜高粱、甘蔗、麻风树等非粮食作物为原料的液体燃料的销售,与此相配套的非粮食生物质燃料的收购、调配和销售体系将在全国建立并逐步完善。非粮食燃料乙醇收购价格将由国务院价格主管部门根据有利于促进非粮食生物质燃料发展的原则确定并公布。同时,参照目前已实行的陈化粮燃料乙醇的财政和税收优惠政策,对非粮食燃料乙醇、生物柴油的生产和销售制定财政和税收优惠政策。有关非粮食生物质燃料的生产和销售管理办法、价格及财政税收政策将由国家发展和改革委员会同有关部门制定。

生物质能利用及展望范文第6篇

太阳能、生物质能和氢能的利用

教学目标: [知识与技能] 简单了解太阳能、生物质能利用的现状、开发利用太阳能的广阔前景和尚未攻克的一些技术难题。

[过程与方法] 1.采用查阅资料、收集数据等生动活泼的学习形式,调动学生的学习积极性和主动性。 2.联系生产、生活实际学习太阳能、生物质能的利用。 [情感态度与价值观] 认识开发、利用高能清洁能源的重要性和紧迫性。

[重点]太阳能、生物质能利用的现状、开发利用太阳能的广阔前景和尚未攻克的一些技术难题。

[难点]太阳能、生物质能的利用原理。 [课时分配]二课时 [教学过程]

[第一课时

太阳能的利用]

[创设问题情景]从20世纪末统计的非洲、美洲、欧洲和中东地区已经探明的石油储藏量,估计世界各地区蕴藏的石油可以供各地区使用多少年。从估计结果你想到什么?

[展示图片] [学生讨论] 结论:非洲43年、美洲22.5年、欧洲25.7年、中东100年。 [教师讲解]

化石燃料是不可再生能源。科学家对全球化石燃料何时会被耗尽作了估计,其预测结果是——煤227年,石油40年,天然气61年。

为了解决全球的能源危机和燃烧化石燃料带来的环境污染问题,世界各国都在致力于开发和利用太阳能、生物质能、氢能等洁净高效新能源,而太阳能是最诱人的。

[教师补充讲解]开发、利用太阳能的重大意义:

1.从化石燃料的不可再生和能源危机认识利用太阳能的意义。

2.地球上最根本的能源是太阳能。太阳每年辐射到地球表面的能量约为5*1019KJ,相当于目前全世界能耗的13000倍。

3.太阳能是清洁能源,不污染环境。

4.人类开发和利用太阳能已取得初步而又可喜的成果,改善了人们的生活质量(如太阳能热水器、太阳能电池等)。

[提出问题]迄今为止,自然界中利用太阳能最重要也是最成功的途径是什么? [交流与讨论]学生各述己见,教师给予引导。

[归纳与小结]植物的光合作用——大自然利用太阳能最成功的途径。 1.太阳能是地球上最基本的能源:P44 2.大自然利用太阳能最成功的是植物的光合作用:P45 (1)光能转化为化学能。在太阳光作用下,植物体内的叶绿素把水、二氧化碳转化为葡萄糖,进而生成淀粉、纤维素。

C6H12O6+6O2 6H2O+6CO2叶绿素(2)化学能转化为热能。动物体内的淀粉、纤维素在酶的作用下,水解生成葡萄糖,葡萄糖氧化生成二氧化碳和水,又释放出热量。

(C6H10O5)n+nH2OnC6H12O6

C6H12O6(s)+6O2(g)→6H2O(l)+6CO2(g) △H=-2804 kJ·mol

1-光

催化剂科学家估计,地球上每年通过光合作用储藏的太阳能相当于全球能源年耗量的10倍左右。

[提出问题]大自然通过光合作用利用太阳能是如此的成功和美妙。那么,人类通过什么方式开发和利用太阳能?你知道有哪些途径,已经取得哪些成就吗?

[讨论与归纳](在学生讨论后,教师配合讲解,播放影响资料或课件) 1.太阳能发电站收集太阳能的原理。 2.太阳能发电站。 [阅读与思考]

阅读教材中“太阳能的利用方式”,要求学生在阅读时注意以下几点: 1.联系物理、化学、生物等已学过的知识理解太阳能利用的原理。

2.联系日常生活中利用太阳能的实例,体会这些实例利用太阳能的方式以及对改善人们生活质量方面所起的作用。

3.思考人们在太阳能的开发和利用方面还存在哪些困难和问题。 [归纳与小结] 1.利用太阳能的一般方式: [拓展视野]P45~46 (1)光—热转换:利用太阳辐射能加热物体而获得热能。 (2)光—电转换:

①光—热—电转换

②光—电直接转换 (3)光—化学能转换 (4)光—生物质能转换 2.太阳能利用中存在的问题 (1)太阳能吸热板的装置费用昂贵。 (2)太阳能的利用受季节和天气的影响。

(3)大部分太阳能都是在夏天收集。如何把夏天收集的太阳能储存起来,留待冬天使用,仍然是一个有待解决的问题。

[思考与研究]鼓励学生就下列问题谈谈自己的想法。

据科学家预测,21世纪,化学科学在创造新物质方面将会有更加辉煌的成就。绿色植物能够在太阳光作用下将二氧化碳和水合成为葡萄糖。你认为人类能否模拟绿色植物的光合作用,直接利用太阳能把二氧化碳和水转化为葡萄糖?如能,要做到这一点,你认为需要解决哪些问题?

[第二课时

生物质能的利用 氢能的开发与利用] [课题引入]P46 二.生物质能的利用 P46

6nCO2+5nH2O 1.直接燃烧:(C6H10O5)n+6nO22.生物化学转换 (1)沼气:

点燃nC6H12O6 (2)乙醇:(C6H10O5)n+nH2O2C2H5OH+2CO2↑ C6H12O63.热化学转换

[拓展视野]P47 生活垃圾中生物质能的利用 三.氢能的开发与利用 1.氢能的三大优点: (1)燃烧放出的热量多。

(2)燃烧的产物是水,不污染环境。 (3)制备的原料是水,资源不受限制。 [交流与讨论]P48 2.氢能的产生方式:

(1)以天然气、石油和煤为原料,在高温下使之与水蒸气反应而制得。 (2)以天然气、石油和煤为原料,部分氧化法制得。 (3)电解水制得氢气。 (4)生物质气化制氢气。

(5)光解水制得氢气。(后两种应该是最佳方式) 3.氢能的利用途径:

(1)燃烧放热(如以液氢为燃料的液体火箭) (2)用于燃料电池,释放电能(如氢氧燃料电池) (3)利用氢的热核反应释放出的核能(如氢弹)

上一篇:实习处主任岗位职责范文下一篇:少先队辅导员说话稿范文