水合肼合成的新工艺

2022-10-17

第一篇:水合肼合成的新工艺

合成氨的工艺流程

工艺流程

1.合成氨的工艺流程

(1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。

(2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。

① 一氧化碳变换过程

在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下:

CO+H2OH→2+CO2 =-41.2kJ/mol 0298HΔ

由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。

② 脱硫脱碳过程

各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。

粗原料气经CO变换以后,变换气中除H2外,还有CO

2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。

一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。 4 ③ 气体精制过程

经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。

目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(<-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm3/m3以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。甲烷化反应如下:

CO+3H2→CH4+H2O =-206.2kJ/mol 0298HΔ

CO2+4H2→CH4+2H2O =-165.1kJ/mol 0298HΔ

(3)氨合成 将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下:

N2+3H2→2NH3(g) =-92.4kJ/mol 2.合成氨的催化机理

热力学计算表明,低温、高压对合成氨反应是有利的,但无催化剂时,反应的活化能很高,反应几乎不发生。当采用铁催化剂时,由于改变了反应历程,降低了反应的活化能,使反应以显著的速率进行。目前认为,合成氨反应的一种可能机理,首先是氮分子在铁催化剂表面上进行化学吸附,使氮原子间的化学键减弱。接着是化学吸附的氢原子不断地跟表面上的氮分子作用,在催化剂表面上逐步生成—NH、—NH2和NH3,最后氨分子在表面上脱吸而生成气态的氨。上述反应途径可简单地表示为:

xFe + N2→FexN FexN +〔H〕吸→FexNH FexNH +〔H〕吸→FexNH2 FexNH2 +〔H〕吸FexNH3xFe+NH3 在无催化剂时,氨的合成反应的活化能很高,大约335 kJ/mol。加入铁催化剂后,反应以生成氮化物和氮氢化物两个阶段进行。第一阶段的反应活化能为126 kJ/mol~167 kJ/mol,第二阶段的反应活化能为13 kJ/mol。由于反应途径的改变(生成不稳定的中间化合物),降低了反应的活化能,因而反应速率加快了。

3.催化剂的中毒

催化剂的催化能力一般称为催化活性。有人认为:由于催化剂在反应前后的化学性质和质量不变,一旦制成一批催化剂之后,便可以永远使用下去。实际上许多催化剂在使用过程中,其活性从小到大,逐渐达到正常水平,这就是催化剂的成熟期。接着,催化剂活性在一段时间里保持稳定,然后再下降,一直到衰老而不能再使用。活性保持稳定的时间即为催化剂的寿命,其长短因催化剂的制备方法和使用条件而异。

催化剂在稳定活性期间,往往因接触少量的杂质而使活性明显下降甚至被破坏,这种现象称为催化剂的中毒。一般认为是由于催化剂表面的活性中心被杂质占据而引起中毒。中毒分为暂时性中毒和永久性中毒两种。例如,对于合成氨反应中的铁催化剂,O

2、CO、CO2和水蒸气等都能使催化剂中毒。但利用纯净的氢、氮混合气体通过中毒的催化剂时,催化剂的活性又能恢复,因此这种中毒是暂时性中毒。相反,含P、S、As的化合物则可使铁催化剂永久性中毒。催化剂中毒后,往往完全失去活性,这时即使再用纯净的氢、氮混合气体处理,活性也很难恢复。催化剂中毒会严重影响生产的正常进行。工业上为了防止催化剂中毒,要把反应物原料加以净化,以除去毒物,这样就要增加设备,提高成本。因此,研制具有较强抗毒能力的新型催化剂,是一个重要的课题。

4.我国合成氨工业的发展情况

解放前我国只有两家规模不大的合成氨厂,解放后合成氨工业有了迅速发展。1949年全国氮肥产量仅0.6万吨,而1982年达到1021.9万吨,成为世界上产量最高的国家之一。

近几年来,我国引进了一批年产30万吨氮肥的大型化肥厂设备。我国自行设计和建造的上海吴泾化工厂也是年产30万吨氮肥的大型化肥厂。这些化肥厂以天然气、石油、炼油气等为原料,生产中能量损耗低、产量高,技术和设备都很先进。

5.化学模拟生物固氮的研究

目前,化学模拟生物固氮的重要研究课题之一,是固氮酶活性中心结构的研究。固氮酶由铁蛋白和钼铁蛋白这两种含过渡金属的蛋白质组合而成。铁蛋白主要起着电子传递输送的作用,而含二个钼原子和二三十个铁和硫原子的钼铁蛋白是络合N2或其他反应物(底物)分子,并进行反应的活性中心所在之处。关于活性中心的结构有多种看法,目前尚无定论。从各种底物结合物活化和还原加氢试验来看,含双钼核的活性中心较为合理。我国有两个研究组于1973—1974年间,不约而同地提出了含钼铁的三核、四核活性中心模型,能较好地解释固氮酶的一系列性能,但其结构细节还有待根据新的实验结果精确化。

国际上有关的研究成果认为,温和条件下的固氮作用一般包含以下三个环节:

①络合过程。它是用某些过渡金属的有机络合物去络合N2,使它的化学键削弱;②还原过程。它是用化学还原剂或其他还原方法输送电子给被络合的N2,来拆开N2中的N—N键;③加氢过程。它是提供H+来和负价的N结合,生成NH3。

目前,化学模拟生物固氮工作的一个主要困难是,N2络合了但基本上没有活化,或络合活化了,但活化得很不够。所以,稳定的双氮基络合物一般在温和条件下通过化学还原剂的作用只能析出N2,从不稳定的双氮络合物还原制出的NH3的量相当微少。因此迫切需要从理论上深入分析,以便找出突破的途径。

固氮酶的生物化学和化学模拟工作已取得一定的进展,这必将有力地推动络合催化的研究,特别是对寻找催化效率高的合成氨催化剂,将是一个有力的促进。[编辑本段]生产方法

生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。

①天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。

②重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。

③煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用,但随着能源格局的变化,现在煤制氨又被重视起来,外国主要是粉煤气化技术发展很快,国内则转向型煤制气技术已非常成熟。

用途 氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液氨常用作制冷剂。

贮运 商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运。

第二篇:合成氨工艺需要高压的原因

【传统观点】

1.为了提高氨气和氢气的转化率 2.为了提高氮气和氢气的反应速率

3.由于经济方法的原因,工艺上不能是太高的压强 【质疑】

1.工业上,并不一定需要每次达到平衡以后再进行循环

2.工业上,更注重的是反应的速率,只要转得快,效率就高,而不是仅仅转化率高,效率就高。 3.压强的增大(氮气和氢气浓度的提高)对加大反应速率影响远远不如温度和压强的影响,因此没有必要为了提高反应速率而加大压强。

4.压强的增大,提高了对设备要求,设备必须能承受高压,各种仪器仪表也必须承受高压,运行成本很大,从这个角度上讲,没有必要高压。

5.压强大,则必须要有强大的“动力”,压缩机需要的能源很大,成本很高,得不偿失。

但是,工艺上偏偏要200个大气压以上,为什么? 【我的观点】

原因非常简单

1.为了更好地及时地移走氨气。高压条件下,更溶液液化。在高压条件下,氨气能在常温下液化。 2.高压,能使氨气更容易变为液态氨,能方便地移走氨气,便于及时循环,提高转化率。

注:

气氨液化的温度是随压力的变化而变化的 压力为2.96

温度为-10度

压力为4.38

温度为0度 压力为6.27

温度为10度 压力为8.74

温度为20度 压力为11.89

温度为30度 压力为13.76

温度为35度 压力为15.85

温度为40度 压力为18.166 温度为45度

压力为1的意思是约为10个大气压。

第三篇:诺氟沙星的合成工艺路线改进

学生姓名 梁蕾蕾 班 级 化药903班 专业名称 化学制药技术 系部名称 制药工程系

指导教师 张静

提交日期 2011/12/20 答辩日期 2011/12/26

河北化工医药职业技术学院

2011年12月

诺氟沙星的合成工艺路线改进

目录

摘要 ........................................................... 4 1 前言 ......................................................... 4 1.1喹诺酮类药物 .................................................. 4 1.1.1喹诺酮简介 ............................................... 5 1.1.2抗菌作用机制 .............................................. 5 1.1.3喹诺酮类的共性 ............................................ 5 1.1.4作用 ...................................................... 6 1.2诺氟沙星概述 .................................................. 6 1.2.1背景介绍 .................................................. 6 1.2.2物理性质 .................................................. 6 1.2.3药理毒理 .................................................. 6 1.3发展状况 ...................................................... 7 2 制备工艺的优化 ............................................... 8 2.1 环合反应的优化 ............................................... 8 2.2 乙基化反应的优化 ............................................ 10 2.3 哌嗪化反应的优化 ............................................ 11 3 反应中溶剂的优化 ............................................ 12 4 反应过程中杂质的检测与定量 .................................. 13 2

诺氟沙星的合成工艺路线改进

5 其他诺氟沙星合成工艺 ........................................ 14 5.1以 A-( 2,4-二氯-5-氟苯甲酰)乙酸乙酯为起始原料 ................. 14 5.2 以 3-乙氧基-2-( 2,4-二氯-5-氟苯甲酰基) 丙烯酸乙酯为起始原料 ... 15 6 总结 ........................................................ 17 参考文献 ...................................................... 18 致谢 .......................................................... 20

诺氟沙星的合成工艺路线改进

摘要

诺氟沙星是第3 代喹诺酮类优秀的抗菌药物之一,在医疗领域有着重要的意义。本文主要对诺氟沙星的合成工艺做了相应的总结,对其中一些典型的合成路线进行了优劣势的分析,并提供了相应的优化方案。

诺氟沙星合成工艺路线大致有两大类型:

一、经分子内亲桉取代或Deckmann环余方法先合成喹诺酮环后引入哌嗪基;

二、先引入哌嗪基,再逐步形成喹诺酮环。

目前,国内外较多地采用第一类型合成路线:即以3-氯-4-氟苯胺为起始原料,经与EMME (乙氧基亚甲基丙二酸二乙酯)缩合、经烷基化剂乙基化得中间体1-乙基-6-氟-7-氯-1,4-二氢-4-氧-喹啉-3-羧酸乙酯,水解后哌嗪化得诺氟沙星。

本文以 3- 氯- 4- 氟苯胺为起始原料, 经与乙氧基亚甲基丙二酸二乙酯(EMME)缩合、 Gould- Jacobs环化、 乙基化、 硼酸酯络合及与无水哌嗪缩合等五步反应合成了诺氟沙星,总收率为 66.3%。

关键字:诺氟沙星,合成,工艺改进

1 前言

1.1喹诺酮类药物

诺氟沙星的合成工艺路线改进

1.1.1喹诺酮简介

80年代合成的4-氟喹诺酮类如环丙沙星、氧氟沙星等由于具有广谱、口服有效、副作用较少、耐药性还未大量产生等优点,发展迅速,临床广为使用,代表了特别重要的治疗进展。随着喹诺酮类药物的广泛应用,细菌对这类药物的耐药性也迅速产生与传播。

1.1.2抗菌作用机制

喹诺酮类药物作用的靶酶为细菌的DNA回旋酶(gyrase)及拓扑异构酶Ⅳ。对大多数革兰阴性细菌,DNA回旋酶是喹诺酮类药物的主要靶酶, 而对于大多数革兰阳性细菌,喹诺酮类药物主要抑制细菌的拓扑异构酶Ⅳ,拓扑异构酶Ⅳ为解链酶,可在DNA复制时将缠绕的子代染色体释放。

1.1.3喹诺酮类的共性

1.抗菌谱广 尤其对需氧的革兰阴性杆菌包括铜绿假单胞菌在内有强大的杀菌作用,对金葡菌及产酶金葡菌也有良好抗菌作用。某些品种对结核杆菌、支原体、衣原体及厌氧菌也有作用。

2.口服吸收良好,体内分布广。血浆蛋白结合率低,血浆半衰期相对较长。部分以原形经肾排泄,尿药浓度高,部分经由肝脏代谢。

3.不良反应少,耐受良好。常见恶心、呕吐、食欲减退、皮疹、头痛、眩晕。偶有抽搐等精神症状,停药可消退。所有氟喹诺酮类由于在未成年动物可引起关节病,在儿童中引起关节痛及肿胀,故不应用于青春期前儿童或妊娠妇女。

4.适用于敏感病原菌(如金黄色葡萄球菌、铜绿假单胞菌、肠道革兰阴性杆菌、弯曲菌属和淋病奈氏菌等)所知泌尿感染、前列腺感染、淋病、呼吸道感染、胃肠道感染及骨、关节、软组织感染。

能作用于细菌的脱氧核糖核酸(DNA)而对细菌染色体造成不可逆损害的一类药物。因该类药物结构和作用机制不同,故与抗生素之间无交叉耐药性。主要作用于阴性菌,阳性菌除金黄色葡萄球菌外,对其他菌株作用较弱。常用品种有吡哌酸、氟哌酸、氟嗪酸及环丙氟哌酸等。不良反应有:①胃肠反应有恶心和其他不适。②中枢反应可致精神症状,还可诱发癫痫。③可影响软骨发育,故孕妇及未成年儿童慎用。④有时有皮疹等过敏反应。⑤长期大量使用可致肝损害。

诺氟沙星的合成工艺路线改进

1.1.4作用

吡哌酸(PPA) 对多种阴性菌有较好的抑制作用,对绿脓杆菌及金黄色葡萄球菌要较高浓度才有抑制作用。成人口服,疗程一般为10日。注意事项参见喹诺酮类药物。

氟哌酸(诺氟沙星) 作用强于吡哌酸,对革兰氏阴性菌包括绿脓杆菌、大肠杆菌、奇异变形杆菌、肺炎克雷伯氏杆菌等均有较强作用,抑菌浓度低于其他抗菌药物,对金黄色葡萄球菌的作用强于庆大霉素,用于治疗各科多种感染。治疗慢性泌尿系感染时,开始可按常量服2周,以后减量可持续数月。注意事项参见喹诺酮类,一般反应程度较轻。

1.2诺氟沙星概述

1.2.1背景介绍

诺氟沙星( Norfloxacin) 是第3 代喹诺酮类抗菌药物,具有抗菌作用强、抗菌谱广、生物利用度高、组织渗透性好、与其他抗菌素无交叉耐药性、副作用小及口服吸收快等特点,对大肠杆菌、肺炎杆菌、产气杆菌、阴沟杆菌、变形杆菌、沙门氏菌属、志贺氏菌属、枸橼酸杆菌属及沙雷氏菌属等遥植树菌科细菌具有强大的抗菌作用。临床用于敏感菌所致泌尿系统、 肠道、呼吸系统、外科、妇科、五官科及皮肤科等感染性疾病。

1.2.2物理性质

诺氟沙星(Norfloxacin,氟哌酸),化学名1-乙基-6-氟-4-氧代-1,4-二氢-7-(1-哌嗪基)-3-喹啉羧酸(1-ethyl-6-fluoro-1,4-dihrdro-4-oxo-7-(1-piperazinyl)-3- quinolinecarboxylic acid)。诺氟沙星为类白色至淡黄色结晶性粉末,无臭,味微苦,可吸湿,见光颜色渐深。易溶于醋酸及氢氧化钠溶液中。熔点218~224℃。

1.2.3药理毒理

诺氟沙星为喹诺酮类抗菌药,具有广谱抗菌作用,尤其对需氧革兰阴性杆菌的抗菌活性高,对下列细菌在体外具良好抗菌作用:肠杆菌科的大部分细菌,包括枸橼酸杆菌属、阴沟肠杆菌、产气肠杆菌等肠杆 6

诺氟沙星的合成工艺路线改进

菌属、大肠埃希菌、克雷伯菌属、变形菌属、沙门菌属、志贺菌属、弧菌属、耶尔森菌等。诺氟沙星对体外多种耐药菌亦具抗菌活性。对青霉素耐药的淋病奈瑟菌、流感嗜血杆菌和卡他莫拉菌亦有良好抗菌作用。诺氟沙星为杀菌剂,通过作用于细菌DNA螺旋酶的A亚单位,抑制DNA的合成和复制而导致细菌死亡。

1.3发展状况

诺氟沙星是日本杏林公司1978年合成的广谱、高教、低毒的喹诺酮类抗感染药物。1984年在日本首次上市,我国于1985年由太原制药厂投产应市。尔后,全国投产厂家众多,但大多因工艺技术水平低,存在单耗高、收率低、质量差等问题。

诺氟沙星的合成工艺路线大致有两大类型:

一、经分子内亲桉取代或Deckmann环余方法先合成喹诺酮环后引入哌嗪基;

二、先引入哌嗪基,再逐步形成喹诺酮环。

目前,国内外较多地采用第一类型合成路线: 即以3-氯-4-氟苯胺为起始原料,经与EMME (乙氧基亚甲基丙二酸二乙酯)缩合、经烷基化剂乙基化得中间体1-乙基-6-氟-7-氯-1,4-二氢-4-氧-喹啉-3-羧酸乙酯,水解后哌嗪化得诺氟沙星。

现行工艺经过大量的研究工作,己日趋成熟。但在哌嗪化过程中,难以避免地产生6-氟与7-氯的竞争取代。氟被取代的副产物可达25%,给产物的分离纯化带来很大困难。运用1-乙基-6-氟-7-氯-1,4-二氢-4-氧-喹啉-3-羧酸乙酯与硼化物形成螫台物的方法,(即利用4位羰基氧原子的P电子向硼原子的空轨道转移的特性,提高诱导效应,激活7-氯,纯化6-氟),可选择性地提高哌嗪化收率。

类型一的三种合成路线:

方法一:以3-氯4-氟苯胺为原料,与乙氧亚甲基丙二酸二乙酯反应,经环合、N-乙基化、水解,再与哌嗪缩合而得。

优缺点:方法(1)原料价廉易得,操作简单,是各厂家经常使用的方法,但缺点是收率偏低,仅为52% 左右。

方法二:以2-氟-5-硝基苯胺为原料,经重氮化、氯化,与哌嚷反应得3-哌嗪基-4-氟硝基苯,经还 7

诺氟沙星的合成工艺路线改进

原、环合、N-乙基化、水解而得。

优缺点:原料来源困难,操作较烦琐,收率也较低。

方法三:将水解产物(1-乙基-6-氟-7-氯-1,4二氢-4-氧代喹啉-3-羧酸)与醋酸、硼酸制成硼螯合物,再与哌嗪缩合,最后经水解而得。

优缺点:原料仍可使用3-氯-4-氟苯胺,且前三步与最后一步完全用方法一的成熟工艺,只在第三步水解反应产物(1-乙基-6-氟-7-氯-1,4二氢-4-氧代喹啉-3-羧酸)生成后再与乙酐、醋酸形成一个硼螯合物。实践证明,这一步的反应很充分,平均收率达98.38 %,并且与哌嗪的缩合更容易进行,从而使总收率可达到62 %以上。

2 制备工艺的优化

2.1 环合反应的优化

诺氟沙星的合成工艺路线改进

张为革等将羟基亚甲基丙二酸二乙酯替代乙氧基亚甲基丙二酸二乙酯与氟氯苯胺反应也制得中间体3-氯-4-氟苯胺基甲叉基丙二酸二乙酯,其反应机理见图1。

[1]

图1 环合反应优化

采用该合成方法的优点是反应温度低,反应时间短,原料易得,操作简便;但副反应较多,收率仍不够理想,为51.17%。此外,中间体 3 进一步环合成 4 过程中环合定位的不唯一性,在7-Cl 的对位或邻位均可,分别产生目标中间体4( 环合物) 和副产物4a(反环物),且两者分离困难,使收率降低。见图2。

图2 环合反应主产物跟副产物

有文献表明,中间体3在高沸点惰性溶剂中进行Gould-Jacobs反应,所得到的4 与 4a的相对含量主要取决于溶剂及其用量。不同的溶剂,即使用量相同,二者比例也不同。对于同一种溶剂,其用量不同,4与4a的比例不同,且随着溶剂用量增加,4a相对含量降低。在实际生产中,溶剂用量过大显然是不合理的,采用在反应温度下滴加中间体3 的办法可以达到相对增加溶剂用量、降低副产物含量的目的。

[2] 9

诺氟沙星的合成工艺路线改进

2.2 乙基化反应的优化

由于中间体4 存在酮式与烯醇式,故进行乙基化反应时,可产生N-乙基化物和O-乙基化物( 5a)。一般讲,烯醇式不稳定而酮式稳定,但反应受许多因素影响,如溶剂、试剂亲核性的强弱、反应温度等。见图3。

图3 乙基化反应产物

一般而言,碱性条件有利于烯醇式生成,而酸性条件有利于酮式生成,基于此原理有相关报道表明,如果使用比常规应用的无水K2CO3碱性弱的无水Na2 CO3作为乙基化的脱酸剂,将会使5a的生成含量比例大为减少,并且当乙基化溶剂采用二甲亚砜、二甲基甲酰胺、N-甲基吡咯烷酮,Na2CO3为脱羧剂,溴乙烷为烷化剂时,可基本免于5a的生成,其中选用DMSO和二甲基乙酰胺时效果最好,5a 分别仅占总生成收率的1.57%和 0.82%。此外原料药中的主要杂质 6-氟-1,4-二氢-7-氧代-( 1-哌嗪基) 喹啉,下称脱羧物,亦源于乙基化反应的副产物( 4a, 4b)。见图4。

[4]

[3]

图4 原料药中的主要杂质来源

除上图显示的反应过程外,乙基化反应不完全而留下的少量4水解后生成的4b, 经哌嗪化也生成1a。生产上为使乙基化反应进行得更完全,采取了分批加乙基化试剂、于较低温度保温后升温等反应措施,它们可在某种程度上减少4b 的生成,但对控制4a的生成显然是不利的。再则在加料过程中应缓慢加入,其原因是乙基化试剂如溴乙烷沸点较低,易挥发,将其分批慢慢加入反应体系中,反应不至太激烈,且温度易控制;另一方面,缓慢分批加入乙基化试剂,反应液中的乙基化试剂浓度低,反应选择性增加,更有利于生成 N-乙基物,进而提高收率。因此,如何选择更合适的工艺条件,将副产物的生成量降到最低程度,

[5] 10

诺氟沙星的合成工艺路线改进

仍值得探索。

2.3 哌嗪化反应的优化

此歩反应属 Sn1反应,所以提高溶剂的极性有利于取代反应的发生。但由于亲核取代时 7-氯和6-氟相竞争,在一般条件下可生成 25% 左右的 6-氟被哌嗪取代的副产物。基于芳环上基团对亲核试剂的敏感性是F> Cl,郭惠元等将7-位氯改为氟,即用1-乙基-6,7-二氟-1,4-二氢-4-氧代喹啉-3-羧酸与无水哌嗪反应,该歩收率为82.3%。其合成工艺及各歩收率见图5。 [6]

图5 将 7-位氯改为氟后合成工艺

而目前生产上多采用酯与硼化物制成螯合物,再哌嗪化,因4-羧基氧原子的P 电子向硼原子空轨道上转移,使它的负电效应增大,从而大大活化7-位氯原子,提高了取代反应的化学区域专一性。其反应原理见图6。

图6 螯合物优化合成工艺

总之,在中间体 1-乙基-6-氟-7-氯-1,4-二氢-4-氧代喹啉-3-羧酸酯生成后制成硼螯合物, 设备均不需作任何改造,即可用于生产,而收率却得到很大的提高( 10% 左右);硼螯合物虽然增加了硼酸和乙酐的消耗,但成本相对较小,而同时却使生成的中间体更易于粉碎,节省了一定的人力、物力,更适合于 11

诺氟沙星的合成工艺路线改进

大生产;而对于硼鳌合物新工艺,有2 个问题值得注意: ( 1)鳌合物的制备: 国内有采用 HBF4 或BF3.Et2 O 复合物或硼酸/酸酐与 5 反应,HBF4 及BF3.Et 2O 虽然反应条件较为温和,但毒性大、腐蚀性强、生产上存在设备严重腐蚀及劳动保护问题。硼酸/酸酐原料价廉易得,反应收率高,但反应剧烈,控制不当有冲料危险;( 2) 哌嗪化溶剂的选择:不少厂家采用专利所报道的,但 DMSO 回收困难( bp189. 0 ℃ ),气味恶臭,价值昂贵。

而最近几年中,针对此合成路线中需大量使用的醋酐的问题,亦有相应的改进工艺。胡国强等把化合物2 通过水解得到相应的化合物5,然后在催化剂聚乙二醇的作用下直接与哌嗪反应,可以高收率地得到目标化合物 1。反应过程见图7。

[7]

图 7 聚乙二醇催化合成反应工艺

3 反应中溶剂的优化

在经典的诺氟沙星生产工艺中,第1 步的环合过程采用黏度较大的二苯醚作溶剂,反应需在300℃以 12

诺氟沙星的合成工艺路线改进

上高温下进行,且后处理工艺繁琐。汪敦佳等研究在高温环化时选用了价廉、黏度小的高沸点柴油作为溶剂,并且溶剂可以反复套用,最终可以使前2 步反应收率高达95%以上。而在哌嗪化过程中,纪耿豪

[9]

[8]用醇类溶剂替代原来的 DM-SO,在一定程度上解决了生产上关于此歩反应气味恶臭、收率较低等问题。在后处理过程中,李灵芝[10]又将水用醇水混合物替代,使哌嗪的回收更加方便。此外汪敦佳等采用循环套用回收溶剂和无水哌嗪,节省大量反应原料及溶剂,进一步降低了诺氟沙星的生产成本,增强其市场竞争能力。

此外,硼螯合物的后处理过程中,用异丙醇与水的混合物代替水, 其好处在于用异丙醇代替了部分水,减少了水的用量,只需浓缩去除少量的水,经冷却至 10℃以下即可回收哌嗪,节省了能源,同时减少了浓缩水过程中哌嗪的损失及管路的堵塞。利用异丙醇与水不相混溶,经分层后可直接用于下一批的后处理。回收所得六水哌嗪,利用其与异戊醇有共沸点的特点,经蒸馏除水后可用于下一批的反应,从而使成本降低;回收套用溶剂 DMSO 和无水哌嗪,在保证哌嗪化缩合反应收率基本不变的情况下,其结果为: DMSO 比不套用时减少了38.5% 的溶剂用量;无水哌嗪比不套用时减少了41.1%。

4 反应过程中杂质的检测与定量

关于经典制备诺氟沙星( N OR)工艺

[11]

中,反应的副产物主要有CAT、ECA、MAC,其结构式见图8。

诺氟沙星的合成工艺路线改进

图8 NOR/CAT/ECA/MAC的结构式

Nageswara RR 等[12]探索用 HPLC 检测制备工艺中诺氟沙星的纯度, 其具体的实验条件是: 40 ℃条件下以反相C18 柱为载体,0.01M 磷酸二氢钾和乙腈( 60:40, v/ v, pH 3.0) 作为流动相,流速1.0ml/分钟,260nm 处进行紫外检测[13]

。各物质的分离效果见图9。

图9 HPLC分离结果

5 其他诺氟沙星合成工艺

5.1以 a-( 2,4-二氯-5-氟苯甲酰)乙酸乙酯为起始原料

诺氟沙星的合成工艺路线改进

文献[14]记载,以a-( 2,4-二氯-氟苯甲酰)乙酸乙酯作为起始原料,与原甲酸三乙酯缩合得到乙氧基取代的丙烯酸乙酯衍生物,不经分离纯化,直接与乙胺水溶液在冰盐浴冷却下反应,生成乙胺基取代的丙烯酸乙酯,两步收率73% ,接着在碱作用下,与DMF73%~5%。然后,再经水解、哌嗪化得诺氟沙星

[16]

[ 15]

中于 100-130℃加热, 环合得到中间体5,收率

。见图12。

图 12 a-( 2,4 -二氯-5-氟苯甲酰) 乙酸乙酯为起始原料合成工艺

[17]

5.2 以 3-乙氧基-2-( 2,4-二氯-5-氟苯甲酰基) 丙烯酸乙酯为起始原料

该方法的反应路线见图13。将自制的3-乙氧基-2-( 2,4-二氯-5-氟苯甲酰基)丙烯酸乙酯( 13.3g,0.04mol) 溶于50ml无水乙醇中,冰盐浴冷却至- 5-0℃, 搅拌下滴加乙胺水溶液( 33% ,7.0g),在0℃下搅拌反应2 小时,得到固体,用乙醇充分洗涤后,将该固体( 6.9g,0. 02mol ),K2CO3( 2.5g ) 和 DMF( 50ml)加入100ml反应瓶中,120℃下反应 2小时,冷置至室温,过滤,用乙酸乙酯和水分洗涤,得白色固体。取该固体( 3.1g,0.01mol)和浓盐酸(8ml)、醋酸(35ml)混合,于90℃反应4 小时,静置,析出白色结晶。将此晶体( 2.8g,0.01mol)和无水哌嗪( 4.3g,0.05mol) 溶解于异戊醇(35ml)中,于110-115℃下,反应 6小时,反应液冷却后析出固体,过滤,重结晶处理得产物诺氟沙星(2.1g)。熔点: 225-227℃(

227-228

)

[18]

。 15

诺氟沙星的合成工艺路线改进

图3-乙氧基-2-( 2,4-二氯-5-氟苯甲酰基) 丙烯酸乙酯为起始原料合成工艺

(最终产物的 R1 = Et , R2 = H 时为诺氟沙星)

诺氟沙星的合成工艺路线改进

6 总结

最近几年中,针对此合成路线中需大量使用的醋酐的问题,亦有相应的改进工艺。诺氟沙星是第3 代喹诺酮类优秀的抗菌药物之一,在医疗领域有着重要的意义。本文主要对诺氟沙星的合成工艺做了相应的总结,对其中一些典型的合成路线进行了优劣势的分析,并提供了相应的优化方案。

现行工艺经过大量的研究工作,己日趋成熟。但在哌嗪化过程中,难以避免地产生6-氟与7-氯的竞争取代。氟被取代的副产物可达25%,给产物的分离纯化带来很大困难。运用1-乙基-6-氟-7-氯-1,4-二氢-4-氧-喹啉-3-羧酸乙酯与硼化物形成螫台物的方法,(即利用4位羰基氧原子的P电子向硼原子的空轨道转移的特性,提高诱导效应,激活7-氯,纯化6-氟),可选择性地提高哌嗪化收率。

关于诺氟沙星的合成工艺如今已日益完善,反应收率、反应条件及环境保护等方面都得到较好的改进,但是仍有一些问题有待解决,如乙基化反应最优条件的确定等。因此,对于诺氟沙星合成工艺的优化仍需得到人们的关注。

诺氟沙星的合成工艺路线改进

参考文献

[1] 张为革,章杰,王绍杰, 等。 3-氯-4-氟苯胺乙氧基亚甲基丙二酸二乙酯的新合成方法。沈阳药科大学学报[J],1999,16( 3) : 179-181 [2] 郭惠元,曹一尘,李卓荣,等。3-氯-4-氟苯胺乙氧基亚甲基丙二酸二乙酯在惰性高沸点溶剂中的环化反应。中国医药工业杂志[J],1991,22( 12) : 546-547 [3] 郭惠元,孙兰英,曹一尘。碱和水份对 7-氯-6-氟-4-羟基喹啉-3-羧酸乙醋的N-或 O-乙基化产物比例的影响。中国医药工业杂志[J],1993, 24( 7) : 289-290 [4] 纪软豪。诺氟沙星合成工艺概述。中国医药工业杂志[J],1992,23( 3): 138-140 [5] 王希。氟哌酸合成工艺改进。江苏药学与临床研究, 1996, 4( 1) : 46-48 [6] 郭惠元,曹一尘,孙兰英。由 3,4- 二氟苯胺制备诺氟沙星。中国医药工业杂志[J],1992, 23( 1) : 3-4 [7] 胡国强,董秀丽。诺氟沙星合成方法的改进。化学试剂,2007,29( 9) : 575-576 [8] 汪敦佳,杜冬云。诺氟沙星合成工艺的改进。湖北师范学院学报(自然科学版),2000, 20( 2) : 45-46 [9] 纪耿豪。诺氟沙星( Norfloxacin)合成工艺的改进。现代应用药学。1991,8( 4): 14-15 [10] 李灵芝。诺氟沙星的合成工艺研究。山西化工,2004,24(1):55-56 [11] 李卓荣,郭惠元,张致平。 诺氟沙星的新法合成。医药工业,1988,19(11): 481-482 [12] 谢建刚,廖新成。1-乙基-6-氟-7-(1-哌嗪基)-1 ,4-二氢- 4 -氧代喹啉-3-羧酸类似物的合成。郑州大学学报( 理学版) ,2003,35(3):75-78 [13] 牟兆吉,俞玉英, 江齐章.医药工业. 1987, 18( 5) : 203 [14] 纪耿豪.中国医药工业杂志[J]. 1992, 23: 138 [15] 汪敦佳,陈泳洲. 化学世界. 1996, 37( 2) : 80 [16] 赵国君.中国医药工业杂志[J]. 1987, 28( 1) : 12

诺氟沙星的合成工艺路线改进

[17] 郭惠元.3一氯一4一氟苯胺亚甲丙二酸二乙酯在惰性高沸点溶剂中的环化反应.中国医药工业杂志[J],1991;22(12):546一547 [18]陈振华,黄扬彬.诺氟沙星生产工艺浅析.广东药学,2002;12 (2):31—32

诺氟沙星的合成工艺路线改进

致谢

当我写完这篇毕业论文的时候,有一种如释重负的感觉,在经历了找工作的焦灼、写论文的煎熬之后,感觉好像一切都尘埃落定,想起了那句伤感的歌词:“Time to say goodbye.”即将给自己的学生时代和校园生活划上一个分号,之所以说它是分号,是因为我对无忧无虑的学生生活还有无比的怀念,对单纯美好的校园生活还有无比的向往。这只是我生命中的一个路口,并不是终点,我始终相信青春不会散场,坚信有一天会重返校园,以学生或老师的身份去延续这种快乐和幸福。

大学三年学习时光已经接近尾声,在此我想对我的母校,我的老师和同学们表达我由衷的谢意。感谢他们对我大学三年学习的默默支持;感谢我的母校河北化工医药职业技术学院给了我在大学三年深造的机会,让我能继续学习和提高;感谢张老师和同学们三年来的关心和鼓励。老师们课堂上的激情洋溢,课堂下的谆谆教诲;同学们在学习中的认真热情,生活上的热心主动,所有这些都让我的三年充满了感动。这次毕业论文设计我得到了很多老师和同学的帮助,其中我的论文指导老师张静老师对我的关心和支持尤为重要。每次遇到难题,我最先做的就是向张老师寻求帮助,而张老师每次不管忙或闲,总会抽空来找我面谈,然后一起商量解决的办法。张老师平日里工作繁多,但我做毕业设计的每个阶段,从选题到查阅资料,论文提纲的确定,中期论文的修改,后期论文格式调整等各个环节中都给予了我悉心的指导。这几个月以来,张老师不仅在学业上给我以精心指导,同时还在思想给我以无微不至的关怀,在此谨向张老师致以诚挚的谢意和崇高的敬意。同时,本篇毕业论文的写作也得到了同学的热情帮助。感谢在整个毕业设计期间和我密切合作的同学,和曾经在各个方面给予过我帮助的伙伴们,在此,我再一次真诚地向帮助过我的老师和同学表示感谢!

在毕业前最后的时光,仍旧要感谢我生命中出现的那些十分重要的师姐师兄、师弟师妹们,以及我结识的朋友们。他们不仅在学术上给予我指点,同时也是我生活中一起同行的人,在交往的过程中我们建立信任、彼此鼓励、互相支持与帮助。

当然,还要感谢我深爱的父母亲一直以来对我无怨无悔的付出、支持、关爱、尊重和信任,在我学习、生活、感情、工作上遇到困难时,是您们帮我抵御风霜,谢谢您们。

第四篇:年产20万吨天然气合成氨合成段的工艺设计

化工设计

课程设计任务书

(年产20万吨天然气合成氨合成段的工艺设计)

塔里木大学 生命科学学院 化学化工系

塔里木大学生命科学学院 二O一二年十二月

年产20万吨天然气合成氨合成段的工艺设计任务书

一、设计项目:年产20万吨天然气合成氨合成段的工艺设计

二、设计规模:20万吨/年,年生产时间:330

三、设计阶段:初步设计

四、设计条件与要求

1、合成塔进口气体组成(V%)

NH3:2.26%

H2:58.79%

N2:19.55% CH4:17.49%

Ar:1.91%

2、合成塔出口气体NH3含量:17.8%

3、水冷器出口温度:35℃

4、合成塔操作压力:30.0MPa

五、设计要求和工作量

完成设计报告一份

六、设计主要内容

1、工艺流程设计

2、物料衡算

3、热量衡算

4、主要设备工艺设计与选型化工设计报告

(大体章节要求) 摘

第一章

前言

第二章

天然气合成氨简介 第三章

合成氨工艺论证 第四章

工艺计算 4.1物料衡算

4.2能量衡算

第五章

主要设备的工艺计算及选型

主要结构参数表 第六章

设计小结 参考文献

七、设计主要参考文献

《化工原理》;《化工产品手册》;《化工工艺设计手册》;《小氮肥厂工艺设计手册》;《氮肥工艺设计手册》;《小合成氨厂工艺技术与设计手册》;《合成氨》;《无机化工生产技术》等

八、设计时间:2012.12.18-2012.12.24

第五篇:己内酰胺的合成路线及工艺消耗

一、 己内酰胺生产工艺

早在1899年,Gabriel和Meas就通过加热ε-氨基己酸,首次合成了己内酰胺。但是直到1943年,才由德国I.G.Farben公司实现了己内酰胺的工业化。当时采用的工艺技术称为拉西法,起始原料为苯酚。第二次世界大战后,I.G.Farben公司的技术被公开,世界己内酰胺应用得到了快速的发展。荷兰DSM公司的HPO工艺对拉西法作了重大改进,自上世纪70年代以来在世界上得到了广泛的推广应用,成为己内酰胺生产最重要的工艺技术。此外,德国巴斯夫公司(BASF)的一氧化氮还原工艺、日本东丽公司的光亚硝化法工艺、美国Allied Singal公司的异丙苯/苯酚工艺、意大利SNIA公司的甲苯法工艺、波兰Polimex/Polservice公司的Capropol工艺也各有特色,在己内酰胺工业生产中得到应用。

传统拉西法:德国I.G.FANBEN公司开发,其关键工艺是环己酮与硫酸羟胺发生肟化反应,生成环己酮肟,环己酮肟在发烟硫酸作用下经贝克曼重排反应生成己内酰胺。硫酸羟胺是用硫酸中和亚**,生成脱酯硫酸盐,再发生水解反应产生的。该工艺在羟胺合成、肟化反应、重排反应三道工序都使用硫酸,氨中和后产生大量的副产物硫酸铵,而硫酸铵的经济价值较低。对传统拉西法的改进,主要着眼于降低硫酸铵的副产量。

Allied异丙苯/苯酚工艺:该工艺主要特点是用异丙苯法生产的苯酚为原料。苯酚加氢生成环己酮,环己酮与硫酸羟胺经肟化反应生成环己酮肟,环己酮肟在发烟硫酸作用下经贝克曼重排反应生成己内酰胺。硫酸羟胺是用硫磺、氨、二氧化碳和水经多步工艺生产的,硫酸铵副产量仍然较高。

巴斯夫一氧化氮还原工艺:该工艺的硫酸羟胺是控制氨氧化生成一氧化氮,再在硫酸中用氢气还原而生成的,硫酸铵副产量比传统拉西法少得多。

CAPROPOL工艺:该工艺在环己烷氧化制环己酮环节有一定特点,使用了钯催化剂,降低了氢氧化钠的消耗量和废碱液的生成。环己酮与硫酸羟胺经肟化反应生成环己酮肟,环己酮肟在发烟硫酸作用下经贝克曼重排反应生成己内酰胺。硫酸羟胺是用一氧化氮还原工艺生产的。

DSM-HPO工艺:该工艺的羟胺合成和环己酮肟化两个阶段都是在循环使用的磷酸缓冲液中完成的,不产生硫酸铵。首先用磷酸缓冲液吸收氨氧化产生的二氧化氮气体,生成硝酸;然后用氢气还原磷酸缓冲液中的硝酸根离子,生成羟胺;富含羟胺的磷酸缓冲液再与环己酮逆流接触,经肟化反应生成环己酮肟。该工艺的优势在于仅在环己酮肟重排反应阶段使用硫酸,因而大大降低了硫酸铵副产量。不足之处是设备复杂,分离精制环节多,工艺控制难度大,催化剂较为昂贵。

目前世界上90%以上的己内酰胺都是通过上述几种基于拉西法的工艺生产的。它们的共同特点是都经过环己酮和环己酮肟这两个中间产物,由环己酮与羟胺反应生成环己酮肟,环己酮肟再在发烟硫酸作用下经贝克曼重排生成己内酰胺。环己酮主要是环己烷经空气氧化反应生产,小部分来源于苯酚加氢。

东丽光亚硝化工艺:在水银灯照射下,环己烷与亚硝酰氯和氯化氢生成氯化氢肟,再重排生成己内酰胺。尽管有人认为这项工艺生产己内酰胺的成本最低,但迄今只有日本东丽公司采用该工艺建有两套共170万吨/年的生产装置,且多年来没有扩产的报道。

SNIA甲苯法工艺:该工艺用甲苯氧化生成苯甲酸,苯甲酸加氢生成环己烷羧酸,环己烷羧酸经中和、脱羧及重排生成己内酰胺。该工艺硫酸铵副产量很高,而且原子经济性不佳,有较大的局限性,在意大利的装置已经停产,仅有我国石家庄化纤有限公司的一套原设计为50万吨/年的装置尚在营运。

二、 新工艺的开发应用

到目前为止,己内酰胺生产所采用的工艺都是以芳香族化合物或其衍生物为原料的。近10几年来,国外一些大公司积极研究以非芳香族化合物为原料的工艺路线。DSM、杜邦(Dupont)及壳牌(Shell)合作推出了一项以丁二烯和一氧化碳为原料生产己内酰胺的工艺,巴斯夫公司也申请了类似的专利。巴斯夫公司和杜邦公司合作开发的丁二烯/甲烷工艺,在德国建成了1千吨/年的丁二烯/甲烷工艺的工业实验装置。该工艺用丁二烯、甲烷和氨经多步工艺生产己二腈和己二胺,己二腈单端氰基加氢生产氨基己腈,氨基己腈通过水解和环化生成己内酰胺。后来Rhodia公司也开发了一项类似工艺,并声称有所改进。巴斯夫公司和杜邦公司曾计划于1995年在我国海南省以丁二烯/甲烷工艺建设一套联产15万吨/年己内酰胺、15万吨/年己二胺的大型装置,但该计划一再被推迟,迄今没有实施。而台湾CPDC公司仍然购买DSM的HPO技术,在2000年建成投产一套12万吨/年的己内酰胺装置。相形之下,说明以丁二烯为原料的新工艺对传统工艺并没有明显的竞争优势。

在拉西法技术基础发展的己内酰胺生产工艺,在过去30年来一直比较稳定,现在也面临着重大的突破。环己酮氨肟化工艺、环己酮肟气相重排工艺、环己烷氧化新工艺开始进入工业应用

环己酮氨肟化工艺:该工艺将环己酮、氨、过氧化氢置于同一反应器中,一步合成环己酮肟。与其它工艺相比,具有流程短、环境友好、反应条件温和、设备投资低的优势。该工艺自上世纪60年代就得到关注,意大利Enichem公司和中国石化都已完成了该工艺的中间试验,并拥有相关专利,其技术可靠性和经济可行性都已达到工业应用水平。

环己酮肟气相重排工艺:该工艺是在固体酸催化剂作用下,环己酮肟在气相重排成己内酰胺,由于不使用硫酸和氨,也就不产生副产物硫酸铵,可以大幅度降低生产成本。国外多家公司对这项工艺的进行了研究,石油化工科学研究院和中国石化巴陵分公司也在积极开展研究,重点是提高催化剂的转化率、选择性和寿命。日本住友公司采取流化床反应器,环己酮肟/甲醇/氮气在高温下通过分子筛,转化率为99.3%,己内酰胺的产率为95.3%,研究成果已经达到工业应用水平。

环己烷氧化新工艺:大连化学物理研究所与中国石化巴陵分公司利用自行开发的复合金属氧化物催化剂,研究环己烷非均相催化氧化新工艺生产环己酮,反应温度降低15℃至25℃,环己烷单程转化率提高1倍多,醇酮选择性提高10多个百分点,可显著提高设备效率和生产安全性,大幅度降低物耗、能耗和废液处理量,与目前的环己酮生产工艺相比,竞争优势十分明显。湖南大学和中国石化巴陵分公司使用仿生催化剂也取得了类似的研究成果。这项新技术的研究目前已经完成了中间试验。

日本住友公司采用意大利Enichem公司开发的环己酮氨肟化工艺和自行开发的环己酮肟气相重排工艺,于2002年开工建设一套6.5万吨/年的己内酰胺新装置,2003年2月完成施工,2003年4月投产。

中国石化股份有限公司组织石油化工科学研究院和巴陵分公司等科研、生产、设计单位联合开发的己内酰胺成套新工艺,已经取得了重大突破,并具有自主知识产权。通过环己烷氧化新工艺、环己酮氨肟化工艺、环己酮肟气相重排工艺、己内酰胺精制新工艺的整合,可以较大幅度地降低己内酰胺成本。现已着手对巴陵分公司己内酰胺生产装置分段实施改造,其中环己酮氨肟化制环己酮肟的改造将于2003年完成。这套工艺如果能够顺利实现工业化,大幅度降低生产成本,将给己内酰胺以及下游产品带来活力。

目前主要工艺是环己酮与硫酸羟胺发生肟化反应,生成环己酮肟,环己酮肟在发烟硫酸作用下经贝克曼重排反应生成己内酰胺。

DSM-HPO工艺:该工艺的羟胺合成和环己酮肟化两个阶段都是在循环使用的磷酸缓冲液中完成的,不产生硫酸铵。首先用磷酸缓冲液吸收氨氧化产生的二氧化氮气体,生成硝酸;然后用氢气还原磷酸缓冲液中的硝酸根离子,生成羟胺;富含羟胺的磷酸缓冲液再与环己酮逆流接触,经肟化反应生成环己酮肟。该工艺的优势在于仅在环己酮肟重排反应阶段使用硫酸,因而大大降低了硫酸铵副产量。不足之处是设备复杂,分离精制环节多,工艺控制难度大,催化剂较为昂贵。

主要工艺流程:环己酮肟化;环己酮肟液相贝克曼重排;精制3个工艺单元。

二、 国内己内酰胺总产能在50万吨左右,浙江恒逸的20万吨/年装置正在建设中。

三、 欧洲、美国和日本是传统的己内酰胺生产区域,主要生产厂家有巴斯夫、帝斯曼、霍尼韦尔、日本宇部工业、日本东丽、韩国己内酰胺公司、朗盛化工、住友化学等。 国内只有浙江巨化、巴陵石化、石家庄炼化、南京帝斯曼东方化工有限公司。

四、 菏泽市东巨化工股份有限公司10万吨/年己内酰胺工程

五、 山东方明化工有限公司16万t/a己内酰胺项目

拟建项目己内酰胺生产采用环己酮—羟胺肟化法中的HPO法。HPO法工艺技术先进,原辅材料消耗低,副产硫酸铵少,生产装置安全可靠、易于操作,在国内外被广泛应用。

六、 (1)DSM公司和杜邦公司的Altam工艺。DSM公司和杜邦公司联合开发出基于C4的Altam工艺,新工艺采用丁二烯和一氧化碳(CO)为原料,不会联产硫酸铵,与常规技术相比,可节约费用约30%。首先是丁二烯与一氧化碳和水或醇反应得到3-戊烯酸/甲酯,3-戊烯酸/甲酯异构化生成4-戊烯酸/甲酯,3-戊烯酸/甲酯和4-戊烯酸/甲酯的羰基合成反应,生成5-甲酰基戊酸/甲酯,5-甲酰基戊酸/甲酯还原胺化成6-氨基己酸/甲酯,6-氨基己酸/甲酯环化生成已内酰胺,当6-氨基己酸/甲酯的转化率为97%-98%时,已内酰胺的选择性为97%-99%。对于Altam新工艺来说,要提高转化率和目的产物的选择性,关键在于催化剂的筛选和制备及反应条件的选择。

(2)己二腈工艺。该工艺由巴斯夫与杜邦公司合作开发成功。丁二烯与氢氰酸反应合成己二腈,已二腈部分加氢生成6-氨基己腈和已二胺的混合物,6-氨基己腈与水反应生成己内酰胺。考虑到重组分的循环,已内酰胺的总收率约为93%。该工艺的关键在于己二腈选择性部分加氢,开发成功高性能催化剂,使中间产物和最终产物的转化率和选择性达到高水平。该工艺的主要优点是采用了价格较为低廉的丁二烯,流程较短,物耗能耗较低,不副产硫酸铵,缺点是HCN酸和腈类毒性较大。

(3)住友化学公司生产工艺。日本住友化学公司结合意大利埃尼化学公司许可的氨化工艺,开发出生产己内酰胺的新技术。该新工艺是将一种专用的高硅沸石催化剂FS-1代替硫酸使过氧化氢同氨进行氨氧化直接生产环己酮肟的技术与环己酮肟气相法贝克曼重排反应技术结合起来。新工艺采用流化床反应器,使用甲醇为辅助反应剂,环已酮肟/甲醇/氮气在350℃、0.10MPa下通过分子筛,环已酮肟转化率为99.3%,环己酮肟和甲醇的空速分别为5.04g/g催化剂.h和8.76g/g催化剂.h,己内酰胺产率为95.3%,唯一的副产物是水,甲醇可以回收和循环使用。住友化学公司己在日本爱媛建成一套6.7万吨/年己内酰胺生产装置。该工艺由于不需要羟胺装置,从而降低了投资费用,但过氧化氢费用昂贵,使得必须大规模生产才能显示出其规模经济性和价格优势。

(4)大阪关西大学生产工艺。日本大阪关西(Kansai)大学应用化学系研究人员与Daicel(迪塞尔)化学工业公司合作,开发了一种基于专有的N-羟基邻苯二甲酰亚胺(NHPI)氧化催化剂来合成己内酰胺的新工艺。该新工艺以乙酸乙酯为溶剂,NHPI为催化剂,在60℃,氧气压力为0.1MPa的条件下进行操作,环己酮和环己醇组成的混合物(即KA油)被氧化生成1,1-二羟基二环己基过氧化物(PO)。利用PO制备己内酰胺可以有二种不同的方案:一种是PO与氨反应生成过氧化二环己胺(PDHA),转化率为20%,选择性为90%(基于KA油),PDHA再被LiBr或碱催化转化成已内酰胺。在另一替代路线中,PO在60℃下借助氧化硒催化剂进行反应,先被转化成ε-内酯,基于KA油时转化率为11%,选择性为87%。ε-内酯再与氨反应转化为己内酰胺。尽管该工艺路线目前仍正处于开发阶段,但由于其副产物的硫酸铵量少,故被认为是一种具有发展前景的工艺技术。目前的研究开发重点在于提高产品的转化率。

七、

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:生活就像一首诗作文下一篇:上海市居住证转户口