平面向量三角形四心

2022-10-06

第一篇:平面向量三角形四心

平面向量中的三角形四心问题

向量是高中数学中引入的重要概念,是解决几何问题的重要工具。本文就平面向量与三角形四心的联系做一个归纳总结。在给出结论及证明结论的过程中,可以体现数学的对称性与推论的相互关系。

一、重心(barycenter)

三角形重心是三角形三边中线的交点。重心到顶点的距离与重心到对边中点的距离之比为2:1。在重心确定上,有著名的帕普斯定理。

结论1:若G为ABC所在平面内一点,则GAGBGC0G是三角形的重心证明:设BC中点为D,则2GDGBGCGAGBGC0GAGBGCGA2GD,这表明,G在中线AD上同理可得G在中线BE,CF上故G为ABC的重心

结论2:

1若P为ABC所在平面内一点,则PG(PAPBPC)3G是ABC的重心1证明:PG(PAPBPC)(PGPA)(PGPB)(PGPC)03GAGBGC0G是ABC的重心

二、垂心(orthocenter) 三角形的三条高线的交点叫做三角形的垂心。

结论3:

若H为ABC所在平面内一点,则HAHBHBHCHCHAH是ABC的垂心

证明:HAHBHBHCHB(HAHC)0HBAC0HBAC同理,有HACB,HCAB故H为三角形垂心

结论4:

若H为ABC所在平面内一点,则HABCHBACHCABH是ABC的垂心证明:由HABCHBCA得,HA(HBHC)HB(HCHA)2HBHCHCHA同理可证得,HAHBHBHCHCHA由结论3可知命题成立2222222222222

三、外心(circumcenter) 三角形三条边的垂直平分线(中垂线)的相交点。用这个点做圆心可以画三角形的外接圆。

结论5:

若O是ABC所在平面内一点,则OAOBOCO是ABC的外心 证明:由外心定义可知命题成立

结论6:

若O是ABC所在平面内一点,则(OAOB)BA(OBOC)CB(OCOA)AC O是ABC的外心 3

证明:(OAOB)BA(OAOB)(OAOB)OAOB(OBOC)CBOBOC(OCOA)ACOCOA222222222故OAOBOBOCOCOAOAOBOC故O为ABC的外心

222

四、内心(incenter)

三角形三条内角平分线的交点叫三角形的内心。即内切圆的圆心。

结论7:

若P为ABC所在平面内一点,则ABACBABCCACBOPOA1OB2OC3(0)ABACBABCCACBP是ABC的内心

4

证明:记AB,AC方向上的单位向量分别为e1,e2ABACOPOA1AP1(e1e2)ABAC由平行四边形法则知,(e1e2)在AB,AC边夹角平分线上 即P在A平分线上同理可得,P在B,C的平分线上故P为ABC的内心

结论8:

若P是ABC所在平面内一点,则aPAbPBcPC0P是ABC的内心证明:不妨设PDPC

aPAbPBcPC0a(PDDA)b(PDDB)cPC0(abc)PC(aDAbDB)0由于PC与DA,DB不共线,则abc0,aDAbDB0b即DBa由角平分线定理,CD是ACB的平分线同理可得其他的两条也是平分线故P是ABC的内心DA

第二篇:三角形四心的向量表示

从动和静两个角度看三角形中四“心”的向量表示

平面几何中中三角形的四“心”,即三角形的内心、外心、重心、垂心。在引入向量这个工具后,我们可以从动和静两个角度看三角形中的四“心”的向量表示,其一可以使我们对三角形中的四“心”有全新的认识;其二使我们对向量形式的多样性和向量运算的灵活性有更清楚的认识。

一.从静止的角度看向量的四“心”

1.已知点O是三角形ABC所在平面上一点,若OAOBOC0,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析:若OAOBOC0,则OAOBOC,设以OA、OB为邻边的平行四边形为OACB,OC与AB交于点D,则D为AB的中点,由OAOBOC得,OCOC,即C、O、D、C四点共线,故CD为ABC的中线,所以O在边AB的中线上,同理可证, O在边AC的中线上, O在边BC的中线上所以O是三角形ABC的重心.

 2. 已知点O是三角形所在平面上一点,若OAOBOBOCOCOA,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析:由OAOBOBOC得,OB(OAOC)0,即OBCA0,所以OBC,A同理可证:OCAB,OABC,所以O是ABC的垂心.

3. 已知点O是三角形所在平面上一点,若aOAbOBcOC0,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析::若aOAbOBcOC0,又因为OBOAAB,OCOAAC,则(abc)OAbABcAC0.所以AObcABACABAC,因为与分别表示AB和AC方向上的单位向量,设abc|AB||AC||AB||AC|ABAC+,则AP平分BAC.又AO、APAP共线,BO平分BAC,知AO平分BAC。同理可证,|AB||AC|CO平分BAC。从而O是ABC的内心。

2224.已知点O是三角形所在平面上一点,若OAOBOC,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

222222分析:因为OAOBOC,所以OAOBOC,即OAOBOC,所以O是ABC的外心。

二.从运动的角度看三角形的四“心”

1.已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足OPOA(ABAC),R,则动点P一定通过ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心 解:OPOA(ABAC) ,可得AP(ABAC),由于ABAC表示以AB,AC为邻边的平行四边形的对角线,所以点P在边BC的中线所在直线上,,故动点P的轨迹一定通过ABC的重心. 2.已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足ABAC+ OPOA,R,则动点P一定通过ABC的(

) |AB||AC|(A)内心

(B)外心

(C)重心

(D)垂心

ABABACACABAC+ 得,AP+ 。由于+ 表分析:由OPOA|AB||AC||AB||AC||AB||AC|示BAC的平分线所在的方向向量。故当R时,动点则动点P一定通过ABC的内心。

3已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足ABAC+  ,R,则动点P一定通过ABC的(

) OPOA|AB|cosB|AC|coCs(A)内心

(B)外心

(C)重心

(D)垂心

ABACABAC+ 得,AP+ 。分析: 由OPOA|AB|cosB|AC|cosC|AB|cosB|AC|cosCABACABBCACBC+ B CBCB,C0由于所以cosAB|B|coAsC|C|cos|AB|coBsA|C|C。即点P的轨迹是过点A且垂直于BC的直线,故动点P的轨迹一定通过ABC的垂心。 APB0C4. 已知O平面上一个定点,A、B、C是平面内不共线三点,动点P满足OBOCOP2ABAC+ ,R,则动点P一定通过ABC的(

) sA|C|coC|AB|coBs(A)内心

(B)外心

(C)重心

(D)垂心

ABAC+ |AB|cosB|AC|cosCABACABAC+ ,当R时, + 表示垂直于可得DP|AB|cosB|AC|cosC|AB|cosB|AC|cosCOBOCOBOC分析:设BC的中点为为D,则OD,所以由OP22BC的向量,所以DP为线段BC的垂直平分线,故动点P的轨迹一定通过ABC的外心. 上面通过动和静两个角度看三角形的四”心”的向量表示,得出了椒优美的结论,使我们对向量的四心有了新的认识,更好的体会到辩证的和谐的统一.

第三篇:向量与三角形四心的一些结论

【一些结论】:以下皆是向量

1 若P是△ABC的重心 PA+PB+PC=0 2 若P是△ABC的垂心 PA•PB=PB•PC=PA•PC(内积) 3 若P是△ABC的内心 aPA+bPB+cPC=0(abc是三边)

4 若P是△ABC的外心 |PA|²=|PB|²=|PC|²(AP就表示AP向量 |AP|就是它的模)

5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心 7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)或 AP=λ(AB+AC),λ∈[0,+ ∞) 经过重心

8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,C的外角平分线的交点

【以下是一些结论的有关证明】

1.O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量充分性:已知aOA向量+bOB向量+cOC向量=0向量,延长CO交AB于D,根据向量加法得:OA=OD+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB) +cOC=0,因为OD与OC共线,所以可设OD=kOC,上式可化为(ka+kb+c) OC+( aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:ka+kb+c=0,aDA+bDB=0向量,由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。必要性:已知O是三角形内心,设BO与AC相交于E,CO与AB相交于F,∵O是内心∴b/a=AF/BF,c/a=AE/CE过A作CO的平行线,与BO的延长线相交于N,过A作BO的平行线,与CO的延长线相交于M,所以四边形OMAN是平行四边形根据平行四边形法则,得向量OA=向量OM+向量ON=(OM/CO)*向量CO+(ON/BO)*向量BO=(AE/CE)*向量CO+(AF/BF)*向量BO=(c/a)*向量CO+(b/a)*向量BO∴a*向量OA=b*向量BO+c*向量CO∴a*向量OA+b*向量OB+c*向量OC=向量02.已知△ABC 为斜三角形,且O是△ABC所在平面上的一个定点,动点P满足向量OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},求P点轨迹过三角形的垂心OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},OP-OA=入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},AP=入{(AB /|AB|^2*sin2B)+AC /(|AC|^2*sin2C)},AP•BC=入{(AB•BC /|AB|^2*sin2B)+AC•BC /(|AC|^2*sin2C)},AP•BC=入{|AB|•|BC|cos(180° -B) / (|AB|^2*sin2B) +|AC|•|BC| cosC/(|AC|^2*sin2C)},AP•BC=入{-|AB|•|BC| cos B/ (|AB|^2*2sinB cos B) +|AC|•|BC| cosC/(|AC|^2*2sinC cosC)},AP•BC=入{-|BC|/ (|AB|*2sinB ) +|BC|/(|AC|*2sinC )},根据正弦定理得:|AB|/sinC=|AC|/ sinB,所以|AB|*sinB=|AC|*sinC∴-|BC|/ (|AB|*2sinB ) +|BC|/(|AC|*2sinC )=0,即AP•BC=0,P点轨迹过三角形的垂心3.OP=OA+λ

(AB/(|AB|sinB)+AC/(|AC|sinC))

OP-OA=

λλ(AB/(|AB|sinB)+AC/(|AC|sinC))AP=(AB/(|AB|sinB)+AC/(|AC|sinC))AP与AB/|AB|sinB+AC/|AC|sinC共线根据正弦定理:|AB|/sinC=|AC|/sinB,所以|AB|sinB=|AC|sinC,所以AP与AB+AC共线AB+AC过BC中点D,所以P点的轨迹也过中点D,∴点P过

4.OP=OA+

λλ(ABcosC/|AB|+ACcosB/|AC|)OP=OA+(ABcosC/|AB|+ACcosB/|AC|)AP=λ(ABcosC/|AB|+ACcosB/|AC|)AP•BC=λ(AB•BC cosC/|AB|+AC•BC cosB/|AC|)=λ([|AB|•|BC|cos(180° -B)cosC/|AB|+|AC|•|BC| cosC cosB/|AC|]=λ[-|BC|cosBcosC+|BC| cosC cosB]=0,所以向量AP与向量BC垂直,P点的轨迹过垂心。5.OP=OA+λ(AB/|AB|+AC/|AC|) OP=OA+λ(AB/|AB|+AC/|AC|) OP-OA =λ(AB/|AB|+AC/|AC|)AP=λ(AB/|AB|+AC/|AC|)AB/|AB|、AC/|AC|各为AB、AC方向上的单位长度向量,向量AB与AC的单位向量的和向量,因为是单位向量,模长都相等,构成菱形,向量AB与AC的单位向量的和向量为菱形对角线,易知是角平分线,所以P点的轨迹经过内心

第四篇:三角函数与平面向量综合练习

1等边ABC的边长为1,设ABa,BCb,ACC,则abbcca()

3131B.C.D. 222

22. 若是第三象限角,且sincossin,则是() 222A.

A.第

二、四象限角B.第二象限角C.第三象限角D.第四象限角

3. 已知P是ABC所在平面内的一点,若,R。则点P一定在() A.ABC内部B.AC边所在直线上

C.AB边所在直线上D.BC边所在直线上

4. 已知ABC中,点D在BC边上,且2,rs,则rs的值()

24B.C.3D.0 3

35. 已知平面向量a(1,2),b(2,m),且a//b,则2a3b=() A.

A、(5,10)B、(4,8)C、(3,6)D、(2,4)

6. 已知向量a(1,2),b(2,3).若向量c满足(ca)//b,c(ab),则c() A.(,B.(77

93777777,C.(,)D.(,393993

7. 函数y4sin(2x

3的单调减区间是_____________

8. 在AOB中,(2cos,2sin),(5cos,5sin),若5,则AOB的面积为__________

9. 若|a|1,|b|2,cab,且ca,则向量a与b的夹角为.

010. 若a1,b2,与的夹角为60,若(3a5b)(mab),则m的值为.

11. 已知O,A,M,B为平面上四点,则(1),(1,2),则()

A.点M在线段AB上B.点B在线段AM上

C.点A在线段BM上D.O,A,M,B四点共线

12. 如图,在ABC中,BAC120,AB2,AC1,D是边BC上一点,DC2BD,则A __________.

B C

13. 过ABC的重心G任作一直线分别交AB,AC于点D,E,若m,n(mn0),求证:

14. 记向量n()(cos,sin)

(1)求两向量的数量积()(0) 113. mn

(2)令函数f(x)(2x)(0)4(x)()(xR),求函数f(x)的最小值及相应的x 

15.

已知函数f(x)x)cos(x)(0π,0)为偶函数,且函数yf(x)图象的两相邻对称轴间的距离为

π(2)将函数yf的值;

8π.(利用公式:sin()sincoscossin )(1)求2πf(x)的图象向右平移个单位后,得到函数yg(x)的图象,求g(x)6

的单调递减区间.

16. 利用向量证明:在△ABC中,a,b,c为A,B,C的对边,则有

a2=b2+c2-2bccosA,

b2=c2+a2-2cacosB,

c2=a2+b2-2abcosC.

第五篇:第二单元 数列、三角函数、平面向量教学设计2

沧源民族中学高三年级数学复习教学设计第六周2011年3月19日星期六

第二单元数列、三角函数、平面向量

第一讲三角函数(6课时)

主备教师肖平聪

一、教学内容及其解析

1、三角函数式的化简与求值:两角和的正弦、余弦、正切;二倍角的正弦、余弦、正切;诱导公式的运用。

2、三角函数的图象与性质:正弦函数、余弦函数、正切函数图象及其性质。

3、三角形中的三角函数问题:正弦定理、余弦定理以及三角形面积公式的运用。

二、目标及其解析

1、能灵活运用三角函数的有关公式,对三角函数进行变形与化简。

2、理解和掌握三角函数的图像及性质。

3、能用正弦定理、余弦定理解三角形问题。

三、问题诊断分析:

高考中,三角函数主要考查学生的运算能力、灵活运用能力,在客观题中,突出考察基本公式所涉及的运算、三角函数的图像基本性质,尤其是对角的范围及角之间的特殊联系较为注重。解答题中以中等难度题为主,涉及解三角形、向量及简单运算。三角函数部分,公式较多,易混淆,在运用过程中,要观察三角函数中函数名称的差异、角的差异、关系式的差异,确定三角函数变形化简方向。

四 教学过程设计

1、三角函数式的化简与求值

问题1两角和的正弦、余弦、正切的公式?

问题2二倍角的正弦、余弦、正切的公式呢?

问题3三角函数的诱导公式呢?

例题(见高考调研二轮重点讲练p30)

变式训练(见高考调研二轮重点讲练p30)

2、三角函数的图象与性质

问题1三角函数的正弦函数、余弦函数、正切函数图象怎么画?

问题2三角函数的正弦函数、余弦函数、正切函数的性质有哪些?

例题(见高考调研二轮重点讲练p31-33)

变式训练(见高考调研二轮重点讲练p31-33)

3、三角形中的三角函数问题

问题1正弦定理、余弦定理是什么?

问题2三角形面积公式怎么用?

例题(见高考调研二轮重点讲练p33)

变式训练(见高考调研二轮重点讲练p33)

五、目标检测:(见二轮复习用书p34)

六、配餐作业:(见二轮复习用书p34-36)热点集训作业和2011届先知专题卷专题.

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:培训班老师述职报告下一篇:葡萄牙商务礼仪习俗