二下数学期末考试试卷

2023-01-16

第一篇:二下数学期末考试试卷

离散数学 期末考试试卷答案

离散数学试题(B卷答案1)

一、证明题(10分)

1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R) ((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R) ((P∨Q)∨(Q∨P))∧R ((P∨Q)∨(P∨Q))∧R T∧R(置换)R 2) x (A(x)B(x)) xA(x)xB(x) 证明 :x(A(x)B(x))x(A(x)∨B(x)) xA(x)∨xB(x) xA(x)∨xB(x) xA(x)xB(x)

二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。

证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R)) (P∧(Q∨R))∨(P∧Q∧R) (P∧Q)∨(P∧R))∨(P∧Q∧R) (P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R) m0∨m1∨m2∨m7 M3∨M4∨M5∨M6

三、推理证明题(10分)

1) C∨D, (C∨D) E, E(A∧B), (A∧B)(R∨S)R∨S 证明:(1) (C∨D)E (2) E(A∧B)

P P

P (3) (C∨D)(A∧B) T(1)(2),I (4) (A∧B)(R∨S) (5) (C∨D)(R∨S) (6) C∨D

T(3)(4), I P (7) R∨S T(5),I 2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x)) 证明(1)xP(x) P

(2)P(a) T(1),ES (3)x(P(x)Q(y)∧R(x)) P (4)P(a)Q(y)∧R(a) T(3),US (5)Q(y)∧R(a) T(2)(4),I (6)Q(y) T(5),I (7)R(a) T(5),I (8)P(a)∧R(a) T(2)(7),I (9)x(P(x)∧R(x)) T(8),EG (10)Q(y)∧x(P(x)∧R(x)) T(6)(9),I

四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。

解:A,B,C分别表示会打排球、网球和篮球的学生集合。则|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2。

先求|A∩B|。

∵6=|(A∪C)∩B|=|(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2,∴|(A∩B)|=3。

于是|A∪B∪C|=12+6+14-6-5-3+2=20。不会打这三种球的人数25-20=5。

五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C) (10分)。

证明:∵x A-(B∪C) x A∧x(B∪C)

 x A∧(xB∧xC)

(x A∧xB)∧(x A∧xC)  x(A-B)∧x(A-C)  x(A-B)∩(A-C)

∴A-(B∪C)=(A-B)∩(A-C)

六、已知R、S是N上的关系,其定义如下:R={| x,yN∧y=x},S={| x,yN∧y=x+1}。求R、R*S、S*R、R{1,2}、S[{1,2}](10分)。

解:R={| x,yN∧y=x} R*S={| x,yN∧y=x+1} S*R={| x,yN∧y=(x+1)},R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。

七、设R={,,},求r(R)、s(R)和t(R) (15分)。

解:r(R)={,,,,,}

22-

12-1

2s(R)={,,,,,} R= R={,,} R={,,} R={,,} t(R)={,,,,,,,,,}

八、证明整数集I上的模m同余关系R={|xy(mod m)}是等价关系。其中,xy(mod m)的含义是x-y可以被m整除(15分)。

证明:1)x∈I,因为(x-x)/m=0,所以xx(mod m),即xRx。

2)x,y∈I,若xRy,则xy(mod m),即(x-y)/m=k∈I,所以(y - x)/m=-k∈I,所以yx(mod m),即yRx。

3)x,y,z∈I,若xRy,yRz,则(x-y)/m=u∈I,(y-z)/m=v∈I,于是(x-z)/m=(x-y+y-z)/m=u+v ∈I,因此xRz。

九、若f:A→B和g:B→C是双射,则(gf)=fg(10分)。

-

1-1-14325证明:因为f、g是双射,所以gf:A→C是双射,所以gf有逆函数(gf):C→A。同理可推fg:C→A是双射。

因为∈fg存在z(∈g∈f)存在z(∈f∈g)∈gf∈(gf),所以(gf)=fg。

-

1-1

-1-1-1-1

-1

-1-1-1

-1离散数学试题(B卷答案2)

一、证明题(10分)

1)((P∨Q)∧(P∧(Q∨R)))∨(P∧Q)∨(P∧R)T 证明: 左端((P∨Q)∧(P∨(Q∧R)))∨((P∨Q)∧(P∨R))(摩根律)  ((P∨Q)∧(P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(分配律)  ((P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R)) (等幂律) T (代入) 2) xy(P(x)Q(y)) (xP(x)yQ(y)) 证明:xy(P(x)Q(y))xy(P(x)∨Q(y)) x(P(x)∨yQ(y)) xP(x)∨yQ(y) xP(x)∨yQ(y) (xP(x)yQ(y))

二、求命题公式(PQ)(P∨Q) 的主析取范式和主合取范式(10分)

解:(PQ)(P∨Q)(PQ)∨(P∨Q) (P∨Q)∨(P∨Q) (P∧Q)∨(P∨Q) (P∨P∨Q)∧(Q∨P∨Q) (P∨Q) M1 m0∨m2∨m3

三、推理证明题(10分)

1)(P(QS))∧(R∨P)∧QRS 证明:(1)R (2)R∨P (3)P (4)P(QS) (5)QS (6)Q (7)S (8)RS 2) x(A(x)yB(y)),x(B(x)yC(y))xA(x)yC(y)。

证明:(1)x(A(x)yB(y)) P (2)A(a)yB(y) T(1),ES (3)x(B(x)yC(y)) P (4)x(B(x)C(c)) T(3),ES (5)B(b)C(c) T(4),US (6)A(a)B(b) T(2),US (7)A(a)C(c) T(5)(6),I (8)xA(x)C(c) T(7),UG (9)xA(x)yC(y) T(8),EG

四、只要今天天气不好,就一定有考生不能提前进入考场,当且仅当所有考生提前进入考场,考试才能准时进行。所以,如果考试准时进行,那么天气就好(15分)。

解 设P:今天天气好,Q:考试准时进行,A(e):e提前进入考场,个体域:考生

的集合,则命题可符号化为:PxA(x),xA(x)QQP。

(1)PxA(x) P (2)PxA(x) T(1),E (3)xA(x)P T(2),E (4)xA(x)Q P (5)(xA(x)Q)∧(QxA(x)) T(4),E (6)QxA(x) T(5),I (7)QP T(6)(3),I

五、已知A、B、C是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C) (10分)

证明:∵x A∩(B∪C) x A∧x(B∪C) x A∧(xB∨xC)( x A∧xB)∨(x A∧xC) x(A∩B)∨x A∩C x(A∩B)∪(A∩C)∴A∩(B∪C)=(A∩B)∪(A∩C)

六、A={ x1,x2,x3 },B={ y1,y2},R={,,},求其关系矩阵及关系图(10分)。

七、设R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R),并作出它们及R的关系图(15分)。

解:r(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>, <3,3>,<4,4>,<5,5>} s(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,<4,2>,<4,3>} R=R={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} t(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,1>,<5,4>,<5,5>}

八、设R1是A上的等价关系,R2是B上的等价关系,A≠且B≠。关系R满足:<,>∈R∈R1且∈R2,证明R是A×B上的等价关系(10分)。

证明 对任意的∈A×B,由R1是A上的等价关系可得∈R1,由R2是B上的等价关系可得∈R2。再由R的定义,有<,>∈R,所以R是自反的。

对任意的、∈A×B,若R,则∈R1且∈R2。由R1对称得∈R1,由R2对称得∈R2。再由R的定义,有<,> 432

5∈R,即R,所以R是对称的。

对任意的、、∈A×B,若R且R,则∈R1且∈R2,∈R1且∈R2。由∈R

1、∈R1及R1的传递性得∈R1,由∈R

2、∈R2及R2的传递性得∈R1。再由R的定义,有<,>∈R,即R,所以R是传递的。

综上可得,R是A×B上的等价关系。

九、设f:AB,g:BC,h:CA,证明:如果hgf=IA,fhg=IB,gfh=IC,则f、g、h均为双射,并求出f、g和h(10分)。

解 因IA恒等函数,由hgf=IA可得f是单射,h是满射;因IB恒等函数,由fhg=IB可得g是单射,f是满射;因IC恒等函数,由gfh=IC可得h是单射,g是满射。从而f、g、h均为双射。

由hgf=IA,得f=hg;由fhg=IB,得g=fh;由gfh=IC,得h=gf。 -

1-1

-1-1-1

-1离散数学试题(B卷答案3)

一、(10分)判断下列公式的类型(永真式、永假式、可满足式)?(写过程) 1)P(P∨Q∨R) 2)((QP)∨P)∧(P∨R) 3)((P∨Q)R)((P∧Q)∨R) 解:1)重言式;2)矛盾式;3)可满足式

二、(10分)求命题公式(P∨(Q∧R))(P∨Q∨R)的主析取范式,并求成真赋值。

解:(P∨(Q∧R))(P∨Q∨R)(P∨(Q∧R))∨P∨Q∨R P∧(Q∨R)∨P∨Q∨R (P∧Q)∨(P∧R)∨(P∨Q)∨R ((P∨Q)∨(P∨Q))∨(P∧R)∨R 1∨((P∧R)∨R)1 m0∨m1∨m2∨m3∨m4∨m5∨m6∨m7 该式为重言式,全部赋值都是成真赋值。

三、(10分)证明 ((P∧Q∧A)C)∧(A(P∨Q∨C))(A∧(PQ))C 证明:((P∧Q∧A)C)∧(A(P∨Q∨C))((P∧Q∧A)∨C)∧(A∨(P∨Q∨C)) ((P∨Q∨A)∨C)∧((A∨P∨Q)∨C)

((P∨Q∨A)∧(A∨P∨Q))∨C ((P∨Q∨A)∧(A∨P∨Q))C ((P∨Q∨A)∨(A∨P∨Q))C ((P∧Q∧A)∨(A∧P∧Q))C (A∧((P∧Q)∨(P∧Q)))C (A∧((P∨Q)∧(P∨Q)))C (A∧((QP)∧(PQ)))C (A∧(PQ))C

四、(10分)个体域为{1,2},求xy(x+y=4)的真值。

解:xy(x+y=4)x((x+1=4)∨(x+2=4))

((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+2=4)) (0∨0)∧(0∨1)0∧10

五、(10分)对于任意集合A,B,试证明:P(A)∩P(B)=P(A∩B) 解:xP(A)∩P(B),xP(A)且xP(B),有xA且xB,从而xA∩B,xP(A∩B),由于上述过程可逆,故P(A)∩P(B)=P(A∩B)

六、(10分)已知A={1,2,3,4,5}和R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求r(R)、s(R)和t(R)。

解:r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>} t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}

七、(10分)设函数f:R×RR×R,R为实数集,f定义为:f()=。1)证明f是双射。

解:1),∈R×R,若f()=f(),即=,则x1+y1=x2+y2且x1-y1=x2-y2得x1=x2,y1=y2从而f是单射。

2)∈R×R,由f()=,通过计算可得x=(p+q)/2;y=(p-q)/2;从而的原象存在,f是满射。

八、(10分)是个群,u∈G,定义G中的运算“”为ab=a*u*b,对任意a,b∈G,求证:也是个群。

证明:1)a,b∈G,ab=a*u*b∈G,运算是封闭的。

2)a,b,c∈G,(ab)c=(a*u*b)*u*c=a*u*(b*u*c)=a(bc),运算是可结合的。

3)a∈G,设E为的单位元,则aE=a*u*E=a,得E=u,存在单位元u。 4)a∈G,ax=a*u*x=E,x=u*a*u,则xa=u*a*u*u*a=u=E,每个元素都有逆元。

所以也是个群。

九、(10分)已知:D=,V={1,2,3,4,5},E={<1,2>,<1,4>,<2,3>,<3,4>,<3,5>,<5,1>},求D的邻接距阵A和可达距阵P。

解:1)D的邻接距阵A和可达距阵P如下:

A= 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1

1 1 1 0 1 -

1-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

P= 1 1 1 1

十、(10分)求叶的权分别为

2、

4、

6、

8、

10、

12、14的最优二叉树及其权。

解:最优二叉树为

权=(2+4)×4+6×3+12×2+(8+10)×3+14×2=148

离散数学试题(B卷答案4)

一、证明题(10分)

1)((P∨Q)∧(P∧(Q∨R)))∨(P∧Q)∨(P∧R)T

证明: 左端((P∨Q)∧(P∨(Q∧R)))∨((P∨Q)∧(P∨R))(摩根律)  ((P∨Q)∧(P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(分配律)  ((P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R)) (等幂律) T (代入) 2)x(P(x)Q(x))∧xP(x)x(P(x)∧Q(x)) 证明:x(P(x)Q(x))∧xP(x)x((P(x)Q(x)∧P(x))x((P(x)∨Q(x)∧P(x))x(P(x)∧Q(x))xP(x)∧xQ(x)x(P(x)∧Q(x))

二、求命题公式(PQ)(P∨Q) 的主析取范式和主合取范式(10分)

解:(PQ)(P∨Q)(PQ)∨(P∨Q)(P∨Q)∨(P∨Q)(P∧Q)∨(P∨Q) (P∨P∨Q)∧(Q∨P∨Q)(P∨Q)M1m0∨m2∨m3

三、推理证明题(10分)

1)(P(QS))∧(R∨P)∧QRS 证明:(1)R 附加前提 (2)R∨P P (3)P T(1)(2),I (4)P(QS) P (5)QS T(3)(4),I (6)Q P (7)S T(5)(6),I (8)RS CP 2) x(P(x)∨Q(x)),xP(x)x Q(x) 证明:(1)xP(x) P (2)P(c) T(1),US (3)x(P(x)∨Q(x)) P (4)P(c)∨Q(c) T(3),US (5)Q(c) T(2)(4),I (6)x Q(x) T(5),EG

四、例5在边长为1的正方形内任意放置九个点,证明其中必存在三个点,使得由它们组成的三角形(可能是退化的)面积不超过1/8(10分)。

证明:把边长为1的正方形分成四个全等的小正方形,则至少有一个小正方形内有三个点,它们组成的三角形(可能是退化的)面积不超过小正方形的一半,即1/8。

五、已知A、B、C是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C) (10分)

证明:∵x A∩(B∪C) x A∧x(B∪C) x A∧(xB∨xC)( x A∧xB)∨(x A∧xC) x(A∩B)∨x A∩C x(A∩B)∪(A∩C)∴A∩(B∪C)=(A∩B)∪(A∩C)

六、={A1,A2,„,An}是集合A的一个划分,定义R={|a、b∈Ai,I=1,2,„,n},则R是A上的等价关系(15分)。

证明:a∈A必有i使得a∈Ai,由定义知aRa,故R自反。 a,b∈A,若aRb ,则a,b∈Ai,即b,a∈Ai,所以bRa,故R对称。

a,b,c∈A,若aRb 且bRc,则a,b∈Ai及b,c∈Aj。因为i≠j时Ai∩Aj=,故i=j,即a,b,c∈Ai,所以aRc,故R传递。

总之R是A上的等价关系。

七、若f:A→B是双射,则f:B→A是双射(15分)。

证明:对任意的x∈A,因为f是从A到B的函数,故存在y∈B,使∈f,∈f。所以,f是满射。

对任意的x∈A,若存在y1,y2∈B,使得∈f且∈f,则有∈f且∈f。因为f是函数,则y1=y2。所以,f是单射。

因此f是双射。

八、设是群,和是的子群,证明:若A∪B=G,则A=G或B=G(10分)。

证明 假设A≠G且B≠G,则存在aA,aB,且存在bB,bA(否则对任意的aA,aB,从而AB,即A∪B=B,得B=G,矛盾。)

对于元素a*bG,若a*bA,因A是子群,aA,从而a * (a*b)=b A,所以矛盾,故a*bA。同理可证a*bB,综合有a*bA∪B=G。 综上所述,假设不成立,得证A=G或B=G。

九、若无向图G是不连通的,证明G的补图G是连通的(10分)。

证明 设无向图G是不连通的,其k个连通分支为G

1、G

2、„、Gk。任取结点u、v∈G,若u和v不在图G的同一个连通分支中,则[u,v]不是图G的边,因而[u,v]

-

1-1-1

-1

-1

-1-1-1-1是图G的边;若u和v在图G的同一个连通分支中,不妨设其在连通分支Gi(1≤i≤k)中,在不同于Gi的另一连通分支上取一结点w,则[u,w]和[w,v]都不是图G的边,,

因而[u,w]和[w,v]都是G的边。综上可知,不管那种情况,u和v都是可达的。由u和v的任意性可知,G是连通的。

离散数学试题(B卷答案5)

一、(10分)求命题公式(P∧Q)(PR)的主合取范式。

解:(P∧Q)(PR)((P∧Q)(PR))∧((PR)(P∧Q)) ((P∧Q)∨(P∧R))∧((P∨R)∨(P∨Q)) (P∧Q)∨(P∧R) (P∨R)∧(Q∨P)∧(Q∨R)

(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R) M1∧M3∧M4∧M5

二、(8分)叙述并证明苏格拉底三段论

解:所有人都是要死的,苏格拉底是人,所以苏格拉底是要死的。 符号化:F(x):x是一个人。G(x):x要死的。A:苏格拉底。 命题符号化为x(F(x)G(x)),F(a)G(a) 证明:

(1)x(F(x)G(x)) P (2)F(a)G(a) T(1),US (3)F(a) P (4)G(a) T(2)(3),I

三、(8分)已知A、B、C是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C) 证明:∵x A∩(B∪C) x A∧x(B∪C)

 x A∧(xB∨xC)

( x A∧xB)∨(x A∧xC)  x(A∩B)∨x A∩C  x(A∩B)∪(A∩C)

∴A∩(B∪C)=(A∩B)∪(A∩C)

四、(10分)已知R和S是非空集合A上的等价关系,试证:1)R∩S是A上的等价关系;2)对a∈A,[a]R∩S=[a]R∩[a]S。

解:x∈A,因为R和S是自反关系,所以∈R、∈S,因而∈R∩S,

故R∩S是自反的。

x、y∈A,若∈R∩S,则∈R、∈S,因为R和S是对称关系,所以因∈R、∈S,因而∈R∩S,故R∩S是对称的。

x、y、z∈A,若∈R∩S且∈R∩S,则∈R、∈S且∈R、∈S,因为R和S是传递的,所以因∈R、∈S,因而∈R∩S,故R∩S是传递的。

总之R∩S是等价关系。

2)因为x∈[a]R∩S∈R∩S

∈R∧∈S x∈[a]R∧x∈[a]S x∈[a]R∩[a]S 所以[a]R∩S=[a]R∩[a]S。

五、(10分) 设A={a,b,c,d},R是A上的二元关系,且R={,,,},求r(R)、s(R)和t(R)。

解 r(R)=R∪IA={,,,,,,,} s(R)=R∪R={,,,,,} R={,,,} R={,,,} R={,,,}=R

t(R)=R={,,,,,,,

4232-1d>,}

六、(15分) 设A、B、C、D是集合,f是A到B的双射,g是C到D的双射,令h:A×CB×D且∈A×C,h()=。证明h是双射。

证明:1)先证h是满射。

∈B×D,则b∈B,d∈D,因为f是A到B的双射,g是C到D的双射,所以存在a∈A,c∈C,使得f(a)=b,f(c)=d,亦即存在∈A×C,使得h()==,所以h是满射。

2)再证h是单射。

、∈A×C,若h()=h(),则= ,所以f(a1)=f(a2),g(c1)=g(c2),因为f是A到B的双射,g是C

到D的双射,所以a1=a2,c1=c2,所以=,所以h是单射。

综合1)和2),h是双射。

七、(12分)设是群,H是G的非空子集,证明是的子群的充要条件是若a,bH,则有a*bH。

证明: a,b∈H有b∈H,所以a*b∈H。 a∈H,则e=a*a∈H a=e*a∈H ∵a,b∈H及b∈H,∴a*b=a*(b)∈H ∵HG且H≠,∴*在H上满足结合律 ∴是的子群。

八、(10分)设G=是简单的无向平面图,证明G至少有一个结点的度数小于等于5。

解:设G的每个结点的度数都大于等于6,则2|E|=d(v)≥6|V|,即|E|≥3|V|,与简单无向平面图的|E|≤3|V|-6矛盾,所以G至少有一个结点的度数小于等于5。 九.G=,A={a,b,c},*的运算表为:(写过程,7分) -

1-1

-1-1-1-1-1

-1-1 (1)G是否为阿贝尔群?

(2)找出G的单位元;(3)找出G的幂等元(4)求b的逆元和c的逆元 解:(1)(a*c)*(a*c)=c*c=b=a*b=(a*a)*(c*c) (a*b)*(a*b)=b*b=c=a*c=(a*a)*(b*b) (b*c)*(b*c)=a*a=a=c*b=(b*b)*(c*c) 所以G是阿贝尔群

(2)因为a*a=a a*b=b*a=b a*c=c*a=c 所以G的单位元是a (3)因为a*a=a 所以G的幂等元是a (4)因为b*c=c*b=a,所以b的逆元是c且c的逆元是b

十、(10分)求叶的权分别为

2、

4、

6、

8、

10、

12、14的最优二叉树及其权。

解:最优二叉树为

权=148 离散数学试题(B卷答案6)

一、(20分)用公式法判断下列公式的类型: (1)(P∨Q)(PQ) (2)(PQ)(P∧(Q∨R)) 解:(1)因为(P∨Q)(PQ)(P∨Q)∨(P∧Q)∨(P∧Q)

(P∧Q)∨(P∧Q)∨(P∧Q) m1∨m2∨m3 M0

所以,公式(P∨Q)(PQ)为可满足式。

(2)因为(PQ)(P∧(Q∨R))(( P∨Q))∨(P∧Q∧R))

(P∨Q)∨(P∧Q∧R))

(P∨Q∨P)∧(P∨Q∨Q)∧(P∨Q∨R) (P∨Q)∧(P∨Q∨R)

(P∨Q∨(R∧R))∧(P∨Q∨R) (P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R) M0∧M1

m2∨m3∨m4∨m5∨m6∨m7

所以,公式(PQ)(P∧(Q∨R))为可满足式。

二、(15分)在谓词逻辑中构造下面推理的证明:每个科学家都是勤奋的,每个勤奋

又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人或事业半途而废的人。

解:论域:所有人的集合。Q(x):x是勤奋的;H(x):x是身体健康的;S(x):x是科学家;C(x):x是事业获得成功的人;F(x):x是事业半途而废的人;则推理化形式为:

x(S(x)H(x))Q(x)),x(Q(x)∧H(x)C(x)),x(S(x)∧x(C(x)∨F(x)) 下面给出证明:

(1)x(S(x)∧H(x))

P (2)S(a)∧H(a)

T(1),ES (3)x(S(x)Q(x))

P (4)S(a)Q(a)

T(1),US (5)S(a)

T(2),I (6)Q(a)

T(4)(5),I (7)H(a)

T(2),I (8)Q(a)∧H(a)

T(6)(7),I (9)x(Q(x)∧H(x)C(x))

P (10)Q(a)∧H(a)C(a)

T(9),Us (11)C(a)

T(8)(10),I (12)xC(x)

T(11),EG (13)x(C(x)∨F(x))

T(12),I

三、(10分)设A={,1,{1}},B={0,{0}},求P(A)、P(B)-{0}、P(B)B。 解

P(A)={,{},{1},{{1}},{,1},{,{1}},{1,{1}},{,1,{1}}} P(B)-{0}={,{0},{{0}},{0,{0}}-{0}={,{0},{{0}},{0,{0}} P(B)B={,{0},{{0}},{0,{0}}{0,{0}}={,0,{{0}},{0,{0}}

四、(15分)设R和S是集合A上的任意关系,判断下列命题是否成立? (1)若R和S是自反的,则R*S也是自反的。 (2)若R和S是反自反的,则R*S也是反自反的。 (3)若R和S是对称的,则R*S也是对称的。

(4)若R和S是传递的,则R*S也是传递的。 (5)若R和S是自反的,则R∩S是自反的。 (6)若R和S是传递的,则R∪S是传递的。

(1)成立。对任意的a∈A,因为R和S是自反的,则∈R,∈S,于是∈R*S,故R*S也是自反的。

(2)不成立。例如,令A={1,2},R={<1,2>},S={<2,1>},则R和S是反自反的,但R*S={<1,1>}不是反自反的。

(3)不成立。例如,令A={1,2,3},R={<1,2>,<2,1>,<3,3>},S={<2,3>,<3,2>},则R和S是对称的,但R*S={<1,3>,<3,2>}不是对称的。

(4)不成立。例如,令A={1,2,3},R={<1,2>,<2,3>,<1,3>},S={<2,3>,<3,1>,<2,1>},则R和S是传递的,但R*S={<1,3>,<1,1>,<2,1>}不是传递的。

(5)成立。对任意的a∈A,因为R和S是自反的,则∈R,∈S,于是∈R∩S,所以R∩S是自反的。

五、(15分)令X={x1,x2,„,xm},Y={y1,y2,„,yn}。问 (1)有多少个不同的由X到Y的函数?

(2)当n、m满足什么条件时,存在单射,且有多少个不同的单射? (3)当n、m满足什么条件时,存在双射,且有多少个不同的双射?

(1)由于对X中每个元素可以取Y中任一元素与其对应,每个元素有n种取法,所以不同的函数共nm个。

(2)显然当|m|≤|n|时,存在单射。由于在Y中任选m个元素的任一全排列都形成X到

mY的不同的单射,故不同的单射有Cnm!=n(n-1)(n―m―1)个。

(3)显然当|m|=|n|时,才存在双射。此时Y中元素的任一不同的全排列都形成X到Y的不同的双射,故不同的双射有m!个。

六、(5分)集合X上有m个元素,集合Y上有n个元素,问X到Y的二元关系总共有多少个?

X到Y的不同的二元关系对应X×Y的不同的子集,而X×Y的不同的子集共有个2mn,所以X到Y的二元关系总共有2mn个。

七、(10分)若是群,则对于任意的a、b∈G,必有惟一的x∈G使得a*x=

b。

证明 设e是群的幺元。令x=a1*b,则a*x=a*(a1*b)=(a*a1)*b=e*b=b。

-

-

-所以,x=a1*b是a*x=b的解。 -若x∈G也是a*x=b的解,则x=e*x=(a1*a)*x=a1*(a*x)=a1*b=x。所以,x

-

-

-=a1*b是a*x=b的惟一解。 -

八、(10分)给定连通简单平面图G=,且|V|=6,|E|=12。证明:对任意f∈F,d(f)=3。

证明

由偶拉公式得|V|-|E|+|F|=2,所以|F|=2-|V|+|E|=8,于是d(f)=2|E|=

fF24。若存在f∈F,使得d(f)>3,则3|F|<2|E|=24,于是|F|<8,与|F|=8矛盾。故对任意f∈F,d(f)=3。

离散数学试题(B卷答案7)

一、(15分)设计一盏电灯的开关电路,要求受3个开关A、B、C的控制:当且仅当A和C同时关闭或B和C同时关闭时灯亮。设F表示灯亮。

(1)写出F在全功能联结词组{}中的命题公式。 (2)写出F的主析取范式与主合取范式。

(1)设A:开关A关闭;B:开关B关闭;C:开关C关闭;F=(A∧C)∨(B∧C)。 在全功能联结词组{}中:

A(A∧A)AA A∧C( A∧C)( AC)(AC)(AC)

A∨B(A∧B)(( AA)∧(BB))( AA)(BB) 所以

F((AC)(AC))∨((BC)(BC)) (((AC)(AC))((AC)(AC)))(((BC)(BC))((BC)(BC))) (2)F(A∧C)∨(B∧C)

(A∧(B∨B)∧C)∨((A∨A)∧B∧C) (A∧B∧C)∨(A∧B∧C)∨(A∧B∧C)∨(A∧B∧C) m3∨m5∨m7

主析取范式 M0∧M1∧M2∧M4∧M6

主合取范式

二、(10分)判断下列公式是否是永真式? (1)(xA(x)xB(x))x(A(x)B(x))。 (2)(xA(x)xB(x))x(A(x)B(x)))。 解

(1)(xA(x)xB(x))x(A(x)B(x)) (xA(x)∨xB(x))x(A(x)B(x)) (xA(x)∨xB(x))∨x(A(x)∨B(x)) (xA(x)∧xB(x))∨xA(x)∨xB(x) (xA(x)∨xA(x)∨xB(x))∧(xB(x)∨xA(x)∨xB(x)) x(A(x)∨A(x))∨xB(x) T

所以,(xA(x)xB(x))x(A(x)B(x))为永真式。

(2)设论域为{1,2},令A(1)=T;A(2)=F;B(1)=F;B(2)=T。

则xA(x)为假,xB(x)也为假,从而xA(x)xB(x)为真;而由于A(1)B(1)为假,所以x(A(x)B(x))也为假,因此公式(xA(x)xB(x))x(A(x)B(x))为假。该公式不是永真式。

三、(15分)设X为集合,A=P(X)-{}-{X}且A≠,若|X|=n,问 (1)偏序集是否有最大元? (2)偏序集是否有最小元?

(3)偏序集中极大元和极小元的一般形式是什么?并说明理由。 解

偏序集不存在最大元和最小元,因为n>2。

考察P(X)的哈斯图,最底层的顶点是空集,记作第0层,由底向上,第一层是单元集,第二层是二元集,…,由|X|=n,则第n-1层是X的n-1元子集,第n层是X。偏序集与偏序集相比,恰好缺少第0层和第n层。因此的极小元就是X的所有单元集,即{x},x∈X;而极大元恰好是比X少一个元素,即X-{x},x∈X。

四、(10分)设A={1,2,3,4,5},R是A上的二元关系,且R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R)。

r(R)=R∪IA={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)=R∪R1={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,-

<4,2>,<4,3>} R2={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R3={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R4={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>}=R2 t(R)=Ri={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,i11>,<5,4>,<5,5>}。

五、(10分)设函数g:A→B,f:B→C,

(1)若fg是满射,则f是满射。 (2)若fg是单射,则g是单射。

证明

因为g:A→B,f:B→C,由定理5.5知,fg为A到C的函数。

(1)对任意的z∈C,因fg是满射,则存在x∈A使fg(x)=z,即f(g(x))=z。由g:A→B可知g(x)∈B,于是有y=g(x)∈B,使得f(y)=z。因此,f是满射。

(2)对任意的x

1、x2∈A,若x1≠x2,则由fg是单射得fg(x1)≠fg(x2),于是f(g(x1))≠f(g(x2)),必有g(x1)≠g(x2)。所以,g是单射。

六、(10分)有幺元且满足消去律的有限半群一定是群。

证明

设是一个有幺元且满足消去律的有限半群,要证是群,只需证明G的任一元素a可逆。

考虑a,a2,„,ak,„。因为G只有有限个元素,所以存在k>l,使得ak=al。令m=k-l,有al*e=al*am,其中e是幺元。由消去率得am=e。

于是,当m=1时,a=e,而e是可逆的;当m>1时,a*am-1=am-1*a=e。从而a是可逆的,其逆元是am-1。总之,a是可逆的。

七、(20分)有向图G如图所示,试求: (1)求G的邻接矩阵A。

(2)求出A

2、A3和A4,v1到v4长度为

1、

2、3和4的路有多少?

(3)求出ATA和AAT,说明ATA和AAT中的第(2,2)元素和第(2,3)元素的意义。 (4)求出可达矩阵P。 (5)求出强分图。

(1)求G的邻接矩阵为:

00A00101011

101100(2)由于

002A001110220130

1 A0211102011120322044A

031201012313 2322所以v1到v4长度为

1、

2、3和4的路的个数分别为

1、

1、

2、3。 (3)由于

00ATA000002131212TAA

21011102132110 2121再由定理10.19可知,所以ATA的第(2,2)元素为3,表明那些边以v2为终结点且具有不同始结点的数目为3,其第(2,3)元素为0,表明那些边既以v2为终结点又以v3为终结点,并且具有相同始结点的数目为0。AAT中的第(2,2)元素为2,表明那些边以v2为始结点且具有不同终结点的数目为2,其第(2,3)元素为1,表明那些边既以v2为始结点又以v3为始结点,并且具有相同终结点的数目为1。

(4)00B4AA2A3A40000所以求可达矩阵为P0000(5)因为PPT0010100110+10101000111111。

11111111101111∧1111111100001110=01110111000111,所以{v1},{v2,v3,v4}

111111因

1110



2010

+

1110

0110

2120312204+

2120320101231323220

000

741

747

747

434构成G的强分图。

离散数学试题(B卷答案8)

一、(10分)证明(P∨Q)∧(PR)∧(QS)S∨R

证明

因为S∨RRS,所以,即要证(P∨Q)∧(PR)∧(QS)RS。 (1)R

附加前提 (2)PR

P (3)P

T(1)(2),I (4)P∨Q

P (5)Q

T(3)(4),I (6)QS

P (7)S

T(5)(6),I (8)RS

CP (9)S∨R

T(8),E

二、(15分)根据推理理论证明:每个考生或者勤奋或者聪明,所有勤奋的人都将有所作为,但并非所有考生都将有所作为,所以,一定有些考生是聪明的。

设P(e):e是考生,Q(e):e将有所作为,A(e):e是勤奋的,B(e):e是聪明的,个体域:人的集合,则命题可符号化为:x(P(x)(A(x)∨B(x))),x(A(x)Q(x)),x(P(x)Q(x))x(P(x)∧B(x))。

(1)x(P(x)Q(x))

P (2)x(P(x)∨Q(x))

T(1),E (3)x(P(x)∧Q(x))

T(2),E (4)P(a)∧Q(a)

T(3),ES (5)P(a)

T(4),I (6)Q(a)

T(4),I (7)x(P(x)(A(x)∨B(x))

P (8)P(a)(A(a)∨B(a))

T(7),US (9)A(a)∨B(a)

T(8)(5),I (10)x(A(x)Q(x))

P

(11)A(a)Q(a)

T(10),US (12)A(a)

T(11)(6),I

(13)B(a)

T(12)(9),I (14)P(a)∧B(a)

T(5)(13),I (15)x(P(x)∧B(x))

T(14),EG

三、(10分)某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数。

设A、B、C分别表示会打排球、网球和篮球的学生集合。则:

|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2,|(A∪C)∩B|=6。 因为|(A∪C)∩B|=(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2=6,所以|(A∩B)|=3。于是|A∪B∪C|=12+6+14-6-5-3+2=20,|ABC|=25-20=5。故,不会打这三种球的共5人。

四、(10分)设A

1、A2和A3是全集U的子集,则形如Ai(Ai为Ai或Ai)的集合称

i13为由A

1、A2和A3产生的小项。试证由A

1、A2和A3所产生的所有非空小项的集合构成全集U的一个划分。

证明

小项共8个,设有r个非空小项s

1、s

2、…、sr(r≤8)。

对任意的a∈U,则a∈Ai或a∈Ai,两者必有一个成立,取Ai为包含元素a的Ai或Ai,则a∈Ai,即有a∈si,于是Usi。又显然有siU,所以U=si。

i1i1i1i1i13rrrr任取两个非空小项sp和sq,若sp≠sq,则必存在某个Ai和Ai分别出现在sp和sq中,于是sp∩sq=。

综上可知,{s1,s2,…,sr}是U的一个划分。

五、(15分)设R是A上的二元关系,则:R是传递的R*RR。

证明

(5)若R是传递的,则∈R*Rz(xRz∧zSy)xRc∧cSy,由R是传递的得xRy,即有∈R,所以R*RR。

反之,若R*RR,则对任意的x、y、z∈A,如果xRz且zRy,则∈R*R,于是有∈R,即有xRy,所以R是传递的。

六、(15分)若G为连通平面图,则n-m+r=2,其中,n、m、r分别为G的结点数、边数和面数。

证明

对G的边数m作归纳法。

当m=0时,由于G是连通图,所以G为平凡图,此时n=1,r=1,结论自然成立。 假设对边数小于m的连通平面图结论成立。下面考虑连通平面图G的边数为m的情况。

设e是G的一条边,从G中删去e后得到的图记为G,并设其结点数、边数和面数分别为n、m和r。对e分为下列情况来讨论:

若e为割边,则G有两个连通分支G1和G2。Gi的结点数、边数和面数分别为ni、mi和ri。显然n1+n2=n=n,m1+m2=m=m-1,r1+r2=r+1=r+1。由归纳假设有n1-m1+r1=2,n2-m2+r2=2,从而(n1+n2)-(m1+m2)+(r1+r2)=4,n-(m-1)+(r+1)=4,即n-m+r=2。

若e不为割边,则n=n,m=m-1,r=r-1,由归纳假设有n-m+r=2,从而n-(m-1)+r-1=2,即n-m+r=2。

由数学归纳法知,结论成立。

七、(10分)设函数g:A→B,f:B→C,则: (1)fg是A到C的函数;

(2)对任意的x∈A,有fg(x)=f(g(x))。

证明

(1)对任意的x∈A,因为g:A→B是函数,则存在y∈B使∈g。对于y∈B,因f:B→C是函数,则存在z∈C使∈f。根据复合关系的定义,由∈g和∈f得∈g*f,即∈fg。所以Dfg=A。

对任意的x∈A,若存在y

1、y2∈C,使得、∈fg=g*f,则存在t1使得∈g且∈f,存在t2使得∈g且∈f。因为g:A→B是函数,则t1=t2。又因f:B→C是函数,则y1=y2。所以A中的每个元素对应C中惟一的元素。

综上可知,fg是A到C的函数。

(2)对任意的x∈A,由g:A→B是函数,有∈g且g(x)∈B,又由f:B→C是函数,得∈f,于是∈g*f=fg。又因fg是A到C的函数,则可写为fg(x)=f(g(x))。

八、(15分)设是的子群,定义R={|a、b∈G且a1*b∈H},

-则R是G中的一个等价关系,且[a]R=aH。

证明

对于任意a∈G,必有a1∈G使得a1*a=e∈H,所以∈R。

-

-

若∈R,则a1*b∈H。因为H是G的子群,故(a1*b)1=b1*a∈H。所以

-

-

-a>∈R。

若∈R,∈R,则a1*b∈H,b1*c∈H。因为H是G的子群,所以(a

-

-

-1*b)*(b1*c)=a1*c∈H,故∈R。 --综上可得,R是G中的一个等价关系。

对于任意的b∈[a]R,有∈R,a1*b∈H,则存在h∈H使得a1*b=h,b=a*h,

-

-于是b∈aH,[a]RaH。对任意的b∈aH,存在h∈H使得b=a*h,a1*b=h∈H,

-b>∈R,故aH[a]R。所以,[a]R=aH。

离散数学试题(B卷答案9)

一、(10分)证明(P∧Q∧AC)∧(AP∨Q∨C)(A∧(PQ))C。 证明:(P∧Q∧AC)∧(AP∨Q∨C)(P∨Q∨A∨C)∧(A∨P∨Q∨C)

(P∨Q∨A∨C)∧(A∨P∨Q∨C) ((P∨Q∨A)∧(A∨P∨Q))∨C ((P∧Q∧A)∨(A∧P∧Q))∨C ( A∧((P∧Q)∨(P∧Q)))∨C ( A∧(PQ))∨C (A∧(PQ))C。

二、(10分)举例说明下面推理不正确:xy(P(x)Q(y)),yz(R(y)Q(z))xz(P(x)R(z))。

解:设论域为{1,2},令P(1)=P(2)=T;Q(1)=Q(2)=T;R(1)=R(2)=F。则: xy(P(x)Q(y))x((P(x)Q(1))∨(P(x)Q(2)))

((P(1)Q(1))∨(P(1)Q(2)))∧((P(2)Q(1))∨(P(2)Q(2))) ((TT)∨(TT))∧((TT)∨(TT)) T yz(R(y)Q(z))y((R(y)Q(1))∨(R(y)Q(2)))

((R(1)Q(1))∨(R(1)Q(2)))∧((R(2)Q(1))∨(R(2)Q(2)))

((FT)∨(FT))∧((FT)∨(FT))

T

xz(P(x)R(z))x((P(x)R(1))∧(P(x)R(2))) ((P(1)R(1))∧(P(1)R(2)))∨((P(2)R(1))∧(P(2)R(2))) ((TF)∧(TF))∨((TF)∧(TF)) F 所以,xy(P(x)Q(y)),yz(R(y)Q(z))xz(P(x)R(z))不正确。

三、(15分)在谓词逻辑中构造下面推理的证明:所有牛都有角,有些动物是牛,所以,有些动物有角。

解:令P(x):x是牛;Q(x):x有角;R(x):x是动物;则推理化形式为:

x(P(x)Q(x)),x(P(x)∧R(x))x(Q(x)∧R(x)) 下面给出证明:

(1)x(P(x)∧R(x))

P (2)P(a)∧R(a)

T(1),ES (3)x(P(x)Q(x))

P (4)P(a)Q(a)

T(3),US (5)P(a)

T(2),I (6)Q(a)

T(4)(5),I (7)R(a)

T(2),I (8)Q(a)∧R(a)

T(6)(7),I (9)x(Q(x)∧R(x))

T(8),EG

四、(10分)证明(A∩B)×(C∩D)=(A×C)∩(B×D)。

证明:因为∈(A∩B)×(C∩D)x∈(A∩B)∧y∈(C∩D)x∈A∧x∈B∧y∈C∧y∈D(x∈A∧y∈C)∧(x∈B∧y∈D)∈A×C∧∈B×D∈(A×C)∩(B×D),所以(A∩B)×(C∩D)=(A×C)∩(B×D)。

五、(15分)设A={1,2,3,4,5},R是A上的二元关系,且R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R)。

r(R)=R∪IA={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)=R∪R1={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,-

<4,2>,<4,3>} R2={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R3={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R4={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>}=R2 t(R)=Ri={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,i11>,<5,4>,<5,5>}。

六、(10分)若函数f:A→B是双射,则对任意x∈A,有f1(f(x))=x。

-证明

对任意的x∈A,因为f:A→B是函数,则∈f,于是

-由f-1是B到A的函数,于是可写为f1(f(x))=x。

-

七、(10分)若G为有限群,则|G|=|H|·[G:H]。

证明

设[G:H]=k,a

1、a

2、…、ak分别为H的k个左陪集的代表元,由定理8.38得

G[ai]RaiH

i1i1kk又因为对H中任意不同的元素x、y∈H及a∈G,必有a*x≠a*y,所以|a1H|=…=|akH|=|H|。因此

|G||aiH|i1k|aH|k|H|=|H|·[G:H]。

ii1k

八、(20分)(1)画出3阶2条边的所有非同构有向简单图。

解:由握手定理可知,所画的有向简单图各结点度数之和为4,且最大出度和最大入度均小于或等于2。度数列与入度列、出度列为:

1、

2、1:入度列为0、

1、1或0、

2、0或

1、0、1;出度列为

1、

1、0或

1、0、1或0、

2、0

2、

2、0:入度列为

1、

1、0;出度列为

1、

1、0 四个所求有向简单图如图所示。

(2)设G是n(n≥4)阶极大平面图,则G的最小度≥3。

证明

设v是极大平面图G的任一结点,则v在平面图G-{v}的某个面f内。由于G-{v}是一个平面简单图且其结点数大于等于3,所以d(f)≥3。由G的极大平面性,v与f上的结点之间都有边,因此d(v)≥3。由v的任意性可得,G的最小度≥3。

离散数学试题(B卷答案10)

一、(10分)使用将命题公式化为主范式的方法,证明(PQ)(P∧Q)(QP)∧(P∨Q)。

证明:因为(PQ)(P∧Q)(P∨Q)∨(P∧Q)

(P∧Q)∨(P∧Q) (QP)∧(P∨Q)(Q∨P)∧(P∨Q) (P∧Q)∨(Q∧Q)∨(P∧P) ∨(P∧Q) (P∧Q)∨P

(P∧Q)∨(P∧(Q∨Q)) (P∧Q)∨(P∧Q)∨(P∧Q) (P∧Q)∨(P∧Q) 所以,(PQ)(P∧Q)(QP)∧(P∨Q)。

二、(10分)证明下述推理: 如果A努力工作,那么B或C感到愉快;如果B愉快,那么A不努力工作;如果D愉快那么C不愉快。所以,如果A努力工作,则D不愉快。

解 设A:A努力工作;B、C、D分别表示B、C、D愉快;则推理化形式为: AB∨C,BA,DCAD

(1)A 附加前提 (2)AB∨C P (3)B∨C T(1)(2),I (4)BA P (5)AB

T(4),E (6)B T(1)(5),I (7)C T(3)(6),I

(8)DC P (9)D T(7)(8),I (10)AD CP

三、(10分)证明xy(P(x)Q(y))(xP(x)yQ(y))。 xy(P(x)Q(y))xy(P(x)∨Q(y)) x(P(x)∨yQ(y)) xP(x)∨yQ(y) xP(x)∨yQ(y) (xP(x)yQ(y))

四、(10分)设A={,1,{1}},B={0,{0}},求P(A)、P(B)-{0}、P(B)B。 解 P(A)={,{},{1},{{1}},{,1},{,{1}},{1,{1}},{,1,{1}}} P(B)-{0}={,{0},{{0}},{0,{0}}-{0}={,{0},{{0}},{0,{0}} P(B)B={,{0},{{0}},{0,{0}}{0,{0}}={,0,{{0}},{0,{0}}

五、(15分)设X={1,2,3,4},R是X上的二元关系,R={<1,1>,<3,1>,<1,3>,<3,3>,<3,2>,<4,3>,<4,1>,<4,2>,<1,2>} (1)画出R的关系图。 (2)写出R的关系矩阵。

(3)说明R是否是自反、反自反、对称、传递的。 解 (1)R的关系图如图所示: (2) R的关系矩阵为:

10M(R)111011101100 00(3)对于R的关系矩阵,由于对角线上不全为1,R不是自反的;由于对角线上存在非0元,R不是反自反的;由于矩阵不对称,R不是对称的;

经过计算可得

10M(R2)111011101100M(R),所以R是传递的。 00

六、(15分)设函数f:R×RR×R,f定义为:f()=。 (1)证明f是单射。 (2)证明f是满射。 (3)求逆函数f。

(4)求复合函数ff和ff。

证明 (1)对任意的x,y,x1,y1∈R,若f()=f(),则=,x+y=x1+y1,x-y=x1-y1,从而x=x1,y=y1,故f是单射。

(2)对任意的∈R×R,令x=-1-

1uwuwuwuw

,y=,则f()=<+,2222uwuw->=,所以f是满射。 22(3)f()=<-1-1uwuw,>。 22-1(4)ff()=f(f())=f

-1

()=<

xyxy,

2xy(xy)>= 2ff()=f(f())=f()==<2x,2y>。

七、(15分)给定群,若对G中任意元a和b,有a*b=(a*b),a*b=(a*b),a*b=(a*b),试证是Abel群。

证明 对G中任意元a和b。

因为a*b=(a*b),所以a*a*b*b=a*(a*b)*b,即得a*b=(b*a)。同33

333

3

2

2255

53

3

3

4

44

13

111理,由a*b=(a*b)可得,a*b=(b*a)。由a*b=(a*b)可得,a*b=(b*a)。

于是(a*b)*(b*a)=(b*a)=a*b,即b*a=a*b。同理可得,(a*b)*(b*a)=(b*a)=a*b,即b*a=a*b。

3333334

4

4

4

4

2

2

344433555444

由于(a*b)*b=a*b=b*a=b*(b*a)=b*(a*b)=(b*a)*b,故a*b=b*a。

八、(15分)(1)证明在n个结点的连通图G中,至少有n-1条边。

证明 不妨设G是无向连通图(若G为有向图,可略去边的方向讨论对应的无向图)。 设G中结点为v

1、v

2、„、vn。由连通性,必存在与v1相邻的结点,不妨设它为v2(否则可重新编号),连接v1和v2,得边e1,还是由连通性,在v

3、v

4、„、vn中必存在与v1或v2相邻的结点,不妨设为v3,将其连接得边e2,续行此法,vn必与v

1、v

2、„、vn1中的某个结点相邻,得新边en1,由此可见G中至少有n-1条边。

(2)试给出|V|=n,|E|=(n-1)(n-2)的简单无向图G=是不连通的例子。

解 下图满足条件但不连通。

12344333

第二篇:初三数学期末考试试卷分析

2013-2014学年度第一学期期末考试

初三数学试卷分析

这次期末考试全面提高数学教育质量,有利于初中数学课程改革和教学改革,培养学生的创新精神和实践能力;有利于减轻学生过重的负担,促进学生主动、活泼、生动地学习.

一、试卷的整体分析

试卷的总体难度适宜,能坚持“以纲为纲,以本为本的原则”,在加强基础知识的考查的同时,还加强了对学生的能力的考查的比例设置考题,命题能向课程改革靠拢.注重基础,加大知识点的覆盖面,控制题目的烦琐程度,题目力求简洁明快,不在运算的复杂上做文章;整体布局力求合理有序,提高应用题的考查力度,适当设置创新考题,注重知识的拓展与应用,适应课程改革的形势.

二、存在的主要问题:

1、缺少高分,优秀率低。

2、学生对基础知识掌握的不牢。知识不系统,综合能力应变能力较差,不能举一反三。

3、做题步骤不严密、解题不灵活,不注重方法和技巧。

三、典型错误:

1.解选择题第1 题时由于不仔细部分学生忽略了分母不能为0。 2.解填空题第5题时考虑不全面,好多学生将C坐标找错。 3.填空题第8题扇形面积问题,忘记公式,不能正确理解出错率高。

4、填空题第10题,不会灵活应用树形图求概率,导致丢分。

5、第五题解方程,很多学生不能结合周长写出正确的解析式。

6.第六,七等题都是对圆的理解,部分学生出错率也较高。 7.解第八题时,错误也较多。

8.第九题求值,第三小题不会灵活运用韦达定理解题,出错率高。

四、今后工作思路

我们提出要加强基础知识教学要加强对学生“三基”的教学和训练,使学生掌握必要的基础知识、基本技能和基本方法.在概念、基本定理、基本法则、性质等教学过程中,要加强知识发生过程的教学,使学生加深对基础知识的理解;要加强对学生数学语言的训练,使学生的数学语言表达规范、准确、到位;要加强运算能力的教学,使学生明白算理,并选择简捷、合理的算法,提高运算的速度和准确率;要依纲据本进行教学,踏踏实实地教好第一遍,切不可不切实际地脱离课本,搞难题训练,更不能随意补充纲本外的知识.教学中要立足于把已学的知识弄懂弄通,真正让学生形成良好的认知结构和知识网络,打好初中数学基础,全面提高学生的数学素质.

这次考试数学的统计数据进一步说明,在数学学习上的困难生还比较多,怎样使这些学生尽快“脱贫”、摆脱中考成绩个位数的困境,以适应在高一级学校的继续学习和当今的信息时代,这是我们每一个初中数学教育工作者的一个重要研究课题.重视培优,更应关注补差.课堂教学中,要根据本班的学情,选择好教学内容,合理地确定教学的起点和进程.课外要多给学习有困难的学生开“小灶”,满腔热情地关心每一位后进生,让他们尽快地跟上其他同学,促进全体学生的进步和发展.

踏虎学校:张艳芳

第三篇:七年级数学期末考试数学试卷分析

杜丹丹

一、基本情况及考试成绩分析

本次期末测试共有三个大题,分为选择、填空、解答,共计有27个小题。满分120分,其中选择题10个,每小题2分,满分20分;填空题10个,每小题3分,满分30分;解答题7个,共70分。考查内容:冀教版七年级数学上册全书内容。,重点考察有理数混合运算、角、整式、一元一次方程、列方程解应用题、找规律、合并同类项等。试卷内容比较灵活多样,对基础知识、生活实践、等都有考察。

1、基本情况:七年级一班,其中数学100分以上的7人,80分以上的8人,最高分112分,最低分8分,班级平均分为68分。七年级二班,数学100分以上的6人,80分以上的13人,最高分120分,最低分2分,班级平均分为69分。

2、逐题试卷分析:一题“选择”:满分20分,大部分得分在14—20分间,错误较多的试题依次为第4题、第5题、第9题、和第10题。二题“填空”:满分30分,大多得分12—24分,错的较多的是

12、

15、

16、

17、19题。三题“解答题”总分70分,其中

21、

22、23是计算题,其中21题考察的是有理数的混合运算,22题考察的是整式的计算,23题考察的是解一元一次方程,都是平时常见常做的题型,但是很少有学生能拿到满分,从这可以看出同学们的计算能力比较薄弱。24题为有理数的应用题,同学们大部分能把算式写对,但是得数算错,造成失分。25题为一元一次方程的应用题,一部分同学得0分,因为没有理解对题意,一部分同学只得了4分,只是答对了第一问,第二问的题意理解不清。26题考察的是角的和与差知识,这道题大部分同学得0分,因为没有理解清楚角的倍数关系,导致题目分析不出来,平时常做的是角平分线有关的题目,这方面的题目练习较少,大部分同学不能自己分析题目,导致失分,从这可以看出学生的分析能力薄弱。27题为找规律的计算题,大部分的得分在4到7分之间,错的最多的是1+2+3····+n的和不能求出,这个公式平时讲课的时候讲过,但是有的同学已经忘记了,所以还要加强平时基础的巩固与强化。

二、教情分析。本学期是本人第一次执教七年级数学,本次期末考试后,本人经过反思,认为七年级数学期末成绩一般,主要失误是:

1、对学生基础情况还不够了解,作业要求不太严格。如:少数学生不按要求完成预习作业、课后作业,甚至有少部分学生长期不按时交作业,导致一部分差生没有学懂;

2、使用多媒体教学,虽然课堂容量大,但是课堂练习落实不到位,一部分学生课堂上没有认真完成练习任务;

3、课后没有足够的时间认真组织学生复习,导致大部分中等生和学困生基本功不扎实;

4、要求学生记忆的公式、定理、性质,没有按时督促完成,使学生对基本概念的理解和掌握不深刻。不会运用学过的公式、定理、性质解决问题;

5、教学中对学生的运算训练不扎实,导致学生基本运算能力差。

三、今后教学的方向

1、狠抓课堂教学,注重基础,使学生的基础知识真正的落实;

2、加强运算能力的训练与基本概念的掌握,重视解题能力的培养;

3、重视学生预习习惯的养成、培养学生的自学能力;

4、做好学生的思想工作,充分调动学生的学习积极性,端正学习态度;

5、认真做好培优补差工作,大面积提高教学质量。

总之,今后本人一定吸取教训,改进方法,总结以前教学中的得失,为今后教学做借鉴;引导学生掌握、理解新课程的基本理念,学好数学知识。

第四篇:九年级数学期末考试试卷分析

2013----2014学年度解集中学九年级数学期末考试试卷分析

一、 试题分析

这次期末考试全面提高数学教育质量,有利于初中数学课程改革和教学改革,培养学生的创新精神和实践能力;有利于减轻学生过重的负担,促进学生主动、活泼、生动地学习.这次考试主要考察了九年级数学上册的内容。主要内容有,二次函数,反比例函数,相似形等。

试卷的总体难度适宜,能坚持“以纲为纲,以本为本的原则”,在加强基础知识的考查的同时,还加强了对学生的能力的考查的比例设置考题,命题能向课程改革靠拢.注重基础,加大知识点的覆盖面,控制题目的烦琐程度,题目力求简洁明快,不在运算的复杂上做文章;整体布局力求合理有序,提高应用题的考查力度,适当设置创新考题,注重知识的拓展与应用,适应课程改革的形势.

二.试卷分析

本套试卷共24道题,其中选择题共30分,填空题占24分,解答题共24分,解答或证明题22分。整体难易程度在7:2:1,难易程度适中,其中,选择题第

4、9题具有探索性,有利于考察不同层次的学生分析、探求、解决问题的能力,第

16、19题能考察学生灵活运用知识与方法的能力,第

12、21题具有开放性,考察学生从现实生活中抽象数学模型的能力,2,1题第2问较难,好多同学失分的原因是考虑不全面有漏算的情况。得分率较高的题目都是基本知识的应用,说明多数学生对基础知识掌握较好。得分率较低的题目大多是开放性的、新颖的,实际应用的题目。

三.存在的问题

1、学生的基础知识不扎实以及计算能力不高是失分的主要原因。本次试题基础题所占比例大,从答题情况看,主要原因是基础不扎实,对课本知识生疏,或不能熟练运用,相当一部分后进生表现尤为突出。

2、审题不仔细是造成失分的另一主要原因。

3、平时学习过程中,不理解概念的实质,不理解知识形成发展过程,死记硬背,因而不能在一定的数学情境中正确运用概念,不能正确辨明数学关系,灵活解决和处理问题的能力不足。尤其表现在对课本上的一些变式问题缺乏分析和解决问题的能力。

4、平时检测密度不够,只注重了新课程的教学而忽略了对旧知识的复习和巩固,尤其对课本知识掌握不熟练,对规律探究性问题缺乏归纳和分析的能力,不能正确运用整体的数学思想解决问题。

5、转差工作不够细致,效率不高,往往事倍而功半,只注重了对学生的辅导而忽略了对学习效果的检测,方法过于死板,学生负担重。

四、今后工作思路

1、重视“双基”训练 ①把好计算的准确关:平时计算时要强调稳,分步计算,注意检查。②把好理解审题关:平时教学中要加强训练,题意不清,不急于动笔答题。③把好表达规范关:一是注意表达要有逻辑性,推理要力求严谨;二是要书写整洁规范。

2、重视回归课本、回归课堂, 中考试题多来源于课本或从课本的基本要求出发加以拓宽,而不是加深,这样将更好地指导我们的课堂教学。我们要逐步改变“老师讲,学生听;教师问,学生答;及大量演练习题”的数学教学模式,应引导学生从生活经验出发,亲历数学化的过程。我们必须关注当前课改的新理念,给学生以充分从事数学活动的 时间、空间,使学生在自己探索、亲身实践、合作交流中解决问题。

3、重视问题变式训练(一题多变、一题多解) 在问题变式教学中,教师或通过对命题结论的改变,引出新命题;或通过对 命题条件的改变,引出新命题;或通过特殊到一般联想,引出新命题;有时还可 以引导学生思考以下几个方面的问题:这一问题有哪些特例,还能否推广,它的反面情形如何,逆向思考结果怎样,与其相关问题结合起来情形如何。这样的变式训练不但有利于学生更好地把握数学知识的本质内涵,而且也是培养学生思维 能力的有效途径,从而可以有效地提高解决开放探究性问题的能力。

4、关注每一位学生,加强学法指导 ,从近几年中考试题来看,面向每位学生、加强学法指导是摆在广大教师面前 不可忽视的问题,应予以足够重视。要努力提高学生学习数学的兴趣和愿望,努力营造学生主动学习、合作学习、探究学习的氛围,挖掘学生的潜能,及时发现学生学习方法上的问题并采取具体措施。

5、强化全面意识,加强补差工作

这次考试数学的统计数据进一步说明,在数学学习上的困难生还比较多,怎样使这些学生尽快“脱贫”、摆脱中考成绩个位数的困境,以适应在高一级学校的继续学习和当今的信息时代,这是我们每一个初中数学教育工作者的一个重要研究课题.重视培优,更应关注补差.课堂教学中,要根据本班的学情,选择好教学内容,合理地确定教学的起点和进程.课外要多给学习有困难的学生开“小灶”,满腔热情地关心每一位后进生,让他们尽快地跟上其他同学,促进全体学生的进步和发展.

6、强化过程意识,暴露思维过程

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.数学教学中,应当有意识地精选一些典型例题和习题进行思维训练.激发学生的学习积极性,向学生提供充分从事数学活动的机会.暴露学生把抽象的数学问题具体化和形象化的过程;要让学生多说解题思路和解决问题的策略,暴露学生解决数学问题的思维过程;经常性地进行数学语言的训练,暴露学生对复杂的数学语言进行分解与简化的过程;要通过一题多解和一题多变的训练,暴露学生对数学问题多种解法的比较与反思过程.让学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验.

7、教学中重在凸现学生的学习过程,培养学生的分析能力。 在平时的教学中,作为教师应尽可能地为学生提供学习材料,创造自主学习的机会。尤其是在应用题的教学中,要让学生的思维得到充分的展示,让他们自己来分析题目,设计解题的策略,多做分析和编题等训练,让有的学生从“怕”应用题到喜欢应用题。

8、多做多练,切实培养和提高学生的计算能力。

要学生说题目的算理,也许不一定会错,但有时他们是凭自己的直觉做题,不讲道理,不想原因。这点可以从试卷上很清晰地反映出来。学生排除计算干扰的本领。

九年级数学期末考试试卷分析

解集中心学校数学组

谢立民

2014年1月

第五篇:三年级数学期末考试试卷分析

聂华卿

一、试题分析:

本次质量检测试卷的整个难易程度适中,题量合适,注重基础知识,考察的知识面广,题目的形式多样,实际运用较好,符合新课标的要求,是一份比较好的检测学生双基知识的试题,为今后的教学起到了一定的导向作用。试题的编制即侧重于对数学基础知识的考查,同时部分试题蕴涵了对学生运用数学知识解决生活实际问题能力等数学知识综合运用水平的考查,缺少动手操作题是唯一的遗憾。试卷有以下几个特点:

1、题型多样。包括填空题、选择题、计算题(口算、笔算)、应用题等;

2、综合运用性强。一道题目不仅考查一个知识点,而是考查有联系并且易混淆的多个知识点。目的是要求学生能融合贯通,全面分析并掌握所学知识。

3、注重计算能力的考查,测试学生是否有扎实的基本知识和熟练的运算能力。整套试卷,不但计算量大,而且范围广,分布于填空、选择、口算、竖式计算、解决问题中。

4、注重运用,有一定灵活性。

5、贴近生活,注重考查学生的生活经验在数学中的应用。

二、学生答题情况及分析

优点:全班卷面达到了干净整洁,书写漂亮。基础知识掌握扎实,成绩良好。计算题较好。

不足:通过看卷子,我们找到了下面问题:

1、学生缺乏良好的考试习惯,自己检查错误的能力有待加强。如:填空题中一些基本的题目出错;计算题竖式正确,答案填错;应用题抄错数。

2、学生马虎现象严重:单位名称落写,横式不写得数,有5人小数计算没有验算等。

3、课上听讲不好,对两步计算的应用题目的理解能力需要继续提高。

三、改进措施:

1、教师及时反思进行详细卷面分析针对每个学生进行分析。指点不足,鼓励差生。

2、利用假期狠抓学生举一反三能力的培养。

3、继续培养学生良好的学习习惯,包括分析能力、计算能力、认真检查能力。从最后一名学生抓起.及时反馈,及时补差。

4、 加强与家长的联系,及时沟通,共同努力,提高学生综合素质.

5、 利用假期留分层次作业,让每个学生在假期知识有衔接,能力有提高。

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:房产评估个人工作总结下一篇:房产中介季度工作总结