超长结构裂缝控制技术

2022-12-25

第一篇:超长结构裂缝控制技术

超长结构裂缝控制措施浅析

【提要】

根据具体工程设计实践和体会,简要分析了温度收缩裂缝的基本特点,重点介绍了对超长混凝土结构如何有效避免裂缝。可供设计人员借鉴参考。

【关键词】

超长混凝土结构 温度 收缩 裂缝 措施

一、工程概况

本工程位于山东省曲阜市,为一大型的住宅小区项目。本项目总建筑面积(含地上及地下)为393436平米,地上建筑面积318512平米;其中商业及公建配套建筑面积29906平米,住宅建筑面积288606平米。地下建筑面积74924平米。建设地点为曲阜市西南大沂河北岸。项目总投资为7.8亿元人民币。

其中的六号地下车库采用了无梁楼盖的形式,总长度达425m,覆土1m厚,层高3.8m,项目的难点在于如何控制超长结构的温度收缩应力以避免裂缝。

二、 超长混凝土结构裂缝产生原因

结构温度应力、收缩应力是由于结构变形受到约束而产生的。当应力超过了材料的抗拉强度时,即会出现裂缝。由于混凝土的抗拉强度很低,若不采取措施,很难满足规范对裂缝宽度的要求。

温度应力产生的机理:混凝土是指采用胶凝材料将粗细骨料胶结成整体的复合固体材料的总称。其中的胶凝材料通常为普通硅酸盐水泥。在硬化过程中,水泥水化产生大量的水化热,由于混凝土的导热系数较低,大量的热量积聚于内部使得内部温度升高,而表面的热量散发较快,导致内外温差过大。混凝土的温度膨胀系数约为10x10^-6m/m.K,即温度升高或降低1K,1m长的混凝土将产生0.01mm的膨胀或收缩变形。如纵长100m的混凝土,温度升高或降低30度(冬夏季温差),则将产生30mm的膨胀或收缩,在完全约束条件下,混凝土内部将产生7.5MPa左右的拉应力,足以导致混凝土开裂。

收缩应力产生的机理:因混凝土内部水分蒸发以及水泥继续水化引起的体积变形称为干燥收缩。影响因素主要有水泥用量、水灰比、水泥品种和强度、环境条件。

三、 设计要点

1、设置后浇带。后浇带间距通常为30~40m,本工程设计为40m一道800mm宽后浇带,位置选择在应力较小的梁跨1/3处。后浇带钢筋不得截断,且增设不少于原配钢筋20%的附加钢筋,长度为伸入每侧后浇带1m,以方便钢筋搭接。温度后浇带应在浇筑完成后两个月后(此时混凝土收缩大约完成70%)方可采用提高一级的微膨胀混凝土进行浇筑。

2、本地下车库要求采用低水化热的水泥来配置混凝土,并加入适量的优质粉煤灰。并采用级配良好的粗骨料,严格控制其含泥量,并加强混凝土的振捣,提高混凝土的密实度和抗拉强度。粉煤灰是表面致密的球形颗粒,由于粉煤灰的比表面积小,拌合需水量小,其干缩较小。

3、混凝土中掺加具有抗渗防裂作用的SY-T复合纤维增韧剂,掺量为混凝土胶凝材料的8%。对增韧剂的要求是满足国家相应标准,抗开裂性能比不小于50%,抗拉强度大于500MPa,补偿收缩混凝土限值膨胀率为水中养护14d不小于0.015%,空气中28天干缩率应不大于0.03%。

四、 施工要点

1、 控制温差

控制温差是解决混凝土裂缝控制的关键,混凝土施工时,应对混凝土进行温度控制。a、混凝土入模温度不宜大于30度,混凝土浇筑体最大温升值不宜大于50度。控制入模温度,可以降低混凝土内部最高温度。减少内部最大温升主要从配合比上进行控制。b、控制混凝土降温速率,每天温降不宜大于2度。减缓降温有利于混凝土强度增长,并充分发挥应力松弛效用,使混凝土不宜出现裂缝。

2、 加强混凝土养护

混凝土早期塑性收缩和干燥收缩较大,易于造成混凝土开裂。混凝土养护是补充水分或降低失水速率,防止混凝土产生裂缝,确保达到混凝土各种力学性能指标的重要措施。在混凝土初凝、终凝抹面处理后,应及时进行养护工作。混凝土终凝后至养护开始的时间间隔应尽可能缩短,以确保混凝土养护所需的湿度以及对混凝土进行温度控制。覆盖养护可采用塑料薄膜、麻袋、草帘等进行覆盖;喷涂养护剂是通过养护液在混凝土表面形成致密的薄膜层,以达到混凝土保湿的目的。由于本工程水泥中参加了粉煤灰,养护时间不应少于14天。

五、 结语

温度收缩裂缝是超长混凝土结构中较常见且日趋增多的裂缝,由于该裂缝的危害性及规范的局限性,设计人员应予以足够重视。本文从设计及施工角度上简析了混凝土收缩和温度变形的产生机理及影响因素,以供设计人员参考。设置后浇带以及控制和抵抗温度收缩应力的综合措施注重结构概念设计,对裂缝采取“放”“防”“抗”相结合的构想。工程实践证明,对防止和减轻超长混凝土结构温度收缩裂缝比较有效,但其中一些措施主要基于设计概念和定性分析,尚无法进行定量的计算,具体工程在采用时应根据其各自特点综合考虑。 【参考文献】

1、《土木工程材料》

浙江大学出版社

2、《混凝土结构收缩应力问题研究》

河海大学学报2002年1月

3、《混凝土结构工程施工规范》

GB50666

第二篇:钢筋混凝土结构的裂缝控制

内容摘要:通过多年的现场观察,通过查阅有关混凝土内部应力方面的专著,对混凝土温度裂缝产生的原因、现场混凝土温度的控制和预防裂缝的措施进行等进行阐述。

一、绪论 ...................................................................................................

1 解决混凝土裂缝问题的必要性…………………………….………..错误!未

定义书签。

钢筋混凝土裂缝对结构破坏的影响……..…………………………错误!未

定义书签。

除荷载作用外产生混凝土裂缝的各个因素…………………. ....... 2

二、本论..................................................................................................

2(一)钢筋混凝土裂缝的直接原因………………………………...3

1. 混凝土的收缩及水化热的增加 ............................................... 3 2.混凝土强度等级提高对混凝土裂缝的影响.............................

33.建筑物结构约束应力不断增大................................................ 3

4.混凝土外加剂的负效应.............................................................3

5.设计忽略结构约束问题 ............................................................. 3

6.混凝土浇筑后养护方法不当………...……………………....3 7.混凝土抗拉性能不足 .............................................................. 3

(二) 钢筋混凝土承受变形应力的特点........................................4

1.“抗与放”设计准则 .............................................................. 4 2.约束内力与结构刚度的关系 .................................................. 5 3.钢筋混凝土与素混凝土裂缝控制的区别 .............................. 6

(三) 混凝土的某些基本物理力学性质.........................................6

1.混凝土的收缩及水化热 ........................................................... 6

2.混凝土的徐变(蠕变)因素的考虑 ....................................... 7

3.混凝土的抗拉强度及极限拉伸..............................................8

(四)结构设计或施工中近似计算的模型选择.............................9

四、结论 ................................................................ .错误!未定义书签。

五、致

谢 ........................................................... 错误!未定义书签。

六、参考文献 ......................................................... 错误!未定义书签。

论钢筋混凝土结构的裂缝控制

一. 绪论

多年来,在工民建钢筋混凝土结构领域,一个相当普遍的质量问题就是结构的裂缝问题,尽管我们在施工中采取各种措施,小心谨慎,但裂缝仍然出现,且有日趋增多的趋势。它已影响到正常的生活和生产,并困扰着大批工程技术人员和管理人员,是一个迫切需要解决的技术难题。

由于结构在外荷载作用下的破坏和倒塌是从裂缝扩展开始的,因此人们对裂缝往往产生一种建筑破坏的恐惧感,是可以理解的。早在1932年,前苏联A. флолейт 教授的钢筋混凝土强度理论就指出,如正常配筋受弯构件的破坏状态是指受拉区钢筋到达屈服强度,受压区混凝土到达受弯的抗压强度,此状态称为承载力极限状态。这一状态全过程是伴随着荷载的不断增加,裂缝出现(钢筋应力只有40~60MPa),裂缝扩展,受压区塑性不断发展,最后达到完全破坏。此时破坏荷载往往是裂缝出现荷载时的3 ~5倍,因此,很多大型钢筋混凝土结构,仅仅自重就超过了极限荷载的30%,在此条件下钢筋 2 混凝土结构带有轻微裂纹是完全正常的,结构是安全的,恐惧是不必要的。

国内外关于荷载作用下钢筋混凝土构件的设计都有自己的经验公式,并已纳入有关规范,尽管计算结果出入较大,但毕竟可以参考应用。但是近年来大量裂缝的出现,并非与荷载作用有直接关系,通过大量的调查与实测研究证明,这种裂缝的原因主要是温度和湿度的变化,混凝土的脆性和不均匀性,以及结构不合理,原材料不合格(如碱骨料反应),模板变形,基础不均匀沉降等。混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。后期在降温过程中,由于受到基础或原混凝上的约束,又会在混凝土内部出现拉应力。气温的降低也会在混凝土表面引起很大的拉应力。当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。

二.本论

(一)钢筋混凝土裂缝的直接原因

1.混凝土的收缩及水化热增加

自从70年代末(1978~1979年)我国混凝土施工工艺产生了巨大的进步—泵送商品混凝土工艺。从过去的干硬性,低动性,现场搅拌混凝土转向集中搅拌,转向大流动性泵送浇注,水泥用量增加,水灰比增加,砂率增加,骨料粒径减小,用水量增加等导致收缩及水化热增加。

3 2.混凝土强度等级提高对混凝土裂缝的影响

建筑结构混凝土强度等级日趋提高,但有许多结构不适当的 选择了过高的强度等级。习惯上认为:“强度等级越高安全度越大,就高不就低,提高强度等级没坏处”。有时迁就施工方便,采用高强混凝土,这是一种误导,导致水泥标号增加,水泥用量增加,水用量增加,细骨料及粗骨料径偏小,砂率偏大等都使水化热及收缩增加。 3.建筑物结构约束应力不断增大

结构规模日趋增大,结构形式日趋复杂,超长超厚及超静定结构成为经常采用结构形式并采用现浇施工,这种结构形式有显著约束作用,对于各种变形作用必然引起较大约束应力。 4.混凝土外加剂的负效应

外加剂及掺合料种类繁多,只有强度指标缺乏对水化热及收缩变形影响的长期实验资料(至少一年),有些试验资料并不严格,有许多外加剂严重的增加收缩变形,有的甚至降低耐久性。 5.设计忽略结构约束

国内外结构设计中都经常忽略构造钢筋重要性,因而经常出现构造性裂缝。结构设计中经常忽略结构约束性质,不善于利用“抗与放”的设计原则,缺乏相应的设计施工规范、规程。 6.混凝土浇筑后养护方法不当

4 目前在混凝土施工中采用的养护方法基本沿用过去简易的方法,这种方法已远不适应泵送混凝土的较大温度收缩变形的要求。 7.混凝土抗拉性能不足

这种裂缝在抗力方面都是由于混凝土抗拉性能不足(抗拉强 度和极限拉伸)引起的,这方面的材料级配研究很少。

综合上述,国际公认泵送商品混凝土对混凝土的质量(均质性)有很大的提高,对供应方式有重要的改进,但是对混凝土的裂缝控制的难度大大增加了,因此,这类问题不是我国特有的技术问题,是国际上钢筋混凝土的共性难题。

过去大体积混凝土的定义是根据几何尺寸,主要是根据厚度定义的,国际上一般采用0.8m~1m作为界限。自80年代以后大体积混凝土的定义有了改变,新的定义是:“任意体量的混凝土,其尺寸大到足以必须采取措施减小由于体积变形引起的裂缝,统称为大体积混凝土”,这是美国混凝土协会的定义。由此可见,在近代泵送商品混凝土获得广泛应用的条件下,即便是很薄的结构,虽然水化热很低,但是其收缩很大,控制收缩裂缝的要求比过去任何时候都显得非常重要。因此,泵送混凝土的薄壁结构也应当按照大体积混凝土的要求采取措施控制混凝土的收缩裂缝,特别是环境气温变化与收缩共同作用对于薄壁结构尤为不利,收缩换算为当量降温。

(二) 钢筋混凝土承受变形应力的特点

5 1.“抗与放”设计准则

结构承受的约束作用分内约束(自约束)和外约束两类。结构的变形如果是完全自由的变形达到最大值,则内应力为零,也就不可能产生任何裂缝。如果变形受到约束,在全约束状态下则应力达到最大值,而变形为零。在全约束与完全自由状态的中间过程,即为弹性约束状态,亦即自由变形分解成为约束变形和显现变形(实际变形)。实际变形越大,约束应力越小;实际变形越小,约束应力越大,这种约束状态与荷载作用下的结构受力状态(虎克定律)有着根本区别。

在约束状态下,结构首先要求有变形的余地,如结构能满足此要求,不再产生约束应力。如结构没有条件满足此要求,则必然产生约束应力,超过混凝土的抗拉强度,导致开裂。所以,提出了“抗与放” 的设计准则,应当在工程设计中,根据结构所处的具体时空条件加以灵活的应用。从结构形式的选择方面(微动、滑动及设缝措施,提供“放”的条件)及材料性能方面(提高抗拉强度、抗拉变形能力及韧性等提供“抗”的条件)采取综合措施,如抗放相结合,以抗为主或以放为主的措施。

2.约束内力与结构刚度的关系

外荷载作用下结构的内力只与荷载及结构几何尺寸有关,但在变形作用条件下,结构的约束内力不仅与变形作用及结构几何尺寸有关,尚与结构刚度有关,这是约束内力与荷载内力的重要区别。

6 约束力矩不仅与温差和截面高度有关,而且与梁的抗弯刚度成正比,刚度越大,约束力矩越大,这适宜于裂缝出现及扩展阶段,当然应当考虑钢筋混凝土的抗弯刚度是变化的。 当温差不断增加,钢筋混凝土构件进入极限状态时,裂缝充分发展,刚度下降并趋近于零时则力矩也趋近于零。所以,变形力矩不影响结构的极限状态,这一论断己为实验证实。但是裂缝影响使用(渗漏)及耐久性(钢筋锈蚀)。如果结构的承载力由抗剪、抗冲切作决定,变形作用引起的贯穿性裂缝可能降低承载力。

3.钢筋混凝土与素混凝土裂缝控制的区别

任何尚未荷载作用的混凝土,它的组合材料包括水泥、水、砂、 石、外加剂及掺合料等组分相互物理化学作用硬化成为一种多空隙复合材料,由于初始温度收缩应力作用而形成内部许多微观裂缝,这种裂缝在外力作用下不断扩展,成为宏观裂缝,继续扩展对素混凝土迅速导致破坏。 但是,对于钢筋混凝土,特别是有充分构造配筋的钢筋混凝土出现一定程度的裂缝,不会迅速导致破坏,只是限制裂缝宽度问题,使其不达到有害程度。因此,构造配筋显得十分重要,可以有效地控制裂缝的出现及分散裂缝(用许多微细无害裂缝取代少量粗大的有害裂缝)。

(三) 混凝土的某些基本物理力学性质

1.混凝土的收缩及水化热

7 在工民建领域,大部分结构构件(板墙梁等构件)均属薄壁结构,泵送混凝土浇注的构件收缩量很大,因此经常出现收缩裂缝。混凝土的收缩机理至今尚未统一,但大多数的研究成果认为混凝土是具有大量孔隙的材料。孔隙的半径颇不一致,半径较小的毛细孔,半径约小于300A(A=10-10m)。其中水份蒸发引起孔壁压力的变化,导致混凝土体积的缩小。混凝土内除了少部分水提供水泥水化的需要,其余大部分水分都要蒸发掉,收缩变形同时发生,最终收缩完成的时间大约20年,但其主要部分的收缩是在最早的1~2年内。由于近来水泥活性和强度等级的增加,收缩量显著增加,并且拖延时间较长。影响收缩的因素很多,如水泥品种采用矿渣水泥比普通硅酸盐水泥水化热低了,但其收缩约大25%。遇到超厚的大底板或大块式基础,则水化热起控制作用,宜选用粉煤灰水泥或矿渣水泥,所以,应根据截面的厚度分别选用不同品种的水泥。其次水泥颗粒越细,活性越大,标号越高,用量越多,其收缩越大,因此提高水泥强度的方法不应靠磨细的途径,而应当依靠改善矿物成分的办法。

众所周知,水灰比大,收缩将显著增加,同时抗拉强度降低。如水灰比为0.6的收缩比水灰比为0.4的收缩增加约40%。有时尽管水灰比不变,增加用水量,同时增加水泥量即水泥浆量,如水泥浆量为0.2(水泥浆占混凝土总重量比例)比0.4时的收缩量增加约45%。减水剂可有效的降低水灰比及用水量,而粉煤灰具有圆珠润滑效应和火山灰效应,所以“双掺技术”对泵送混凝土既可提高和易性又可减少收缩。

8 养护条件对混凝土的收缩影响很大,养护14天的收缩比养护3天的收缩降低约20%。环境的相对湿度越高,收缩越小,许多结构所处的环境湿度波动很大,如最低30%~40%,最高达80%~90%。环境温度越高,风速越大,收缩越大,高空浇灌容易引起开裂,如高架桥梁及桥墩。

混凝土的配筋对于收缩值起一定的约束作用,但是与配筋率的高低有关,按目前构造配筋率的情况看来,降低收缩的影响是比较小的。根据泵送商品混凝土的收缩试验,其收缩值约在6~8×10-4,有的试验还远远超过了这个数量,有些大桥的桥墩和高层建筑的厚壁立柱由于施工质量及过大的坍落度,形成了中部骨料多,外部或上表面砂浆厚,从而形成极不均匀的收缩,砂浆和水泥浆的收缩比混凝土的收缩大约增加2~5倍,并由于表面水份蒸发快从而形成大面积的表面裂缝。混凝土粗细骨料的含泥量和粉料含量都增加收缩。

目前建筑市场出现了很多新型的外加剂和掺合料,质量保证主要靠强度试验的结果,几乎没有进行体积变形稳定性方面的试验,而许多材料都有增加收缩的特点,必须进行长时期准确的收缩试验,才能得到有利于控制裂缝的材料。 各种水泥的水化热试验比较容易,一般水泥厂家都已进行专门的试验,有资料可查,不在赘述。 2.混凝土的徐变(蠕变)因素的考虑

混凝土的徐变机理也有许多种,如弹性徐变理论、老化徐变理论、继效徐变理论等等。作为工程裂缝控制的应用,我们只能应用其中主

9 要的成果,以常系数的形式,考虑在弹性计算的结果中,从而简化了非线形分析。由于混凝土的徐变作用,给钢筋混凝土和预应力钢筋混凝土带来有利和不利两方面的影响。从不利方面看来,它可以造成预应力损失,增加挠度,可以降低钢筋和混凝土的粘着力等。从有利方面看来,它可以使弹性的温度收缩应力大大的松弛,根据变形速率及混凝土龄期,它对应力降低的程度约0.3~0.8倍,保温保湿养护越好,降温越慢,松弛系数越小。 3.混凝土的抗拉强度及极限拉伸

泵送混凝土浇注后,其抗压强度和抗拉强度都随着时间而增长,但增长的速率,抗拉滞后于抗压,水泥标号的提高及水泥用量的增加, 对抗压强度增长较为显著,而对抗拉强度增长较小。

相对变形约束应力,混凝土的极限拉伸尤为重要,国内外曾进行过一些试验研究。例如苏联布拉茨克和克拉斯诺雅尔斯克水电站的试 验表明混凝土轴向拉伸应变值变化范围为0.5×10-4~1.0×10-4。法国鲍斯进行的轴向拉伸试验。在抗拉强度为2.05MPa时,局限拉伸值为0.9×10-4。美国卡普兰在轴向拉伸试验中极限拉伸值为0.81×10-4。前苏联齐斯克列里提出当轴向抗拉强度为1.2MPa时,极限拉伸为0.7×10-4。我国水工系统研究单位和工程单位)对混凝土的极限抗拉强度也作过不少研究,并在工程中采用。如丹江工程混凝土极限拉伸值为(0.58~0.8)×10-4,乌江渡工程为(0.6~1.02)×10-4等等,极限拉伸很小,抗裂能力很弱(收缩变形超过极

10 限拉伸5~10倍)。冶金系统,不少设备基础,特别是高炉基础、炼钢基础,混凝土的浇注量大多在5000m3以上,轧钢基础的混凝土量100000m3~200000m3,厚度2.5m~9.5m,长度由35m~600m,均属超长超厚的大体积钢筋混凝土,开裂后可引起钢筋的锈蚀、降低持久强度、刚度和防水性能、严重者影响自动化生产工艺。防止和控制这类基础的温度裂缝也是很重要的。为此我们在民用建筑工程中开展了混凝土轴向拉伸强度及变形性能的试验研究。通过对双掺(减水剂及粉煤灰)混凝土的抗拉试验,发现混凝土随着荷载速率及养护条件,其极限拉伸和抗拉强度波动很大,在极慢速(接近实际温度和湿度缓慢变化速度)条件下,其极限拉伸可达(2~3)×10-4,显然这里包含了徐变变形,这对温度收缩应力是很有利的(在强度计算中用松弛系数乘以弹性应力与按变形计算增加极限拉伸是等同的)。

特别值得注意的是,混凝土中的较大含泥量及其它杂质可以明显地降低混凝土的抗拉性能,有的混凝土骨料中混入了有害膨胀物引起混凝土的崩裂,因此要求泵送混凝土必须遵循“精料供应”的原则。 合理的配筋,特别是构造配筋,细一点密一点可以提高混凝土的极限拉伸,推荐齐斯克列里经验公式。 这是瞬时荷载作用下的公式,如果极慢速约束变形作 用考虑徐变作用,至少可以增加一倍。

(四)结构设计或施工中近似计算的模型选择

我国在工民建领域解决变形作用引起裂缝的问题主要是按混凝土设计规范采取设永久性变形缝的办法,根据现浇、预制、土中、室

11 内、露天等条件,有明确的伸缩缝许可间距规定。该规定自从50年代沿用苏联规范规定,我们当时曾多次向苏联有关单位和苏联专家咨询有关规定的依据,他们的回答:“全凭经验”,采取相似规定的还有东欧及其它一些国家。的确,该法解决了许多工程裂缝问题,其缺点是伸缩缝止水带经常渗漏并难以维修。更重要的是在实践中发生了许多反常现象:有的工程尺寸很小,却出现了严重开裂;另外也有的工程超长而未出现明显开裂,说明设缝与否,不是决定开裂与否的唯一因素。其它如材料级配、结构约束、结构配筋、施工工艺、养护条件以及环境温湿度气象条件等综合因素都影响结构约束内力及裂缝的出现。通过实际工程裂缝反算与现场推力试验,假定结构相互连续式约束采用水平弹簧模型,弹簧侧移刚度由试验和经验给出。推导出长墙中部正截面法向拉应力,端部剪应力,伸缩缝许可间距以及一再从中间开裂的机理。在排架及框架约束应力分析中提出了考虑弹性抵抗作用、装配式系数、徐变影响系数、开裂刚度及利用混凝土后期强度的计算发表于1957~1958年,多年来通过裂缝处理实践近似理论计算进行了反复的校核与补充。

三、结论

所以就我个人观点来看,钢筋混凝土结构的裂缝是不可避免的,但其有害程度是可以控制的,有害与无害的界限是由结构使用功能决定的。裂缝分为表面裂缝、浅层裂缝、纵深裂缝(深层裂缝)、贯穿裂缝等。裂缝控制的主要方法是通过设计、施工、材料等方面综合技 12 术措施将裂缝控制在无害范围内。综合技术措施包括:合理选择结构形式,降低结构约束程度,对于水平构件梁、板、墙等采用中低强度级混凝土,加强构造配筋,如板顶部的受压区连续配筋,板的阳角及阴角配置放射筋,增加梁的腰筋间距200mm。优选有利于抗拉性能的混凝土级配,尽力减小水灰比、减少坍落度、降低砂率增加骨料粒径,降低含泥量及杂质含量。选用影响收缩和水化热较小的外加剂和掺合料。采取保温保湿的养护技术,尽量利用混凝土后期强度(60天)。对于超长结构可采取跳仓浇灌或后浇带方法施工。对于复杂的结构难免出现少量裂缝影响正常使用和耐久性。少量有害裂缝采用适当的近代化学灌浆技术处理后,便可满足其设计使用和耐久性要求,也就不应因此降低工程质量评定标准。

参考文献

1. 周文;;施工中混凝土裂缝的控制措施[J];水运工程;2006年02期 2. 吕清芳;混凝土结构耐久性环境区划标准的基础研究[D];浙江大学;2007年

3. 李树奇;大体积混凝土防裂技术措施的研究[D];天津大学;2004年 4. 尤仲鹏;厦门海沧大桥锚碇超大体积混凝土配合比与温控防裂技术[J];混凝土;2006年03期

5. 浅谈如何防治大体积混凝土施工裂缝 作者:夏志林,李日东

13

第三篇:谈砌体结构裂缝的成因与控制方法

撰写日期 2011 年 5 月

摘 要

多年来,砌体结构水平温度裂缝这一质量通病经常出现在建筑物上,影响建筑物的外观,同时也影响建筑物的使用寿命及使用功能。文章拟就裂缝出现的成因及防治方法作以阐述。目前,裂缝是砌体结构质量中最主要也是最难处理的问题之一,当温度变化幅度较大时,温差将产生应力和变形,当应力和变一。据有关资料统计,几乎80%以上的裂缝是由于温度应力造形超过砌体的正常使用极限时,砌体便会产生裂缝。温度裂缝一成的。由于砌体结构采用材料的抗拉强度和抵抗变形的能力较般情况下不会直接引起建筑物的破坏,但会影响建筑物的正常使用,例如:墙体风化腐蚀、渗漏、抹灰层脱落和耐久性能的降低等,从而导致建筑物承载能力的降低、整体刚度的减小、抗震性能的降低等。因此,研究砌体结构温度应力下裂缝产生的原因及对温度应力实施预防是非常必要的。

关键词:砌体结构,弹性模量,温度裂缝

Abstract

For many years, masonry structure level temperature crack the quality problems often appear on buildings, influence exterior of the building, but also affects the service life and building function. The article will take the causes of cracks and control methods to expound. At present, the crack is the most main masonry structure and quality of handling problems are the hardest one, when the temperature change to a larger extent, will create stress and deformation temperature, when the stress and become one. According to the statistics, almost 80% of the cracks are due to temperature stress the normal use of plastic over masonry limit, masonry will produce a crack. Temperature crack a success. Because of masonry structure using materials tensile strength and ability to resist deformation is a case not the direct causes the destruction of buildings, but will affect the normal use of buildings, such as: wall weathering corrosion, leakage, plasterer layer falls off the lower performance and durability, causing buildings such as the bearing capacity of the decrease of the total stiffness reduction, such as the lower and the aseismatic property. Therefore, the study of masonry structure crack under temperature stress causes and prevention of temperature stress implementation is necessary.

Keywords: masonry structure, elastic modulus, temperature crack

1 引言 ......................................... 5 2 裂缝的成因及类型 ............................. 5 2.1 八字形裂缝 ............................... 6 2.2 倒八字形裂缝 ............................. 7 2.3 水平裂缝 ................................. 7 2.4 垂直裂缝 ................................. 7 2.5 X形裂缝 ................................. 7 3 砌体温度裂缝的特征 ........................... 7 3.1 从计算角度控制 ........................... 8 3.2 规范结构控制 ............................. 8 3.3 构造控制 ................................. 8 4 温度裂缝控制措施 ............................. 9 5 温度裂缝的治理措施 .......................... 10 6 设计过程中对砌体裂缝的主动控制 .............. 10 7 砌体裂缝的加固处理 .......................... 10 8 结束语 ...................................... 11 主要参考文献: ................................ 12 致 谢 ........................................ 13

1 引言

砌体结构是指由块体和砂浆砌筑面成的墙、柱作为建筑物主要受力构件的结构。特点是整体性较差,抗拉和抗剪强度较低,比较容易产生裂缝。但砌体结构裂缝有一定原因和客观规律。通过对砌体结构裂缝和变形的分析,可以提出有针对性的预防和处理措施。

一、 本课题研究的内容

1、裂缝对砌体结构建筑物的危害

2、裂缝的类型及其产生的原因分析

3、裂缝的预防、控制措施

4、防止或减轻房屋其它有关部位墙体开裂的构造措施

二、 本课题研究要解决的问题

1、设计时考虑周全,尽量排除动力源;

2、施工图审查时,认真加仔细,对设计中不足提出补救措施;

3、施工过程中严格按照国家验收规范和施工图要求施工;

4、质量监督时严格按照国家验收规范和图纸把好材料和技术关,对施工中不符合要求的严令整改;

5、根据建筑物的具体情况,如场地土及地震设防烈度、基础结构布置型式、建筑物平面、外形等,综合采用上述抗裂措施。 总而言之,只要认真对待,墙体裂缝是可以预防的。

2 裂缝的成因及类型

产生裂缝的原因是多方面的,归纳起来主要有两方面

一是由外荷载(包括静、动荷载)变化引起的裂缝,二是由变形引起的裂缝(主要有温度变化,不均匀沉陷或膨胀等变形产生应力而引起的裂缝)。在砌体结构的民用建筑中,砌体裂缝绝大部分是由于变形引起的,温度变化是引起墙体开裂的主要因素。由于砖砌体的线膨胀系数,而钢筋混凝土线膨胀系数是因此当温度发生变化时,二者产生变形差异。此外,由于建筑物中的构件大多属于超静定杆件,具有多个约束,对由于温度变化所引起的变形将予以限制,从而会在构件内产生温度应力。对墙体与混凝土之间的变形差异势必在砌体中产生很大的拉力和剪力,这些力超过一定限度时,砌体就产生错位裂缝,温度裂缝是造成墙体早期开裂的主要原因。由于温度应力和变形而产生的裂缝具有“顶层重下层轻”、“两端重中间轻”、“阳面重阴面轻”的特点与规律,裂缝的类型及其产生的原因可具体分为如下5种

2.1八字形裂缝

主要出现在横墙与纵墙两端部,此种裂缝属正八字形的热胀裂缝,随温度升降而变化,其原因是由于设计与施工中的缺陷,使屋面保温层的热阻减少甚至失败,致使屋面板温度变形大于砌体温度变形,当产生一定的温度应力的,屋面板的推力就传给墙体,并因墙体温度附加应力在房屋两端较大,当砌筑吵浆强度较低时,则易发生剪力产生的主拉应力,当超过砌体抗拉极限时,墙体即出现八字形开裂。

(1)内外纵墙和根墙的“八”字形裂缝。这种裂缝多出现在每片墙体的端部,而且集中出现在门窗洞口的角部,呈“八”字形。当温度升高时,屋面板伸长比相应砖墙伸长大,使顶层墙体因屋面板的推力作用受拉和受剪。拉应力和剪应力的分布情况大体是:房屋平面中间为零,两端最大,因此墙体的两端部位大多出现“八”字形裂缝,屋面保温隔热层的质量越差,屋面板和墙体的相对位移越大,裂缝越明显。

(2)窗台出现水平裂缝、斜裂缝。当房屋的长高比较大,而且室内空间比较宽敞高大的房屋,顶层外墙常在窗台部位出现水平裂缝,窗口出现对角斜裂缝。当温度升高后屋面板伸长对墙产生水平推力,使窗台部位的墙体内侧向外扩展,外墙在水平推力作用下发生侧向弯曲而导致开裂。

(3)屋面板下面的外墙水平裂缝和外墙阳角的包角裂缝。这种裂缝出现在屋面板底部,顶层QL底部墙体,门过梁上部墙体,裂缝有时贯通墙厚。当升温时,屋面板对顶层QL及墙体产生推力,降温时,屋面板对墙体产生拉力,墙体抗拉强度不能抵抗水平剪力而导致墙体开裂。

(4)女儿墙裂缝。不少房屋女儿墙建成后发生侧向弯曲,女儿墙的根部和平屋顶面交接处墙体外凸或女儿墙外倾,造成女儿墙开裂,房屋的短边裂缝比长边明显。形成这种现象的主要原因是:钢筋砼屋盖和屋面的水泥砂浆面层,在气温升高后的伸长比砖墙大,砖墙相对阻止屋盖结构和水泥砂浆面层伸长,因此屋盖结构和砂浆面层对墙体产生推力导致女儿墙开裂。温差越大房屋越长,面层砂浆越密越厚,这种推力越大,墙体开裂越严重。

通常情况下,温度裂缝危害并不大,但对房屋的整体性、耐久性和外观影响较大,给住户产生一种不安全感,特别是对商品房销售影响较大,如遇到地震或水平荷载作用下有可能导致房屋破坏。因此,在设计中,应采取有效措施,防止温度裂缝产生。 2.2倒八字形裂缝

属冷缩裂缝,主要出现在纵横墙两端的窗洞口处,尤以顶层两端窗洞口处最严重。由于墙体冷缩附加应力在墙体两端较大,当房屋收缩变形大于墙体时,在门窗洞口处产生应力相对集中而导致形成倒八字形裂缝,使墙体开裂。

2.3水平裂缝

多见于顶层横墙、纵墙、“女儿墙”及山墙处。当屋面保温隔热较差,屋面板受热膨胀对墙体产生水平推力,由于墙体在端部收缩要大于中部且砌体抗剪能力较低,使纵横墙与屋盖的接触面上产生水平裂缝。

2.4垂直裂缝

主要出现在窗台墙处、过梁端部及楼层错层外。此种裂缝主要由于温度变化,墙体受到楼板的拉力作用,在门窗洞口处产生应力集中效应而拉裂,或因冷缩变形,在与墙漆之间变形差异最大的钢筋混凝土上梁端和楼板错层外,引起墙体重直开裂。

2.5 X形裂缝

多数沿砌体灰缝开裂,主要受房屋热胀冷缩的反复作用形成,而底层墙体产生的X形裂缝则是由于基础不平整或不均匀沉降引起。

3 砌体温度裂缝的特征

(1)根据砌体材料的特征和砌体结构的特点,墙体裂缝是不可避免的,但是可以在材料、设计、施工等方面采取综合措施,有效地加以控制。

(2)温度裂缝大多分布在顶层,一般楼层分布不多,出现的方式有:墙体水平缝、墙体斜缝和窗角缝。

(3)温度裂缝的发展特征。大多数工程在主体竣工时即已出现温度裂缝,但由于未作粉刷与装修,一般不易被发现,大多数在工程竣工2~6个月内被发现,特别是经过夏、冬较大温差之后,但一个冬夏后又逐渐稳定。

(4)温度裂缝对结构的安全耐久性的影响。一般不影响安全,但裂缝引起的建筑物渗漏,可能导致钢筋锈蚀,结构承载能力下降,缩短结构的合理使用年限,使其耐久性降低。 3.1从计算角度控制

由于砌体裂缝主要是由间接作用引起的,而温度变化与材料胀缩系数不同等间接作用引起的砌体附加应力的定量计算目前尚无统一的规范,因此设计人员应根据当地的实际情况,对间接作用可能引起的附加应力给予充分考虑和计算,并对砌体强度进行分析计算,以减少在通常温差下变形裂缝的产生。

3.2规范结构控制

为控制裂缝的产生,在建筑物的平面布置设计中,结构的平面形状应力求规则对称,如平面形状不规则,应尽量采用“伸缩缝”将其分成若干独立规则单无,“以放为主,抗放兼施”,以避免由于墙体温度变化产生竖向开裂。对伸缩缝的设置,设计规范的规定一般较灵活,没有严格和明确规定,设计方法均由设计人员自行处理。根据多年实际经验,只要按规范每隔一定距离留一条“伸缩缝”,按“留缝就不裂”的简单方法,在一般情况即可得到基本控制。在建筑物的竖向设计时,应力求按竖向规范规则,尽可能不出现错层,以避免由于温度变化产生的水平裂缝。

3.3 构造控制

(1)加强设置钢筋砼圈梁,提高墙体的整体性。在建筑顶层每个开间、在错层处及屋面不等高处必须设置圈梁;顶层外圈应设计为暗圈梁,不应外漏,这样可使外圈梁免受阳光直接照射或大气影响;无论“女儿墙”高低,均要设置钢筋混凝土压顶圈梁,并与“构造柱”连为整体,以抵抗裂缝的产生。

(2)除据规范要求设备“构造柱”外,在“L、I、L”平面形状中的纵横墙交拉臼必须设备“构造柱”,以提高建筑物的整体刚度和墙体的可延性,约束墙体裂缝的扩展。

(3)提高屋面板的整体性。屋面板最好采用现浇板,或在预制屋面板上增加现浇层;在预制屋面板与外纵墙间设备现浇板带,预制屋面板间设备现浇板缝梁,使屋面成整体式装配。

(4)在房屋顶层端部1-2开间范围内的墙体采用配筋砌体,即每隔8皮砖在水平灰缝内加配2φ6钢筋,并在1-2开间范围内拉通,与“构造柱”钢筋结合。顶层用砖不应低于MU7.5,砌筑砂浆强度不应低于MS,以提高墙体抗裂力。

(5)屋面“挑檐”为外露结构,在一天内的温度变化较大,不仅本身容易开裂,而且对墙体开裂也有一定的影响,故应适当增加“挑檐”纵向配筋并增设“变形缝”或“后浇带”,以减少收缩。“后浇带”的做法是在其纵向受力较小的中间适当部位,预留300mm宽的“后浇带”,用钢筋贯通,在施工40-60天后再二次浇筑,以起到先放后抗的控制作用。

(6)重视屋面保温。选择屋面保温层时,适当加厚或选用保温隔热性能好良好的材料。对屋面保温层必须按建筑节能标准进行热工计算,进一步提高屋面保温层的保温隔热性能。屋面保温不好是屋面板产生温度应力的直接原因,严重时会导致顶层墙体开裂或屋面漏水。保温层应做至“挑檐”或檐沟处,以防止混凝土结构外漏,有条件者必须增设、架空隔热层。

4 温度裂缝控制措施

我国工程技术人员在实践中,总结出了“防、抗、防”的设计理念以防止结构裂缝,有的体现在现行的各种规范之中。如《砌体规范)GB5003—2001的抗裂措施主要有二条:一是第6.3.1条,即防止房屋在正常使用条件下,由温差和墙体干缩引起的墙体竖向裂缝,应在墙体中设置伸缩缝;二是第6.3.2条,即为了防止或减轻房屋顶层墙体的裂缝,可采取设置保温层或隔热层;采用有檩屋盖或瓦材屋盖;增加构造措施等方法。《砌体规范》的其他抗裂措施,如在相关墙体及部位增加钢筋,采用粘结性好的砂浆,不仅针对干缩小、块体小的粘土砖砌体结构的,而且对干缩大、块体尺寸比粘土砖大得多的混凝土砌块和硅酸盐砌体房屋,也是适用的。

但这些措施未考虑我国辐员广大,不同地区的气候温度、湿度的巨大差异和相同措施的适应性。对于温度裂缝的防治措施,国外已有比较成熟的经验值得借鉴。一是在较长的墙上设置控制缝(变形缝),这种控制缝和我国的双墙伸缩缝不同,而是在单墙上设置的缝。该缝的构造既能允许建筑物墙体的伸缩变形,又能通风隔声和防风雨,当需要承受平面外水平力时,可通过设置附加钢筋达到。这种控制缝的间距要比我国规范的伸缩缝区段小得多,如英国规范对粘土砖为l0~15m,对混凝土砌块及硅酸盐砖一般不应大于6m;美国混凝土协会(AC1)规定,无筋砌体的最大控制缝间距为l2~18m,配筋砌体控制缝间距不超过30m.二是在砌体中根据材料的干缩性能,配置一定数量的抗裂钢筋,其配筋率各国不尽相同,从0.03%~0.2%,或将砌体设计成配筋砌体,如美国配筋砌体的最小含钢率为0.7%,该配筋率既可抗裂,又能保证砌体具有一定的延性。

结合国内的实际情况,在设计、施工、材料等方面采取综合措施控制墙体温度裂缝,并提出如下建议:

(1)建筑物温度伸缩缝的间距除应满足《砌体结构设计规范》GB5003—2001第6.3.1条的规定外,宜在建筑物顶层墙体的适当部位设置控制缝,控制缝的间距宜控制在l0~15m.

(2)屋盖上设置保温层或隔热层;以减少钢筋混凝土屋盖的温度,达到减少屋盖温度变形总量,减轻板(梁)、墙交接面变形裂缝灾害的目的。目前较多的做法是将屋面由平顶改成坡顶,并从建筑功能考虑,充分利用坡顶层,提高使用率,减少建设单位或开发商成本。

(3)改进施工工艺与施工技术,组砌按规范接槎,砌筑砂浆必须饱满,加强墙体的整体性。顶层砌体及女儿墙砌筑砂浆强度等级不低于M5. (4)顶层砌体门、窗洞口加小构造柱、小圈梁,与建筑物构造柱、圈梁连接为整体,以改善应力集中现象,以强度、变形性能优于砌体的钢筋混凝土构件抵抗温度应力,减轻顶层端部门窗洞口开裂现象。

5 温度裂缝的治理措施

(1)对温度裂缝,不要忙于及早治理,等观察一个热胀冷缩周期,裂缝不再产生新的变化时再采取治理措施。鉴定裂缝是否稳定方法:可在裂缝内嵌抹水泥浆或玻璃纸。形态完整无损,说明裂缝已基于稳定,不再有较大发展可能性。

(2)当细小裂缝不影响使用时可不修补,当裂缝造成墙面渗水,可采用嵌补密封胶或水泥浆处理。

(3)对于裂缝较多且穿墙,影响美观和正常使用给用户造成不安全感时。可在裂缝墙体两侧用4Ф6@200或Ф6@500钢筋网片,两侧网片用铁丝固定后,用水泥砂浆外部抹面处理。

6 设计过程中对砌体裂缝的主动控制

砌体结构裂缝一旦产生,就会降低建筑物的使用功能,严重裂缝还会影响结构安全,同时对裂缝进行“加固补强”困难较大,因此防止、控制砌体结构产生裂缝是十分重要的,尤其是在地震区更为重要,否则将产生严重后果。

7 砌体裂缝的加固处理

(1)当屋面保温层未达到热工要求和节能标准时,应重做屋面保温层,使裂缝稳定,因为对温度裂缝仅做一般性的回固补强是无济于事的,必须从减少温度应力入手。保温层使用的绝热材料要满足表观密度、粒经、导热系数与含水率等各顶技术指标的要求,在施工中要严格按照设计和现行施工规范的要求施工,力求达到设计的保温效果。

(2)对地基不均匀沉降引起的砌体裂缝,应先加固地基,等沉降量达到稳定标准(平均日沉量0.02-0.03以内)后,再加固墙体。

(3)对外纵墙、横墙、内纵墙的裂缝采用钢筋网水泥砂浆抹面加固法,剔灰缝深12cm,必胀锚栓@500,呈梅花型分布。挂钢筋网,M10水泥砂浆40mL厚,3道成活,施工完后,要注意喷水养护预防空鼓。

(4)对于轻微裂缝可用水泥砂浆加107胶嵌补即可。

8 结束语

控制裂缝的产生和扩展,是建筑工程中必不可少的一个重要环节,应引起足够重视,尤其在当前建筑物普遍向高层、大型化发展的形势下,制定一项统一的规范和技术标准已迫在眉捷。控制裂缝,重点在防,并需要从设计、施工上共同努力,采取有针对性的防裂措施,加大主动控制的力度,才能提高新建房屋质量的可靠性。只要严格执行规定,做到设计与施工紧密配合,控制裂缝是完全可以做到的。实践证明,过去许多工程凡是采取了控制裂缝措施的,一般都取得了良好效果,被评为真正的优质工程。砌体结构中墙体的温度裂缝是建筑工程质量中的多发病,虽然通常不会影响结构的安全,但影响建筑的美观、结构的耐久性。并且容易诱发商品房的纠纷。只要我们在设计和施工中重视这一现象,温度裂缝是可以控制的。

参考文献:

[1]黄立山.《砌体结构裂缝的成因及控制措施》[J] 安徽建筑,2003. [2]许淑芳.《砌体结构》.北京:科学出版社,2004. [3]刘立新.《砌体结构》. 武汉:武汉工业大学出版社,2003.[4]王铁擎。建筑枷的裂缝控制,上海:上海科学技术出版社,1993. [5]谢征勋。混结构温度应力实用计算方法,建筑结构,1987.2. [6]林涛,曹麻茹建筑物的裂缝问题探讨[J];基建优化2004年 [7]朱国忠砌体结构温度裂缝机理与抗裂概念设计[D];河南大学2005年 [8]陈惠华砌体结构的温度裂缝特点、原因和防治方法[J]建筑结构1995年

转眼间,大学生活就要结束了,总结大学的生活,感觉获益还是颇多的,在这里需要感谢的人很多,是他们让我这大学三年从知识到人格上有了一个全新的改变。

感谢交通学院每一位老师对我的教育和指导,我的辅导员尚霞、我三年来各科的指导老师们,他们对工作的认真,对学生的教导都让我很敬佩。本文是在刘淑敏老师精心指导和大力支持下完成的。刘老师对工作的认真和严格是有名的,同学们都很喜欢她。我很庆幸有刘老师的指导,非常感谢她。

在论文即将完成之际,我的心情无法平静,要感谢的人太多,要说得话也太多,尽管文字很无力,但我还是想用无力的语言表达我想说的话,故借写论文致谢信之机向各位可敬的师长、同学、朋友表达我最诚挚的谢意!

第四篇:工程结构裂缝控制的综合方法(王铁梦)

由于变形作用(水化热、收缩,气温差)引起工程结构的裂缝是很复杂并很重要的问题。作者在大量的施工和处理裂缝的经验以及理论研究基础上提出“工程结构裂缝控制的综合方法”,包括结构力学近似计算法、结构与基础的共同作用、施工技术、材料优选、以及环境条件等。

[关键词]工程结构裂缝:控制 结构设计 施工方法 材料 环境条件

1建筑工程的质量问题

半个世纪以来,我国建筑业取得了辉煌的成就,其中混凝土结构、预应力混凝土结构技术突飞猛进,日新月异,取得大批先进、成熟的科技成果,混凝土结构设计理论与设计规范水平已跻身世界先进行列。在建筑材料方面开发出一大批新型高强和高性能材料,如高强混凝土、超高强混凝土、高性能混凝土、超高性能混凝土、轻质混凝土、钢纤维、塑料纤维、玻璃纤维混凝土、碳纤维混凝土、约束混凝土等,大批新品种的外加剂和掺合料已出现在建筑市场。在砖混结构方面,我国的空心砖及砌块建筑也获得迅速发展。在建筑领域,泵送混凝土的发展实现了混凝土商品化供应方式,从而改变了以预制化作为混凝土结构的设计方向,转向现浇整体结构,在施工方面,由硬性混凝土转向流动性混凝土。

我们应当看到在大规模建设取得上述巨大成就的同时还存在着质量问题。目前,在工程结构领域中一个相当普遍的问题是建筑物的裂缝问题,并且近年来日趋增多,它已影响到生活和生产,并困扰着大批工程技术人员和管理人员,是迫切需要解决的技术难题。

2建筑物裂缝的综合性原因

国际上关于荷载作用下构件的裂缝扩展问题,都应用纯经验计算公式,虽然其计算结果与实际出入较大,还可参考应用。但一般工程设计中,只进行荷载作用下的承载力计算,却经常忽略了裂缝的验算(除有特殊要求外)。

按照国际上近代结构的极限状态设计原则,整体建筑结构的功能必需满足两种极限状态的要求:①承载能力的极限状态,以确保结构不产生破坏,不失去平衡,不产生破坏时过的变形,不失去稳定,即不超过承载力的极限状态;②正常使用极限状态,以确保结构不产生超过正常使用状态的变形、裂缝及耐久性、振动以及其它影响使用的极限状态。目前人们对第一极限状态已给子足够的重视并严格执行,而对第二极限状态却经常被忽视了。

近年来,工程裂缝是影响正常使用极限状态的主要因素。裂缝产生的原因主要是变形作用,如温度变形、收缩变形、基础不均匀沉降变形等多因素,统称为变形作用引起的裂缝问题,此类裂缝几乎占全部裂缝的80%以上。对于变形作用引起的裂缝研究还很不成熟,缺乏有关规范及规程,它涉及到结构设计、地基基础、施工技术、材料质量、环境状态等诸多因素,特别是泵送混凝土施工工艺的发展,使得混凝土裂缝控制的技术难度大大增加。例如过去干硬性及预制混凝土的收缩变形约为2.5×10-4~3.5×10-4,而现在泵送流态混凝土约为6×10-4~8×10-4,水化热也大幅度增高。

3裂缝控制的综合方法

3. 1结构设计方面

3.1.1结构温度伸缩缝间距问题

根据《混凝土结构设计规范》(GBJ10-89),为避免结构由于温度收缩应力引起的开裂,采取永久式伸缩的方法,伸缩缝允许间距为30- 55m(室内或土中长墙、剪力墙结构及框架结构),露天条件下为20~35m,规范的附注中又明确指出:如有充分依据和可靠措施时,上述规定可以增减。其它有关的规程中还有允许采用“后浇带”取代伸缩缝的办法。

3.1.2后浇带的有效作用

现行规范的伸缩缝规定是把结构长度看作控制开裂与否的唯一因素。根据大量现场调查,引起结构裂缝的原因是综合性的,结构长度只是影响温度收缩应力综合因素之一,而不是唯一的因素。仅就长度而言,结构长度与应力呈非线性关系,如结构长度小于规范的规定,似乎结构内力影响很小,伸缩缝或后浇带可以有效地控制裂缝,但是对于承受很大温差和收缩作用的现浇楼板、大截面梁、剪力墙及长墙等约束度较高的结构,裂缝的概率仍然很高。

此外,由于综合因素的关系,有些工程长度超过规范的规定并没有开裂。从防水角度分析,由于近代建筑规模日趋宏大,超长、超宽、超厚结构都日趋增多,永久性的变形缝(包括伸缩缝、沉降缝、抗震缝)给工程的防水质量带来严重不利,止水带渗漏是常见而又难以处理的质量缺陷。所以,后浇带的应用是一种进步,但并不是在任何条件下都能奏效。

利用后浇带取代永久伸缩缝时应当注意以下两个问题:①后浇带中清理垃圾困难,接缝不密实,防水质量差,后期可能形成两条裂缝,因此后浇带的构造很重要:②后浇带的间距不宜过长(30m左右),填充封闭时间不宜过短,以能将总降温及收缩变形进行一半以上的时间为佳,从目前混凝土的收缩量来看,估计3-6个月方能取得明显效果,最短不少于45d:在软土地区,填充时间在结构封顶以后,方可有效地释放差异沉降的应力。如通过地基处理解决差异沉降问题,为此目的而设的后浇带可以不设。

根据现场实践经验,裂缝分为有害的及无害的两类,有害与无害的界限由使用功能而定。当采取必要的设计、施工及材料措施控制有害裂缝的产生或由于估计不足等因素,即便出现少量有害裂缝,通过化学灌浆处理,仍然满足设计使用要求,即可取消后浇带。实践证明,从长期正常使用来看,这种以“抗”为主的无缝工程较留永久性变形缝具有一系列的优点如整体性好、防水性好、抗震性好、施工方便等。

3.1.3结构约束问题

结构物的变形有3种:自由变形、约束变形和实际变形(显现变形),其中只有约束变形产生约束应力。约束变形(约束应力)超过建筑材料的极限拉伸(抗拉强度),便引起裂缝。

变形作用引起的作用力有最大值,设计者可以采取抗与放”或“抗放兼施”进行结构形式的设计。留伸缩缝与不留伸缩缝的方法都是以“放”或“抗”为主的方法,做得合适,都可以使结构不产生有害裂缝。

结构所受到的外部作用分为:外荷载(静动荷载),可看作是第一类荷载:具有十分重要的外部作用是变形作用,即第一类荷载为间接荷载,变形作用包括温度、湿度、地基不均匀沉降,在该作用下,结构的抗力取决于混凝土的抗拉性能,即抗拉强度和抗拉变形。

做结构裂缝分析时,首先应当注意第一类荷载引起裂缝的可能,特别值得注意的是那些自重荷载超过极限承载力约30%的结构,拆模后发现0.lmm左右的裂缝是正常的结构受力状态。当结构的极限承载力取决于抗拉、抗剪和稳定条件时,变形作用引起的裂缝对结构极限承载力的影响是不允许忽视的,常说“温度收缩裂缝没关系”是不全面的,有时梁板结构产生贯穿性裂缝可能降低抗剪和冲切承载力。关于框排架约束应力计算可查参考文献1,本文对目前常出现的竖向开裂计算作一介绍。

连续式约束条件下大底板、长墙、剪力墙、楼板等最大约束应力近似计算公式 或按时间增量计算:

当应力超过抗拉强度时,可求出裂缝间距:

式中:T—包含水化热、气温差及收缩当量温差,同号叠加,异号取差,由此可见,夏天炎热季节浇筑混凝土到秋冬冷缩及收缩都是叠加的,拉应力较大。

H(t,T)—松弛系数,在保温保湿养护条件下(缓慢降温即缓慢收缩),可按“工程结构裂缝控制”第123 页表5-1取值:如不考虑龄期的影响则按表5一2取值:施工养护条件良好者总降温差包括水化热降温差及收缩当量温差一次计算(即非分段计算),松弛系数在良好的温湿度养护条件下取0.3或0.5养护一般),当寒潮袭击或激烈干燥时,松弛系数为O.8,应力接近弹性应力,容易开裂。

当拉应力超过设计强度时,应验算裂缝间距,再根据裂缝间距验算裂缝宽度(注意:裂缝间距既是伸缩缝间距,又是后浇带间距,如果建筑物的总长小于或等于该间距,则该建筑物即可取消伸缩缝,计算后浇带间距所取的降温及收缩只是后浇带封闭前的一段降温及收缩差,但还应验算后浇带封闭后的应力,这是采用结构的、全长和封闭后温度及收缩差):

T=T1+ T2+ T3(水化热温差、气温差、收缩当量差,取代数和): 混凝土的极限拉伸,级配不良,养护不佳,约为 ;正常级配,一般养护,为 ;级配良好,养护优良,取 ;配筋合理(细一些、密一些),可提高极限拉伸20%一40%。构造配筋率宜为0.3%一0.5% 。

H—均拉层厚度(强约束区):

E-混凝土弹性模量:,

Cx—水平约束系数:

ch,arcch -双曲余弦及双曲余弦反函数:

a—线膨胀系数:一般情况 ,当 时,取

公式(3) ,(4) ,(5)告诉我们,控制开裂的主要因素是约束、温差及收缩和混凝土的极限拉伸。我们尽力降低前两项数值同时尽力提高极限拉伸方能有效的解决裂缝问题。根据公式,可求出平均裂缝间距[L],最大裂缝间距[L]、最小裂缝间距 ,进一步算出平均裂缝宽度、最大、最小裂缝宽。

从公式(3),(4),(5)可看出,设计上减少约束程度(滑动层、可动节点、变截面处理等)的作用,温差变形(包括收缩)与极限拉伸的差别越小,允许长度越大,当温差变形aT等于极限拉伸或Cx一0,则L一∞。当极限拉伸一0时,L一0,它们之间是非线性关系。应当强调,不仅设计,在施工及材料方面亦都应当尽可能采取措施减少温差(收缩差),提高极限拉伸,降低约束程度达到综合控制裂缝目的。

裂缝开展宽度:

式中: 为裂缝宽度经验系数, 如表1所示:约束系数Cx值如表2所示。

从工程经验可知,高层建筑混凝土大底板对长墙的约束系数Cx比地基对混凝土大底板的约束系数约大l00倍(300一600mm墙1.5- 2.5m板),故地基上混凝土底板的裂缝率极低,而长墙的裂缝率极高。因此受混凝土基础约束的长墙出现轻微的竖向裂缝是可以谅解的,经略加处理(裂缝化学灌浆)仍然满足设计施工的要求,不宜据此降低评级标准。

3.1.4加强构造配筋问题

设计时注意构造配筋十分重要,它对结构抗裂影响很大。但目前国内外对此都不够重视。对连续式板不宜采用分离式配筋,应采用上下两层(包括受压区)连续式配筋:对转角处的楼板(受双向约束较大)宜配上下两层放射筋,孔洞处配加强筋:对混凝土梁的腰部增配构造钢筋,其自径为8-14mm,间距约200mm,视情况而定。

3.1.5混凝土结构形式与强度等级问题

在水平结构(如梁、板、墙等)中,尽量采用中低档混凝土的强度等级(C25-C35),利用后期强度R60。

泵送混凝土的迅速发展,由于流动性与和易性的要求,坍落度增加,水灰比增大,水泥标号提高,水泥用量、用水量、砂率均增加,骨料粒径减小,减水剂及其它外加剂的增加等诸因素的变化,导致混凝土的收缩及水化热作用都比以往预制装配工程结构和中低强度等级混凝土大量增加,收缩时间延长,已为大量试验所证实。在裂缝控制中决定混凝土抗力的是抗拉强度(极限拉伸)。水泥用量及标号的增加,可明显提高抗压强度,但对抗拉强度(极限拉伸)的提高是较小的。

同时在结构设计方面,已从过去大量运用简支构件组合的静定体系发展为超静定框架和剪力墙体系,新结构体系的约束度显著增加,约束应力也相应增加。随着建设规模的日趋宏大,超长、超宽、超厚结构日趋增多,对结构的约束应力更是雪上加霜。混凝土高强化,缺乏考虑适用范围而推广到长墙、板梁、箱体等承受水平约束应力很高的结构中,导致过大的约束应力。

工程结构设计中应当特别注意混合结构的约束状态,尽可能降低结构的约束度(约束变形与自由变形之比)。各种砌块结构的抗裂性能较差,又由于砌体含水量较大导致收缩变形较大,与混凝土共同工作协调性不良,常引起严重开裂(特别在顶层楼板和墙体约束温度应力及填充框架变形裂缝)。

在基岩上或老混凝土上常采用设滑动层的作法(放的设计原则)和设铰接节点的作法(微动节点)。在约束度很高的结构中,除合理选择材料强度等级外,必须加强构造配筋(抗的设计原则),提高抗裂能力。

平屋顶结构的设计,应注意加强屋面保温隔热措施,尽可能采用性能较好的保温材料、防水材料,有条件的地区可利用架空隔热板以减少太阳辐射引起的升温。变形作用引起的开裂多发区经常在高层建筑的地下室及地上1,2层(强约束区)以及顶层(温差及收缩激烈波动区),所以要加强这些区域的构造设计。

钢筋保护层厚度过薄,对于耐久性不利:过厚会增加开裂宽度和开裂率,所以应根据耐久性要求的最小允许厚度确定,如C25- C35的混凝土结构,按50年设计寿命考虑,保护层厚度最小应为25mm,混凝土强度等级≦C20时为35mm,混凝土强度等级≧C35时,取15mm:遇有高湿环境时应加厚保护层:保护层厚度不均匀容易引起裂缝:楼板的一次浇灌层应注意其抗裂性。

3. 2施工工艺方面

3. 2. 1商品混凝土的精料供应问题

由施工单位委托搅拌站向现场供应商品混凝土时,委托的技术依据只有设计院确定的强度等级,却忽略了工程特点对大体积混凝土性能的要求,这样对控制裂缝是不利的。施工单位应在混凝上浇筑施工组织设计编制中协调搅拌站、监理、设计及甲方管理部门对混凝土浇筑、振捣、养护及坍落度控制作出技术方案,并严格执行,特别是对坍落度的控制更应严格且得到搅拌站的同意。

3.2.2新浇筑混凝土的养护问题

施工工艺的中心工作是新浇筑混凝土的养护,方法有:

(1)潮湿养护混凝土浇筑后,在其表面不断地补给水分。补给水分的方法有淋水、湿砂层、湿麻袋或草袋等,最好在表面盖一层塑料薄膜,这样水可渗入但又起到保湿作用。

潮湿养护的时间越长越好,但是考虑到工期等因素一般不少于半个月,重大工程应不少于1个月。混凝土浇筑后数月内,即便养护完毕,也不宜长期自接暴露于风吹日晒的条件下。

(2)养护剂涂层必须注意养护剂的质量及必要的涂层厚度,同时还应提供一定的潮湿养护条件,覆盖一层塑料薄膜。特别要注意地下室外墙1层底板及出地面1层楼板的养护。

(3)自动给水养护(水平淋水管)对于一些长墙、长梁等结构,可采用自动喷淋管(塑料管带有细孔),长期连续的淋水养护效果较好。

(4)保温养护 可采用2- 3层草袋或草垫之类的保温层,如水工领域采用的保温被(纤维编织布中填泡沫塑料)是有效的大面积保温措施,有条件的地方也可以应用:工民建领域,冬季设置蓄热棚保温,棚内用碘乌灯或其它热源补给热量,有条件时,在冬季施工中尽可能利用混凝土的水化热进行“自养护”。

(5)防风风速对混凝土的水分蒸发有自接影响,不可忽视。地下越冬结构宜封闭门窗,减少对流。

(6)实现信息化施工对于大中型工程,应当预埋测温点跟踪测试,信息反馈,指导施工养护。除了注意温升、温差外,更应注意降温速度,只要降温速度缓慢(1~3℃/d),里表温差在缓慢降温条件下,超过允许值一些也是可以的。

(7) 尽快回填,土是最佳的养护介质,地下工程混凝土施工完毕应尽快回填。

3. 3混凝上材质方面

泵送商品混凝土对原材料供应有很高的技术要求。混凝土搅拌生产环境是相当恶劣的,处于高温、高湿、高粉尘、高振动的条件下,必须确保设备的稳定运行,称量装置的严格精确度,确保混凝上的质量。

由于泵送混凝土的流动性要求与抗裂的要求相互矛盾,故应当选取在满足泵送的坍落度下限条件下尽可能降低水灰比。目前国内搅拌站对砂石骨料的含水率控制波动很大,影响了混凝土的水灰比。利用较精确的含水率测定仪或传感器测出配料过程中的含水率,进行计算机处理,自动调整配料的水灰比对于控制混凝土的收缩和提高抗裂性是必要的。

砂石的含泥量对于混凝土的抗拉强度与收缩影响很大我国对含泥量的规定比较宽,但现在实际施工中还经常超标。有的搅拌站,虽然检验资料是合格的,但在浇捣中发现大量泥块和杂质引起结构严重开裂。砂石骨料的粒径应当尽可能大一些,以达到减少收缩的目的。

搅拌站及施工单位都应根据结构强度需要和流动度的要求确定较低的坍落度,根据施工季节及运输距离选择适宜的出厂坍落度和送到浇筑地点的坍落度,并根据现场坍落度信息随时调整搅拌站水灰比。

当水灰比不变时,水和水泥的用量,即水泥浆量对于泵送状态及收缩都有显著影响。例如水灰比不变,水泥浆量由20%增加到25%水泥浆占混凝土总重录比),混凝土的收缩量增大20%:如果水泥浆增加到30%,则收缩增加45 %。因此在保证可泵性和水灰比一定的条件下应尽可能降低水泥浆量。 砂率过高意味着细骨料多,粗骨料少,仍然起到增加收缩的作用,对抗裂不利。砂石的吸水率应尽可能小一些,以利于降低收缩。

水泥品种的选择应根据大体积混凝土特点,视其结构特点以水化热控制或收缩控制。如以水化热控制可选用粉煤灰水泥、矿渣水泥及中热硅酸盐水泥:如以收缩控制,可选用普通硅酸盐水泥及粉煤灰水泥等。不要轻易采用早强水泥。

为了降低用水量,保证泵送流动度,应选择对收缩变形有利的减水剂。相对中低强度等级的混凝土可选用普通减水剂,夏季宜选用缓凝型,而冬季可选用普通型。

粉煤灰是泵送混凝土的重要组成部分。由于粉煤灰的火山灰活性效应及微珠效应,具有优良性质的粉煤灰(不低于II级),在一定掺量下水泥重量15%~20% ),其强度还有所增加(包括早期强度),密实度增加,收缩变形有所减少,泌水量下降,坍落度损失减少。粉煤灰与减水剂掺入混凝土称为“双掺技术”。通过预配试验会取得降低水灰比,减少水泥浆量,提高混凝土可泵性的良好效果,特别是可明显的延缓水化热峰值的出现,降低温度峰值。有的国外试验资料说明收缩变形也有所降低。

混凝土的裂缝与环境条件(施工期和施工后)有很大关系。施工过程中应注意温和湿度的变化,采取有效措施控制高温、低温冲击和激烈干燥冲击,此时,应力状态接近弹性应力状态,混凝土应力松弛效应无法发挥出来,特别注意浇筑后经过一定时期养护的混凝土仍然需要保护(维护),不宜长期裸露。注意与气象站的密切联系(降温及降雨预报),不得在雨中浇筑混凝土,否则将严重地改变水灰比。

结构施工后验收投入使用,由于环境变化(如生产使用条件、房屋装修改变条件),承受了新的温度、湿度、振动(包括相邻振动)、化学腐蚀及简载变化影响等,都可能引起后期开裂。

按照上述综合原则,在上海宝钢近百项超长大体积混凝土工程、上海八万人体育场、金茂大厦大体积混凝土底板、上海民防大厦、浦东新区某些高层建筑地下工程、大连高科技园大体积混凝土工程、青岛国际会展中心、厦门国际会展中心、厦门香格里拉大酒店、深圳鸿基大厦等工程都取得裂缝控制的圆满成功。

4混凝土裂缝限制标准

混凝土的裂缝是不可避免的,其微观裂缝是本身物理力学性质决定的,但它的有害程度是可以控制的,有害程度的标准是根据使用条件决定的。目前世界各国的规定不完全一致,但大致是相同的。如从结构耐久性要求、承载力要求及正常使用要求,最严格的允许裂缝宽度为0.lmm。近年来,许多国家已根据大量试验与泵送混凝上的经验将其放宽到0.2mm。

当结构所处的环境正常,保护层厚度满足设计要求,无侵蚀介质,钢筋混凝土裂缝宽度可放宽至0.4mm:在湿气及土中为0.3mm:在海水及干湿交替中为0.15mm .沿钢筋的顺筋裂缝有害程度高,必须处理。

近年来预应力混凝土应用范围逐渐推广到更多的结构领域,如大跨超长、超厚及超静定框架结构,其混凝土强度等级必须提高至C50。在采用泵送条件下,其收缩与水化热大大增加,约束应力裂缝很难避免,张拉前开裂,张拉后又不闭合,裂缝控制的难度更加困难,必须考虑大体积混凝土的特点进行设计、施工及材料优选,并适当降低强度等级。其裂缝限制分3级,即不出现拉应力、允许出现拉应力但不超过抗拉强度(拉而不裂)和最大允许宽度0.2mm。预应力结构裂缝允许宽度是严格的,预应力筋腐蚀属“应力腐蚀”并有可能脆性断裂,预兆性较小,裂缝扩展速度决。裂缝深度h与结构厚度H的关系如下:h≦0.1H 表向裂缝:0.1H< h <0.5H浅层裂缝:0.5H≦ h <1.0H纵深裂缝:h=H贯穿裂缝。

应当尽量避免贯穿性及纵深裂缝,如出现该种裂缝应采取化学灌浆处理来保证强度,即贯缝抗拉强度必须超过混凝土抗拉强度。

早期裂缝一般出现在1个月之内,中期裂缝约在6个月之内,其后1-2年或更长时间属后期裂缝。

应对悬挑结构的裂缝出现及扩展留有观测条件(如装修工程中人孔通道),裂缝的扩展状况给人们以预兆,藉以控制结构性破坏。

近年来,由于房屋产权体制的改变及生活水平的提高,对房屋质量要求更加严格,虽然经鉴定认为没有影响安全的有害裂缝,但从美观和精神作用的要求,应有适当的允许范围:当观察人距离结构20- 5Ocm时,可看清0.O5mm宽度的裂缝,是最严格的要求:距离1-2m时可看清0.1-0.2mm的裂缝,是一般要求:距离5-l0m时可看清0.5-1.0mm的裂缝,是必须修补的裂缝,有时虽然裂缝不宽,但是呈网状密布,给人一种精神不快感,需要修补;对有渗水的任何宽度裂缝必须处理,上述这类裂缝经处理后满足正常使用要求,不应据此降低质量评定等级。

虽然控制裂缝的方法是综合的,但在结构出现裂缝后的诊断工作中,还应根据工程的具体设计、施工及材料条件寻找出引起裂缝的主次原因。

第五篇:建筑混凝土结构裂缝的成因及其控制措施

建筑物钢筋混凝土结构的普遍应用,伴随着商品混凝土的推广,建筑楼面出现裂缝的机率在增加,日益受到社会人士关注;专家认为控制裂缝是个系统工程。楼面结构出现裂缝原因复杂,有材料、温度变化等原因,也有设计、施工、使用等方面问题,而楼面沿板内预埋管线出现的裂缝尚未引起工程人员足够重视,寻找其成因,利于有目的进行裂缝控制。

混凝土工程中材料的特性决定了结构较易产生裂缝,从实践中来看施工中混凝土出现裂缝的概率也是很大的,相当一部分裂缝对建筑物的受力及正常使用无太大的危害,但裂缝的存在会影响到建筑物的整体性、耐久性,会对钢筋产生腐蚀,是受力使用期应力集中的隐患,应当尽量在各方面给予重视,以避免裂缝的出现或把裂缝控制在许可的范围之内。

一、裂缝的成因分析

裂缝的形成有外荷载、结构计算模型差异、材料的收缩(主要为的混凝土收缩、温度变形)等原因造成。从技术角度来分析,有设计、施工、材料等方面问题,主要反映如下:

1、从设计方面看 ⑴楼板刚度不足:设计按多跨连续板进行配筋计算,侧重于满足结构安全,较少考虑混凝土收缩特性和温度变形等多种因素,楼板高跨比仅为L/33.6-L/35,其刚度较小对裂缝控制很不利。⑵楼板构造配筋设计不周:设计在支座处按常规配设负筋,在中部板面不配钢筋,当板面出现温度变形和混凝土收缩,因无构造钢筋约束,板面即出现裂缝。⑶楼板内布线欠合理:由于水电施工图由各专业设计,实际施工中出现水电管交叉叠放,或由于设计考虑管内容线面积,部分预埋管径≥D25;且设计管线位置在楼板跨中,即在单层双向配筋处,楼板有效截面受到很大程度(15%-40%)削弱,成为楼板最易开裂的部位;当楼板收缩应力大于混凝土极限抗拉强度时,即出现沿管线表面呈直线状的裂缝。⑷从房屋的空间结构来看,剪力墙刚度大,约束了剪力墙间梁板的水平向自由变形,而梁刚度又较板刚度大,因各类因素引起的水平向收缩变形均集中到剪力墙间刚度最小的板上,造成这块板开裂。⑸膨胀剂的选用与掺量:设计未明确混凝土的限制膨胀率,只提出膨胀剂的品种和掺量范围,施工时按设计提供掺量进行配比施工,使混凝土的实际限制膨胀率不能达到最佳限制膨胀率。

2、从施工方面看 ⑴水电预埋管施工时在板内位置欠合理:管位置过高或过低;位置过高时,极易在板面出现因混凝土硬化收缩产生的裂缝,也易在维修裂缝或室内装修时损坏管线;两根管线并行布置时,管线间距过小甚至并拢,更易因管线集中而产生裂缝。⑵空载养护期不足:从楼面混凝土浇完、收光至施工材料堆放,平均空载养护期仅为一天半,人为因素过早地震动、荷载造成楼板幼龄混凝土内部受损开裂。且施工中用塔吊吊运的钢管、钢筋等周转材料因受剪力墙钢筋影响多堆放在预埋管线部位。

3、从材料方面看 楼板商品混凝土强度为C40(8层以下)C35(8—18层)C30(18层以上),其收缩变形值为同标号普通混凝土的1.2--1.3倍,且商品混凝土单方用水量过大(200Kg),其中部分水在振捣时被游离出来,部分水与水泥结合成凝胶,相当大一部分为自由水仍留在混凝土孔隙中,成为混凝土干缩的隐患。楼板拆模后,板面和板底长期裸露在大气中,后期施工的细石混凝土面层养护期过后也长期处于干燥环境中。正是这种环境效应(受温度、湿度、风力影响使水泥石毛细孔、凝胶孔内的自由水由表及里逐渐蒸发),和尺寸效应(楼板裸露面积大,厚度薄)的共同影响,使楼板较其它构件更易出现干缩裂缝。

混凝土的干缩、温度收缩、收缩是要因,而由于施工管线预埋欠合理、楼板刚度不足、材料等多重原因综合,使本工程楼板沿预埋管线处出现大量裂缝。

二、裂缝的控制措施

(一)总体而言

1、设计措施 1)增配构造筋提高抗裂性能,配筋应采用小直径、小间距。全截面的配筋率应在0.3~0.5%之间。2)避免结构突变产生应力集中,在易产生应力集中的薄弱环节采取加强措施。3)在易裂的边缘部位设置暗梁,提高该部位的配筋率,提高混凝土的极限拉伸。4)在结构设计中应充分考虑施工时的气候特征,合理设置后浇缝,在正常施工条件下,后浇缝间距20~30m,保留时间一般不小于60天。如不能预测施工时的具体条件,也可临时根据具体情况作设计变更。

2、施工措施 1)严格控制混凝土原材料的的质量和技术标准,选用低水化热水泥,粗细骨料的含泥量应尽量减少(1~1.5%以下)。2)细致分析混凝土集料的配比,控制混凝土的水灰比,减少混凝土的坍落度,合理掺加塑化剂和减少剂。3)浇筑时间尽量安排在夜间,最大限度降低混凝土的初凝温度。白天施工时要求在沙、石堆场搭设简易遮阳装置,或用湿麻袋覆盖,必要时向骨料喷冷水。混凝土泵送时,在水平及垂直泵管上加盖草袋,并喷冷水。4)根据工程特点,可以利用混凝土后期强度,这样可以减少用水量,减少水化热和收缩。5)加强混凝土的浇灌振捣,提高密实度。6)混凝土尽可能晚拆模,拆模后混凝土表面温度不应下降15℃以上,混凝土的现场试块强度不低于C5。7)采用两次振捣技术,改善混凝土强度,提高抗裂性。8)根据具体工程特点,采用UEA补偿收缩混凝土技术。9)对于高强混凝土,应尽量使用中热微膨胀水泥,掺超细矿粉和膨胀剂,使用高效减水剂。通过试验掺入粉煤灰,掺量15%~50%。

(二)具体措施

1、加强设计控制:梁板混凝土强度等级不宜大于C30;楼板应双层双向配筋,屋面、转换层楼面配筋宜加强;楼板内管线应避免出现交叉(将交叉部位设置在梁或墙上);控制管线直径,使其不超过板厚的20%且≤D25;重视房屋外围护构件(外墙、屋面、门窗等)的保温设计,若使房屋具有良好的保温性能,不仅可大幅度降低房屋长期能耗,更是减少因温差变形而引起裂缝的有效手段。

2、加强施工控制:采取有效固定措施(经计算高度的钢筋撑脚,预埋管线时管扎在撑脚上或采用砂浆垫块固定)使预埋管布置在板中部;延长空载养护时间,减少早期荷载裂缝;并行走向管线间距应大于0.25m,在管线集中或交叉处设加强筋,并在上下部铺放钢丝网,宽度应大于管区100mm;控制施工期间及竣工后的门窗洞口风速,减少环境温差和风速对结构的影响。

3、通过商品混凝土生产级配中材料的替换和外加剂的合理使用,降低商品砼的水泥和水用量;配比中添加聚丙烯纤维,可有效减少早期收缩裂缝(本工程在14层、18层楼板及屋面使用,掺量为1.2Kg/m3);合理选用混凝土膨胀剂(宜选用一等品),其掺量应经试配确定,来满足设计的限制膨胀率;加强养护,延长养护时间,也可在板面和板底拆模后涂刷养护剂,避免混凝土的早期干缩,确保膨胀剂产物的充分水化,使混凝土达到有效的补偿收缩作用。

4、在施工前与设计沟通,精心编制施工组织设计,通过材料调换,使楼面面层与楼板混凝土一起浇捣(采取有效保护措施),同时提升上层钢筋位置,这样在不增加荷载前提下增大了楼板的刚度,将有效减少裂缝的出现。

参考文献

[1]管大庆高温下大体积混凝土温度计算施工技术1996.2 [2]王铁梦工程结构裂缝控制北京中国建筑工业出版社1997.8

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:承办教研活动园长讲话下一篇:成都餐饮市场市场分析