变频电机功率计算公式

2022-12-22

第一篇:变频电机功率计算公式

三相电机的功率计算

1、力辉三相电机的功率计算: I=P/(U×cosφ×η)。(P额定功率kw。U额定电压0.22v。cosφ为功率因素。η为效率。当铭牌上未提供cosφ和η时,均可按0.75估算)。效率是什么?效率:是指电动机输出功率与输入功率之比的百分数。电动机在运转中因本身导电回路电阻发热,铁芯磁路有涡流损耗、磁滞损耗,还有机械磨损等。均为电动机内部的功率损耗,所以输出的机械功率总是小于输入的电功率。效率η一般在电动机的铭牌上都有标注。

2、三相对称负载的有功功率,可以计算1相负载的有功功率,再乘以3:

3、P=3×U 相×I 相×cosφ相 可是我们往往知道的是电机的线电压U线,线电流I 线,而且也不知道三相电机绕组是什么接法,怎么办?

4、不要紧,我们先假设,电机是Y接的: U相=1/√3 U线 ,I 相=I 线 ,所以 P=3×U 相×I 相×cosφ相

=3×(1/√3 U线)×I 线×cosφ相

=√3 ×U线×I 线×cosφ相

5、不要紧,我们再假设,电机是△接的: U相=U线 ,I 相=1/√3 I 线 ,所以 P=3×U 相×I 相×cosφ相

=3× U线×(1/√3I 线)×cosφ相

=√3 ×U线×I 线×cosφ相

6、从

4、5知道,三相对称负载的有功功率,不管是什么接法,只要用线电压、线电流,就是一个公式:

P=√3 ×U线×I 线×cosφ相

7、这个证明的关键是:

1)Y接时,U相=1/√3 U线 ,I 相=I 线 ; 2)△接时,U相=U线 ,I 相=1/√3 I 线;

8、如果你不清楚,请看图:

第二篇:视在功率计算公式

视在功率是指在电工技术中,将单口网络端钮电压和电流有效值的乘积,记为S=UI。

显然,只有单口网络完全由电阻混联而成时,视在功率才等于平均功率,否则,视在功率总是大于平均功率(即有功功率),也就是说,视在功率不是单口网络实际所消耗的功率。

计算公式:

S=UI或者S=P/COS∮

其中:S 视在功率P 有功功率U 电压I 电流COS∮ 功率因数

无功是相对有功而言的,一般来说它是电感性设备建立磁场实现能量交换所需要的一个电源,或者说是实现能量的一种必要平台,消耗无功电能的电气设备主要是电感性设备(例如电动机、及带镇流器的照明电气等),电阻性设备(如电炉等)不消耗无功,电力电容器可以作为电感性设备的无功电源。为以示区别,视在功率不用瓦特(W)为单位,而用伏安(VA)或千伏安(KVA)为单位。

视在功率的意义

由于视在功率等于网络端钮处电流、电压有效值的乘积,而有效值能客观地反映正弦量的大小和他的做功能力,因此这两个量的乘积反映了为确保网络能正常工作,外电路需传给网络的能量或该网络的容量。

由于网络中既存在电阻这样的耗能元件,又存在电感、电容这样的储能元件,所以,外电路必须提供其正常工作所需的功率,即平均功率或有功功率,同时应有一部分能量被贮存在电感、电容等元件中。这就是视在功率大于平均功率的原因。只有这样网络或设备才能正常工作。若按平均功率给网络提供电能是不能保证其正常工作的。

因此,在实际中,通常是用额定电压和额定电流来设计和使用用电设备的,用视在功率来标示它的容量。

另外,由于电感、电容等元件在一段时间之内储存的能量将分别在其它时间段内释放掉,这部分能量可能会被电阻所吸收,也可能会提供给外电路。所以,我们看到单口网络的瞬时功率有时为正有时为负。

在交流电路中,我们将正弦交流电电路中电压有效值与电流有效值的乘积称为视在功率,即S=UI视在功率不表示交流电路实际消耗的功率,只表示电路可能提供的最大功率或电路可能消耗的最大有功功率。

在整个RLC串联电路中吸收的瞬时功率为;P=Pr+Pc+Pl

=RI平方[1+cos(2wt)]-(wl-1/wc)I平方sin(2wt)

它是一个频率为正弦电流或电压频率2倍的非正弦周期量。第一项始终是大于或等于零。是瞬时功率的不可逆部分,为电路所吸收的功率,不再返回外部电路。第二项表明,电感和电容的瞬时功率反相,在能量交换过程中,彼此互补,电感吸收或释放能量时。恰好是电容释放或吸收能量。彼此互补后的不足部分由外部电路补充,可通过一

端口的U.I 从如下几个方面反映正弦稳态电路的功率状态。

1,有功功率P P=UIcosφ ,表示实际吸收的功率。单位用瓦特表示 2,无功功率Q Q=UIsinφ此能量在往复交换的过程中,没有消耗掉。单位用KVAR表示

3,视在功率S S=UI

4,φ称为功率因数角。是电压超前电流的相位差。

第三篇:浅谈变频电机试验的功率测量

徐伟专,董行健,方宏

(1.国防科学技术大学,湖南 长沙 410073;湖南银河电气有限公司, 湖南 长沙410073 ;2.西南交通大

学电气工程学院, 四川 成都 610031)

摘要:本文首先对三表法和二表法在电机试验中的测量方式进行了比较,其次分析了电容电流存在时的电机功率测量方法及误差,并对两表法测量进行了改进,最后讨论了电容电流对功率测量的影响以及消除方法。

关键词: 电机试验,功率测量,二表法,三表法,电容电流

1,

21,3

A Brief Talk on Power Measurement of Variable Frequency Electrical Machine

Xu Wei-zhuan,DONG Xing-jian

(1.HuNan Yinhe Electric Co..Ltd, Changsha Hunan 410073, China 2.Department of Electric Engineering, Southwest Jiaotong University, Chengdu Sichuan 610031, China;)

21,2Abstract: The comparison between double meter method and three meter method on Electrical Machine test is firstly introduced. Then the power measurement method and its error with capacitor current existing are analyzed. Next, a method to improve the double meter method is proposed. Finally, the influence and its eliminations are discussed.

Key words: Electrical machine test, Power measurement, Double meter method, Three meter method, Capacitor current 0 引言

随着变频调速技术的高速发展。变频电源作为电机试验电源,存在诸多的优势,但是,与区别于机组电源相比,变频电源存在一些机组电源所未遇到的问题。比如功率测试,《变频器供电三相笼型感应电动机试验方法》[1]报批稿指出,“脉冲频率高的场合不宜使用两表法(Aron接法)。这是因有电容电流存在,输入电流相量之和可能不为零。因此,应采用每相用一个功率表的测量方法”。

本文首先分析了三表法和二表法的功率测量原理,随后就电容电流存在时的功率测量方法和误差,对三表法和二表法进行了对比,最后讨论了实际应用中如何处理电容电流对功率测量的影响。

iAANBCiBiC 图1 Y型三相电路

式中,iA(t)、iB(t)、iC(t)为三相瞬时电流,

uAN(t)、uBN(t)、uCN(t)为三相瞬时电压。

式(1),(2)即为三表法测量功率的原理,图2为三表法的测量电路。

*A*1 三表法和两表法功率测量原理 WW* 三相电路有功功率的测量方法有二种:三表法,两表法 [2,3,4]。图1为Y型接法的三相电路。

三相瞬时功率:

p(t)uAN(t)iA(t)uBN(t)iB(t)uCN(t)iC(t)

(1)

B*CN*W*平均功率:

图2 三表法测量电路

PUANIAcosAUBNIBcosBUCNICcosC

PAPBPC

(2)

由图(2)知,三表法测量功率的前提是三相

四线制,只有三相绕组为Y型连接,才能接成三相四线制。对于Y连接的三相负载,若中线N未引出,则有 iAiBiC0

(3) 另外 UABUANUBN,UCBUCNUBN

(4) 将上述式(3),(4) 代入式(1),有

p(t)uAB(t)iA(t)uCB(t)iC(t)

(5) PUABIAcos1UCBICcos2P1P

2(6) 式中,1为UAB与IA的相位差,2为UCB与IC的相位差。式(5)、(6)即为两表法的测量原理,图3为两表法的测量电路。

*A*WBC*W* 图3 两表法测量电路

△连接时,有同样的结论。图3中,两个功率表的公共端接在B相,显然,两表法的接线方式共有3种,分别以A、B、C相为公共点。由两表法的推导过程可知,两表法的应用前提是iAiBiC0,故两表法适用于中线未引出的Y连接或△连接的三相电路,即适用三相三线制的三相电路功率测量,与负载是否对称无关。相反,三表法由于需要将中性点作为电压的参考点,只能用于三相四线制电路的功率测量,不能用于三相三线制电路的功率测量。可见,两表法和三表法的用途不同,一般而言,两者不能兼容,对于确定的电路,能采用两表法测量的,就不能采用三表法测量,反之,能用三表法测量的,就不能用两表法测量。有一种特殊情况,在三相四线制电路中,若中线无电流(例如,电源对称,负载对称的情况下)既可用三表法,也可用两表法。这也许就是部分人认为两表法只适合三相对称电路测量的原因。显然,这种认识是错误的。首先,对称电路,只在电路分析时有意义,对于测量来讲,并无实际意义。因为测量

是人类认知或检验的一个过程,而对称与否,是测量的结果,测量之前,我们并不知道其是否对称。 其次,对于对称电路来说,只需用一个功率表,读数乘以三即可,无需采用两表法或三表法。

2 存在电容电流时的电机功率测量

2.1 测量方法

对于变频器供电的三相系统中,当载波频率较高时,这些高频电压信号经过传输电缆时,会通过周围的杂散电容形成电容电流,在电机内部,包括轴承电容在内的各种分布电容也会形成电容电流,造成三相电流和不等于零,按照两表法的原理,此时采用两表法测量会造成误差。为此,国家标准《变频器供电三相笼型感应电动机试验方法》报批稿指出,“脉冲频率高的场合不宜使用两表法(Aron接法)。这是因有电容电流存在,输入电流相量之和可能不为零。因此,应采用每相用一个功率表的测量方法”,标准中,未明确实际应用中面临的下述问题:

1. 多高的脉冲频率下,不宜使用两表法?

2.用一个功率表测量每一相是否就是三表法?

3.采用三表法,对于中线未引出的电机,如何测量?

4.采用三表法,是否可以忽略电容电流的影响?

杂散电容根据对功率测量的影响,可以分为两种,第一种,其电流最终回到电源,无中线系统,仍然有iAiBiC0;第二种,其电流通过地回路等泄漏,不再回到电源,可能导致无中线系统

iAiBiC0。本文主要考虑第二种杂散电容的影响,并以电容的对地电流影响为例,图4为存在对地电容电流的三相电路。

iiA1AAiA0iGiBiB1BB0iNiCiC1CC0

图4存在对地电容电流的三相电路

图4中。iA1,iB1,iC1为杂散电容引起的泄漏电流。iA0,iB0,iC0为电机绕组实际相电流,iA,iB,iC为总电流,有:

iAiA0iA1 iBiB0iB

1 (6) iCiC0iC1

T (7) P((uANiA0uBNiB0uCNiC0)dt0T(uAGiA1uBGiB1uCGiC1)dt)/T0 由于电容不消耗功率,式(7)的第二项为零,即: TP(uANiA0uBNiB0uCNiC0)dt /T

(8) 0 式(8)说明了两个问题,首先,功率与电容电流无关,其次,从测量角度看,除非电机三相绕组的始端和末端均引出,否则,iA0、iB0、iC0不易直接通过测量获得。为了方便测量,我们对P进行下述变换: TTP((uANiA0uBNiB0uCNiC0)dt(uAGiA1uBGiB1uCGiC1) dt)/T00TT((uANiAuBNiBuCNiC)dt(uANiA1uBNiB1uCNiC1)dt)/T00TT((uANiA1uBNiB1uCNiC1)dt(uNGiA1uNGiB1uNGiC1)dt)/T00 TT(uANiAuBNiBuCNiC)dt/TuNG(iA1iB1i)dt/T

(9) C100 电机试验中,对于较大功率的电机,往往只引出三根线,式(9)中,第一项可直接测量,第二项不易测量,其值取决于电容电流和负载中性点电位。在电容电流不能忽略的情况下,如何准确测量三相电机的功率,尤其是如何采用两表法准确测量功率,对电机试验功率测量具有现实指导意义。 2.2存在电容电流时的三表法测量误差

采用三表法测量的功率为:

T P3(uANiAuBNiBuCNiC)dt/T0

(10) TPuNG(iA1iB1iC1)dt/T0可见,三表法测量功率,并不能完全消除电容电流的影响,假设电容电流带来的附加误差为EP3,

则有:

TEP3uNG(iA1iB1iC1)dt/T

(11)

0当中性点接地时,uNG0,P3P。

2.3 存在电容电流时的两表法测量误差

以B相为公共端,采用两表法测量的功率为:

TP2B(uABiAuCBiC)dt/T0T

(uANiAuBNiAuCNiCuBNiC)dt/T

0TT(uANiAuBNiBuCNiC)dt/T0uBN(iAiBiC)dt/T0T(uANiAuBNiBuCNiC)dt/T0TuNG(iAiBiC)dt/T0TuBG(iAiBiC)dt/T0

TPu

(12)

BG(iAiBiC)dt/T

0 TEPuBG(iAiBiC)dt/T

(13) 0由于 iA0iB0iC00, 所以 iAiBiCiA1iB1iC1。

TEPuBG(iA1iB1iC1)dt/T

(14)

0同理,有:

TP2APuAG(iA1iB1iC1)dt/T

(15) 0

T

(16)

P2CPuCG(iA1iB1iC1)dt/T0 对于电机试验,一般而言,电机的三相绕组基

本对称,分布电容也存在一定的对称性。即:uNGuAG,uNGuBG,uNGuCG。故三表法测量结果较为准确。

3 两表法测量的改进

电机试验中,中线通常没有引出,导致无法采

用三表法进行测量。如何提高两表法的测量精度,具有积极的现实意义。将分别以A、B、C为同名端的三次两表法测量结果进行平均

PP2BP2C2P2A

3 (17) TPAGuBGuCG)(iA1iB1iC1)dt/3T0(uTP(uANuBNuCN3uNG)(iA1iB1iC1)dt/3T0 由于电机试验时,试验电源一般具有较好的对称性,当电源完全对称时,有uANuBNuCN0, 即 TP

(18) 2PuNG(iA1iB1iC1)dt/T

0 此时,测量结果与三表法测量结果相等,图5为测量原理图,图中采用能测量瞬时值的两个电压表和三个电流表,由于uCAuCBuAB,功率可按照式(17)求取。改进后的两表法的优点是适合三相三线制的功率测量。

AAVBAVCA 图5:改进后两表法测量原理图

4 分析与探讨

4.1电容电流对功率测量的影响

不论是三表法、两表法还是改进后的两表法,功率测量结果均受漏电流大小的影响。且其附加的绝对误差均与iA1iB1iC1成正比,iA1iB1iC1与电源电压有关,电压越高,尤其是高次谐波电压越高,iA1iB1iC1越大。其相对误差与功率P有关,当P越小,相对误差越大。即:电源电压固定时,负载电流越小,相对误差越大;功率因素越低,相对误差越大。就电机试验而言,同样的变频器,对于同一台电机而言,负载试验时,误差较小;空载试验时,误差较大。

4.2 分离负载电流与电容电流

不论是三表法、两表法还是改进后的三表法,功率测量结果均受电容电流大小的影响。在了解测

量方法和误差后,更重要的是如何分离负载电流和电容电流,实现用两表法或三表法准确测量功率。

不论是三表法还是两表法,测量到的线电流为负载电流与电容电流之和,我们称为总电流。电容电流的大小与载波频率有关,载波频率越高,电容电流越大,由于分布电容的容量较小,电容电流主要由高次谐波构成。由于电机负载呈感性,负载电流主要由基波和低次谐波构成。

理论上,我们可以通过对总电流的谐波成分进行分析估计电容电流的大小,较高次的谐波电流,主要是电容电流,基波电流及较低次的谐波电流,主要是负载电流。而实际上,不同特性的电机,对谐波的截止频率不同,我们很难用一个通用的,确切的频率值来衡量这个界限,从而不能有效地指导实际测量。实际测量时,更有效的办法应该是尽量减小电容电流。首先,对于线路电容电流,其大小与载波频率,脉冲上升时间,电缆长度有关,实际测量时,只要将测试设备尽可能靠近电机端,完全可以忽略电容电流的影响,还可减小线路电压降对功率测试的影响。其次,电容电流由高次电压谐波造成,而高次电压谐波除了增加功率测量误差外,还有诸多的危害,如:

1.在电缆传输环节,高次谐波会造成过冲电压,损

坏电机绝缘。 2. 在电机内部,高次谐波导致的轴承电流会损害电

机轴承。

3.高次谐波产生很强的电磁干扰,影响其它设备运

行。

因此,不论是电机试验还是工业运行的变频电源,都应该尽可能减小这种高次谐波。对于变频电机试验而言,若要求试验电源是正谐波电源,需要在变频器的输出加装正谐波滤波器。若要求模拟用户运行环境,可采用诸如dv/dt滤波器等低通滤波器以保护电机。只要采取了上述两种方式中的任意一种,均可大大减小电容电流,提高功率测试精度。

对于载波频率较高,而输出又未加装任何滤波器的变频器,可通过下述方法判断电容电流的大小。不引出中线或将中线悬空,采用三个宽频带的电流传感器,由于iAiBiCiA1iB1iC1,通过对三相电流的高速采样,运算其向量和,该向量和即为电容电流的向量和。

5 结论

电容电流存在,输入电流向量和可能不为零,对两表法或三表法测量均会造成附加误差。改进后的两表法测试误差与三表法基本相当。就电机试验而言,可通过就近测量和附加滤波器等方式减小电容电流,提高测试精度。

【参考文献】

[1]GB/T 22670-2008 变频器供电三相笼型感应电动机试验

方法[ S]. [2].邱关源.《电路(第五版)》[M].北京:高等教育出版

社,2006. [3] 龚立娇,吴延祥,李玲. 三相功率的测量方法[J],石河子大

学学报(自然科学版), 2005,(02) . [4] 刘丽君,伍斌. 三相电功率两表测量接线方法的研究[J],

西南师范大学学报(自然科学版), 2002,(04) .

第四篇:变频基准功率说明

韶能集团耒阳电力实业有限公司耒杨发电厂变频改造

基准功率复核确认说明

我司于2011年12月与湖南金百大能效管理科技有限公司签订了《高压风机、水泵节能改造合同能源管理项目》合同,该项目于2012年7月投入运行,产生了良好的节能效果,给双方带来了直接的经济效益。

双方于2013年5月3日对改造设备基准功率进行确定,因计量方法以及统计时间较短,数据为暂定基准。经过长期的检测,双方找到更为科学的统计方法并于2014年7月17日对基准功率复核确认。复核计量的数据表明: 2#给水泵约定的基准高于实际工频运行功率/(高5KW-70KW);3#给水泵和1#给水泵约定的基准低于实际工频运行功率/(低50KW-150KW);风机的数据持平(正/负20KW)。 湖南金百大公司改造的设备是1#、3#给水泵,其节能量结算是参考2#给水泵的基准功率。2#给水泵为节能泵,同等工况下其运行功率低于1#、3#给水泵(低50KW-150KW)的运行功率。综合考虑2013年5月3日约定的基准功率对我方有利。

原1#炉一次风机改造后节电效果不明显,于2013年5月移至1#炉二次风机。对该设备37天工频计量按照新的统计方法重新计算,得出较为科学的基准功率。经过协商重新约定。

大量的数据表明该项目节能效果明显,节能量是真实客观的。经过双方多次沟通协商,秉承友好合作共赢的原则,双方达成一致意见:按照2013年5月3日约定的基准功率作为双方结算的依据,并与2014年7月17日双方签订复核确认表,按照合同执行。

耒阳电力实业有限公司耒杨发电厂

生技部

2014年7月17日

第五篇:电机功率因素和效率

1、效率低涉及:铜耗、铁耗

定子绕组铜耗大、转子导体铜损耗大、定子铁耗大、机械耗大、谐波分量损耗大

a、定子绕组铜耗大:缩短端部降低漏抗(加大启动电流),增大导线面积降低匝数,

磁密、Tmax上升和功率因数下降

b、转子导体铜损耗大:加大转子槽面积,导致齿部和轭部磁密上升和功率因数下降

或加厚端环,或转子槽型深窄化提高漏抗,使得功率因数和Tmax均下降

c、定子铁耗大:减小定子内径引起转子磁密提高,增加铁心长度增加定子绕组匝数,使定子电阻损耗增大, 漏抗增大,减少定、转子槽口宽度和采用磁性槽楔,以减少旋转铁耗漏抗增大,使Tmax降低

d、机械耗大:在满足风量下,尽量缩小风扇直径,注意倾角改善风阻,装配精度降低轴系磨耗

e、谐波分量损耗大:选择恰当槽配合,降低

5、

7、

11、13次谐波幅值,在无法改变槽配合的时候

可以适当加大气隙,以削弱非基次谐波幅值,以减少损耗,但加大加大气隙

的结果就是励磁电流加大,功增加功率因数下降,基波幅值下降因此基本Tmax下降

2、功率因数低涉及:励磁电抗、总漏抗 磁化电流大、电抗电流大

a、磁化电流大:增加定子绕组匝数,以降低磁密,定子电阻增大,使效率降低,漏抗增大, Tmax下降。

或适当减少气隙,降低励磁电流,如果槽配合不当会提高谐波幅值,最大转矩稍微提高,

使得效率下降,电磁噪音或震动增加,温升增加,同时造成装配困难增加。

使谐波漏抗增大,增加铁心长度以降低磁密,调整槽形尺寸,使齿部和轭部磁密分配合理。

b、电抗电流大:电抗电流大,由于漏抗大所致,可以改变槽形尺寸,加大槽宽,减小槽高,增大槽口

如此,漏抗减小, 启动电流增大,同时缩短绕组端部长度以减少端部漏抗,但嵌线困难

随写几种,其实,许多是相互制约的,一般优先考虑Tmax、效率、启动电流,其次再考虑功率因数,

必将两全齐美很难,这个就要看客户的要求,来分配铜耗与铁耗、励磁电抗与漏抗的关系。

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:别人拿房产证能贷款吗下一篇:补签劳动合同双倍工资