碳纤维增强基复合材料

2023-04-13

第一篇:碳纤维增强基复合材料

碳纤维增强树脂基复合材料性能的研究

摘 要:碳纤维增强树脂基复合材料以其优异的综合性能成为当今世界材料学科研究的 重点。本文介绍了的碳纤维增强复合材料的性能,简述了增强机理、成型工艺及其应用领 域和发展趋势。

新材料的研究、发展与应用一直是当代高新技术 的重要内容之一。其中复合材料,特别是先进复合材料 在新材料技术领域占有重要的地位,对促进世界各国 军用和民用领域的高科技现代化,起到了至关重要的 作用,因此近年来倍受重视。

复合材料(Composite materials),是以一种材料为基体(Matrix),另一种材料为增强体(reinforcement)组合而成的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。【1】

碳纤维增强复合材料(CFRP)是目前最先进的复合 材料之一。它以轻质高强、耐高温、抗腐蚀、热力学性能 优良等特点广泛用作结构材料及耐高温抗烧蚀材料, ,而这些优 异的性能可使碳纤维成为一种十分良好的增强材 料。目前,碳纤维大部分应用于碳纤维增强树脂基 复 合 材 料 ( Carbon Fiber Reinforced Polymer Composite,简称CFRP)。是其它纤维增强复合材料所无法比拟的。因为环氧树脂的热机械 性能、抗蠕变性能、粘接性能优异而且吸湿性好; 固化收缩率和线膨胀系数小;固化温度较低;较高 温度下稳定性好;尺寸稳定性、综合性能好[2];而 且又与有机材料的浸润性能好等优点,所以近年来 应用最多的就是碳纤维增强环氧树脂复合材料。目 前为止,CFRP 可以应用于航空、航天,体育用品, 交通工具,建筑材料等多个领域。无论是军用还 是民用,随着研究的不断深入和工厂的大规模生产, 其应用领域更为广阔。

碳纤维增强树脂基复合材料的性能【10】

碳纤维增强树脂基复合材料具有一系列的优异性能, 主要表现在以下几个方面。

(1)具有高的比强度和比模量。CFRP的密度仅为 钢材的 1/5,钛合金的 1/3,比铝合金和玻璃钢(GFRP) 还轻,使其比强度(强度 / 密度)是高强度钢、超硬铝、 钛合金的4倍左右,玻璃钢的2倍左右;比模量(模量/ 密度)是它们的3倍以上。CFRP轻而刚、刚而强的特性 是其广泛用于宇航结构材料最基本的性能。

(2)耐疲劳。在静态下,CFRP 循环 105 次、承受 90%的极限强度应力时才被破坏,而钢材只能承受极 限强度的 50%左右。对于碳纤维增强树脂基复合材 料,在应力作用下呈现粘弹性材料的疲劳特性,显示出 耐疲劳特性。CFRP呈现出良好的抗蠕变性能,这可能 与碳纤维的刚性有关。

(3)热膨胀系数小。碳纤维的热膨胀系数α具有 显著的各向异性,使其复合材料的α也具有各向异 性。

(4)耐磨擦,抗磨损。CFRP 有优良的耐疲劳特 性、热膨胀系数小和热导率高的特性,具耐磨擦、抗磨 损的基本性能。再加之碳纤维具有乱层石墨结构,自 润滑性好,适用于摩擦磨损材料。比磨耗量可用以下 三式表示。

Wr=KLª

a=(b+2)/ 3

N=(So /S )/ b

式中Wr 为比磨耗量; K为比例常数; S为循环作 用的应力; So 为材料的拉伸强度; N为断裂时的循环次 数。 CFRP具有高的拉伸强度,是优良的摩擦材料。

(5)耐蚀性。碳纤维的耐蚀性非常优异,在酸、碱、 盐和溶剂中长期浸泡不会溶胀变质。CFRP 的耐蚀性 主要取决于基体树脂。长期在酸、碱、盐和有机溶剂环 境中,刻蚀、溶胀等使其变性、腐蚀,导致复合材料性能 下降。

(6)耐水性好。碳纤维复合材料的耐水性好,可长 期在潮湿环境和水中使用。一般沿纤维方向(0° )的强度 保持率较高,垂直于纤维方向(90º)的保持率较低。这可 能与基体树脂的吸湿、溶胀有关。

(7)导电性好。碳纤维具有导电性能。对于 CFRP 导电性能来自碳纤维,基体树脂是绝缘体。因此,CFRP 的导电性能也具有各向异性。

(8)射线透过性。CFRP对 X射线透过率大,吸收 率小,可在医疗器材(如 X光机)方面应用。

2 增强机理 碳纤维增强树脂基复合材料是以聚合物为基体 (连续相),纤维为增强材料(分散相)组成的复合材料。 纤维材料的强度和模量一般比基体材料高得多,使它 成为主要的承载体。但是必须有一种粘接性能好的基 体材料把纤维牢固地粘接起来。同时,基体材料又能起到使外加载荷均匀分布,并传递给纤维的作用【11】。

这种复合材料的特点是,在应力作用下,使纤维的 应变与基体树脂的应变归于相等,但由于基体树脂的 弹性模量比纤维小得多,且易塑性屈服,因而当纤维和 基体处在相同应变时,纤维中的应力要比基体中的应 力大得多,致使一些有裂口的纤维先断头,然而由于断 头部分受到粘着它的基体的塑性流动的阻碍,断纤维 在稍离断头的未断部分仍然与其周围未断纤维一样承 担相同的负荷。复合增强的另一原因是基体抑制裂纹 的效应,柔软基体依靠切变作用使裂纹不沿垂直方向 发展而发生偏斜,导致断裂能有很大一部分用于抵抗 基体对纤维的粘着力,从而使银纹在 CFRP 整个体积 内得到一致,而使抵抗裂纹产生、生长、断裂以及裂纹 传播的能力都大为提高。因此,CFRP的力学性能得到 很大的改善和提高【12】。

1 实验部分

1.1 实验原料

碳纤维(12K/T-300):台湾台塑厂;环氧树脂 E51:星辰化工无锡树脂厂;固化剂:二乙烯三胺 (DETA)分析纯,国药集团化学试剂有限公司;活 性稀释剂:市售。

1.2 实验仪器及设备 电子天平:H10KS,上海仪器总厂;电热恒温 鼓风干燥箱:DHG-9030 型,上海精密实验设备有 限公司;搅拌器:DF-1 型,荣华仪器制造有限公 司;模具:自制。

1.3 复合材料的制备

(1)将碳纤维干燥,条件为:150 ℃/2 h; (2)按规定配比配制树脂胶液;

(3)采用手糊成型工艺制作层合板,并固化, 固化条件为 100 ℃/3 h + 150 ℃/2 h;

(4)用万能制样机切割标准样条;

其中制作的层合板长宽为 200 mm×200 mm, 厚度为 5 mm 的方形板材,基体树脂每层用量为 20 g,碳纤维每层平铺,一共为 8 层,层与层之间的碳 纤维丝束成十字交叉排列。

试验结果与讨论

2. 1 碳纤维含量对硬度的影响 显微硬度试验结果示于图 1。可以看出, 随着 碳纤维含量的增加, 试样的硬度呈现 S 形增加趋 势, 增加幅度由小到大又由大到小。碳纤维是脆性 材料, 具有高的强度和比模量, 所以加入碳纤维能提 高试样的硬度[ 5] 。基体是树脂材料, 其硬度较低, 当 碳纤维含量较低时, 由于在基体中较分散, 所以对显 微硬度的贡献较小; 当碳纤维含量> 10%, 碳纤维的 作用变的非常明显, 所以硬度有较大幅度的增加; 但 是, 当碳纤维含量> 25% , 碳纤维的增强作用逐渐达 到饱和, 硬度的增加速度开始下降。总之, 碳纤维的 加入对硬度的提高非常明显。

图y为不同碳纤维含量样品的电导率。从中可 以看出, 当碳纤维含量< 10%时, 电阻随纤维含量的 增加急剧下降; 当碳纤维含量> 10%时, 体积电阻的 变化趋于平缓, 电阻值的下降与碳纤维含量的增加 并不成正比, 有一个渗滤阀值, 这个渗滤阀值约为 15% 。这表明, 碳纤维/ 酚醛树脂复合体系在碳纤维 含量为 15%以上, 试样具有一定的导电性能[ 6] 。

上述结果可用以下理论解释, 当复合体系中导 电填料的含量在达到一个临界值前, 其电阻率急剧 下降, 在电阻率导电填料含量曲线上出现一个狭窄 的突变区域。在此区域内, 导电填料含量的任何细 微变化均会导致电阻率的显著改变, 这种现象通常 称为渗滤现象, 导电填料的临界含量称为渗滤阀值。 在突变区域之后, 即使导电填料含量继续提高, 复合 材料的电阻率变化甚小, 这反映在突变点附近导电 填料的分布开始形成导电通路网络。导电高分子材 料的导电现象是由导电填料的直接接触和填料间隙 之间的隧道效应的综合作用产生的; 或者说是由导 电通道、隧道效应和场致发射三种导电机理竞相作 用的结果。在低导电填料含量及低外加电压下, 导 电粒子间距较大, 形成链状导电通道的几率极小, 这 时隧道效应起主要作用; 在低导电填料含量和高外 加电压时, 场致发射理论变得显著; 在高导电填料含 量下, 导电粒子的间距小, 形成链状导电通道几率较 大, 这时导电通道机理的作用明显增大[ 7] 。

碳纤维含量对耐磨性的影响

试样磨损完毕后, 每个试样磨损前、后的质量磨 损量与碳纤维含量的关系如图 3 所示。从图 3 可以 看出, 随着碳纤维含量的增加, 复合材料的磨损率下 降、耐磨性能提高, 且提高程度随着碳纤维含量的增加而减小, 最后趋于不变。

综上所述,碳纤维增强树脂基复合材料品种结构 变化繁多,加工成型技术不断更新,基础理论研究方兴 未艾,应用领域相当广泛,这些事实充分证明了这一材料在工程塑料中的领先地位。随着基础研究和应用研 究的不断深入,该材料在取代金属、节约能源、特殊专 用等方面将发挥独特的作用,其巨大的潜力必将得到 进一步挖掘。

总结碳纤维复合材料的现实应用有以下几个方面: 4.1 航空航天领域的应用[13] 碳纤维复合材料与钢材相比其质量减轻 75%,而 强度却提高 4 倍,其最早最成熟的应用当属在航空航 天领域,如军用飞机、无人战斗机及导弹、火箭、人造卫 星等。早在 1970 年代初期,美国军用 F-14 战斗机就部 分采用碳纤维复合材料作为主承力结构。在民用航空 领域,如波音 767 和空中客车 A310 中,碳纤维复合材 料也占到了结构质量的 3%和 5%左右。近几年随着碳 纤维工业技术和航空航天事业的不断发展,碳纤维在 这一领域的应用更加广泛,如用于制造人造卫星支架、 卫星天线、航天飞机的机翼、火箭的喷焰口、战略导弹 的末级助推器、机器人的外壳等。

4.2 体育休闲领域的应用 体育休闲用品是碳纤维复合材料应用的另一个重 要领域,如高尔夫球杆、滑雪板、滑雪车、网球拍、钓鱼 竿等。用碳纤维复合材料制成的球拍与传统的铝合金 球拍相比,其质量更轻、手感和硬度更好、对震荡和振 动的吸收也更好,且使用寿命大大延长。同时由于复合 材料本身的可设计性,使得制造商在球拍的硬度、弹 性、球感、击球性能的设计上,有了更大的想象空间。而 碳纤维钓鱼竿由于其良好的韧性与耐用性,更是被广 泛青睐。近年来,碳纤维复合材料在运动及休闲型自行 车零组件方面的应用也非常广泛。

4.3 交通运输领域 碳纤维增强复合材料在交通运输方面主要是汽车 骨架、螺旋桨芯轴、轮毂、缓冲器、弹簧片、引擎零件、船 舶的增强材料等,尤其在汽车方面的应用更是潜力巨 大。早在 1979 年,福特汽车公司就在实验车上作了试 验,将其车身、框架等 160 个部件用碳纤维复合材料制 造,结果整车减重 33%,汽油的利用率提高了 44%,同 时大大降低了振动和噪音。

4.5 其他工业领域 防弹产品方面,包括防弹头盔、防弹服、防弹运钞 车和防弹汽车等;电子工业方面,包括各种反射面天 线、印刷电路板、壳架等;生物工程和人体医学方面, 包括人造关节、骨骼、CT扫瞄床板等;地铁车辆、发热 材料和电热用品以及机械制造工业等复合材料产品 多种多样,层出不穷,充分体现了其应用多元化的趋 势和特点。

【1】360百科

[2] 张金祥.新型 BMI/环氧树脂共固化体系的研究[D]. 大连:大连理 工大学,2011.

10张晓虎,孟宇,张炜.碳纤维增强复合材料技术发展现状及趋 势.纤维复合材料,2004,30(1):50~58.

11 王汝敏,郑水蓉,郑亚萍.聚合物基复合材料及工艺.北京:科学 出版社,2004.

12彭树文.碳纤维增强尼龙66的研究.工程塑料应用 13 苏小萍.碳纤维增强复合材料的应用现状.高科技纤维与应 用, 2004,29(5):34~36.

第二篇:碳纤维增强复合材料在军用舰船方面的应用及展望

碳纤维增强复合材料(CFRP)自问世以来就一直在军事领域特别是航空航天领域中发挥着重要作用。近年来随着应用研究的发展,国内外对其在海军舰艇上的应用越来越重视。CFRP在海军舰艇上应用时具有如下突出的优点:优良的力学性能;耐腐蚀(可耐酸、碱、海水侵蚀,水生物也难以附生);大幅减重;优良的声、磁、电性能(透波、透声性好,无磁性,介电性能优良);优良的设计、施工性;容易维护,维护费用远低于钢制舰艇。

早期CFRP仅仅应用在小型巡逻艇和登陆舰上。相对差的制造质量和船体刚度限制了其长度不能超过15m,排水量不超过20t。近年来随着低成本复合材料制造技术的提高,CFRP才开始应用在大型巡逻艇、气垫船、猎雷艇和护卫舰上。

近几年国外制造的新型舰艇中不乏大量使用CFRP的亮点之作。 美国制造的短剑号隐身快艇

“短剑”高速快艇长24.4米,宽12.2米,吃水0.9米;排水量67吨;动力装置为4台“毛虫”柴油机,每台功率1650马力,由4具6叶螺旋桨推进,在载重37吨下航速可达50节。艇体采用了比传统的钢材更结实、更轻巧的CFRP。一次能够运载12名全副武装的“海豹”突击队员和1艘长11米的特种作战刚性充气艇。同时,可搭载1架小型无人机。

目前,“短剑”是美国使用CFRP一次成型制造的最大船体,在整体制造成形过程中不用焊接,更无需铆接,因此船体外表十分光滑,重量也大为降低。尽管目前的成本相对于普通的钢和铝合金偏高,但在这—技术成熟后,进行批量生产的成本将有较大的下降空间。作为试验艇,“短剑”的单艘造价约为600万美元,试验总成本在1250万美元之内。

综合“短剑”艇体的这种设计,以及CFRP的使用,不但使其获得了高速,也使其行驶过程中的稳定性更高,高速行驶中的沉浮现象大大减轻,即使在高速回转时,依然可以保持平稳行驶,从而增加了艇员的舒适度,提高了艇的适航安全陛,扩大了在内河和地形复杂的浅海使用范围。与此同时,由于其阻力的降低也使得“短剑”比普通快艇更加节省燃料。 瑞典制造的维斯比级轻型护卫舰

维斯比级轻型护卫舰(Visby-class corvette)是瑞典皇家海军最新锐的舰艇之一,由于奇特的外形设计,很好的隐身性能,并采用喷水推进装置使该级舰具有很高的机动性,同时又可减少舰的吃水,使该舰能在浅水海区使用等优点,使其受到国际社会的广泛关注。

该级舰的最大特点是采用全新的隐身设计技术。舰壳材料并非采用常规钢材,也不是普通玻璃钢,而是CFRP,采用特殊真空注入技术建造而成。为了达到关键性能要求,壳体必须尽可能轻,因而壳体采用夹心结构,由聚氯乙烯夹心和碳纤维乙烯基酯层压板构成,它不但具有很高的强度和经久耐用性,还具有优良的抗冲击性能。

“维斯比”舰的舰体、甲板、上层建筑基本都是CFRP夹层板制成的。与传统材料相比,这种材料不仅结构坚实,强度可与钢铁相媲美,而且无磁性,有利于降低舰艇产生的磁场,并有良好的抗震性能,因而可执行反水雷任务。此外,CFRP夹层板光滑平糙,有助于取得良好的隐身效果。同时还可以绝热,对舰内各种机械设备产生的红外辐射有较好的屏蔽作用。另外,这种复合材料比重轻,可减轻舰体重量,且不象铜那样容易腐蚀,从而大幅度减少全寿命费用。

为了用CFRP建造如此大的舰船,瑞典海军花费了大量的时间进行了试验,研究出了真空辅助夹层灌输法生产工艺。CFRP夹层板的芯是PVC材料制成的板材,厚度不等,从纸张一样薄到9厘米厚都有,上面有细小的格槽,然后将乙烯薄层和碳纤维覆盖在PVC主芯上。这种方法的优点是纤维含量比手工铺设的要高,结构重量更低。

印尼制造的全碳纤维导弹巡逻艇

印尼PT Lindun公司在2012年推出一款全碳纤维导弹巡逻艇,该导弹巡逻艇艇长63米,采用先进的三体船身设计,将成为东南亚地区最先进的海军舰船。该舰采用激进的穿浪船体设计以改进适航性和稳定性,并且完全由CFRP制成,采用了真空导入工艺和乙烯酯树脂。用这些材料构建船身结构增强了该舰的隐身性,同时降低了使用期运行、维护的成本。

如果将舰船上可以使用碳纤维来提高性能的结构部分归类,大致可分为如下几方面。

CFRP上层建筑

60年代中期以来巡逻炮艇上的炮艇甲板室就开始采用复合材料,70年代早期,猎雷艇的上层建筑也开始采用复合材料。芬兰皇家海军的快速巡逻艇劳马(Rauma)的上层建筑也采用复合材料夹层结构,船体采用铝合金。复合材料甲板室要克服两个主要问题:即采用钢时出现的腐蚀和水上重量过大。对于小型海军舰艇(长度小于20m)来说,采用复合材料代替钢可以减轻约65%的重量。

与钢和铝相比,CFRP上层建筑存在很多缺点,例如制造成本高,因为其和钢甲板的连接处花费昂贵,对于中型护卫舰来说,上层建筑采用CFRP代替钢会给建筑成本增加40%~140%,尽管如此,许多舰船制造者和海军已开始接受更高的制造成本,因为可以节省使用周期成本,从而降低总体成本。

CFRP桅杆

20世纪60年代复合材料首次应用在桅杆上。传统的钢桅杆采用开放式结构,突出在外,会干扰本舰的雷达和通讯系统且易于腐蚀。美国海军于1995年着手研制先进全封闭式桅杆/传感器系统(AEM/S),整个结构高28m,直径达10.7m,是美国海军舰艇上最大的CFRP水上结构。试验设计制作的AEM/S由两个外表面向内倾斜10°的上下两个六角锥形体结构组成,上半部覆盖FSS可让本身特定的周波数穿过,下半部能反射雷达波或由雷达吸波材料所吸收。各种天线和有关设备都统一组合装备在该结构内,结构内部传感器的电波能以极低的损耗穿过结构物,结构的外部由能反射电波的CFRP板材构成。由于所有设备都在结构内部,可以防止风雨和盐份的侵害,对设备的维修保养十分有利。这种AEM/S系统完全脱离了传统的桅杆概念,并装备在斯普鲁恩斯(Spru-ance)级驱逐舰——USS Arthur W.Radford上,取代原来钢桅杆的主要部分(即接近船尾的部分)。AEM/S系统的成功极大地促进了先进CFRP桅杆技术与下一代美国海军海面作战的水上设计部分的结合。

CFRP螺旋桨

海军舰艇的螺旋桨材料一直以来都是镍铝铜合金,存在很多问题例如加工复杂叶片时花费高,叶片容易疲劳产生裂纹,声学阻尼性相对较差,振动时会带来噪音等等。因此海军设计者们不得不考虑其它材料,最引人注目的材料是不锈钢、钛合金以及CFRP。

CFRP螺旋桨系统的设计和性能高度机密,近年来的研究进展未见公开发表。不过众所周知,CFRP叶片中的纤维可以承受主要的水动力和离心力。CFRP叶片的好处是承载的纤维可以沿叶片的不同方向敷设从而使应变最小。因此可以通过设计纤维排列和堆积的顺序来优化叶片性能。纤维排列的方向影响叶片的推力、有效螺距和翘曲。因此叶片的设计和制造需要精确以确保获得最优性能。目前大批海军舰艇安装了CFRP螺旋桨,如登陆舰和扫雷艇。CFRP螺旋桨也用在鱼雷和小型船只上。

CFRP推进轴系

在减轻船体重量的趋势中,推进系统的动力传输部件的减重也提到了议事日程。典型的是在2或4台高速柴油机通过减速齿轮箱驱动喷水推进器的高速船上,无论柴油机与齿轮箱之间,还是齿轮箱和喷水推进装置之间的距离都缩短了。尤其是在双体船狭小的空间里要求错落布置4台柴油机,前部柴油机中发出的功率必须通过后部的柴油机传输出去。因此,这就要求配备重量最轻、部件最少的传动装置。而采用由碳纤维管材料的驱动轴,能够轻而易举地达到减轻传动部件重量的目的。

CFRP驱动轴的主要优点包括:明显地减轻了驱动轴的重量,轴越长,减重的量越大,复合轴减重的效果越明显;临界速度高,长轴系上通常不需要布置轴承,减少了轴承的数量,降低了成本,减轻了轴系,减少了部件,节省了轴承支撑件的成本以及减轻了重量;长寿命、低噪声、无腐蚀、无磨擦、免维修、不导电、无磁性。

高强度碳纤维绳索

文献检索表明日本已有相关碳纤维缆绳的报道,但技术保密非常严格,主要用途是海军军舰的缆绳和其他军用物品。

碳纤维突出的特点是强度和模量高,密度小,耐腐蚀性能好,膨胀系数低,耐高温蠕变性能好,摩擦系数小,自润滑,导电性高等特点。由于碳纤维既具有高于钢铁的拉伸模量和几倍乃至数十倍的拉伸强度,又具有纤维的可编织性能,以此作为基体材料制作碳纤维绳索,恰好可弥补钢丝绳和有机高分子绳索的不足,得到高性能的碳纤维绳索。 碳纤维绳具有一系列优异的使用性能。与结构和直径相差不多的钢丝绳相比较,碳纤维绳具有巨大的优越性。碳纤维绳的重量还不到钢丝绳的四分之一,前者比后者轻得多,使用时省力;前者的弯曲刚性仅为后者的四分之一,前者易于弯曲便于作业,后者僵硬操作困难。此外,碳纤维绳的断裂伸长比钢丝绳小得多,应力-应变曲线为一直线,直至断裂,中间没有屈服点,因此,在多次重复使用时,不会有残余应变现象的发生。碳纤维复合材料绳索还具有良好的拉伸疲劳性能,在应力振幅小的条件下几乎没有疲劳现象发生,当应力振幅较大时也同样显示出优良的疲劳特性。碳纤维复合材料绳索耐腐蚀、不生锈和优良的耐候性也是钢丝绳无法与其相比的。

总之,碳纤维复合材料绳索,不仅重量轻,比强度、比模量高,而且耐腐蚀,在高温和低温环境中线膨胀系数小,性能稳定而柔软。具有传统绳索(天然纤维、有机纤维、无机纤维和钢丝绳等)无可比拟的优越性,将是传统绳索的更新换代产品。碳纤维绳索可以用于以下几个方面:支持(撑)性缆绳,如大跨度斜拉桥缆绳;增强混凝土,如海洋工程混凝土;舰船、海上作业船用缆绳;游艇支索;登山用绳索等。

CFRP烟囱

复合材料烟囱具有质轻、成本低的优点,以及优良的热绝缘性能,而且能够削弱雷达信号从而提高舰船的隐身性,已在MCMV上成功应用多年。Vis-by级和La Fayette级护卫舰的烟囱都采用复合材料夹层结构。当前目标是在大型军舰上使用复合材料烟囱。

以下还有一些正在研发之中,准备使用碳纤维的部位及部件。 舰舱壁、甲板、舱门

此方面的应用正处于研究之中,优点是质轻20%~40%,更低的磁特性,火灾时热传导低,阻声性能更好;缺点是制造和安装的成本比钢制的高20%~90%。CFRP和周围钢结构的联结处需要足够的抗内部冲击损坏的能力,此即为成本大幅增加的主要原因。

附件

许多海军正考虑将CFRP应用在武器外罩和甲板防护板上,及作为导弹冲击遮护板,以免受高速射弹和榴散弹的冲击。日本专家对于如何提升军舰的生存能力已做了具体研究论证,使用低成本成型法制造的CFRP为主题的上层船体构造在耐爆炸以及耐燃烧性能方面已经可以达到了军用舰船的使用标准。

方向舵

舰艇用CFRP方向舵正处于研发之中,预计其比现有的金属舵轻50%,成本低20%。

设备底座

一个复合材料的底座比同尺寸的钢底座轻58%,且可以提供足够的保护,使机械和设备免受水下冲击载荷、抵抗冲击损坏。此外由于它的阻尼性和无磁性,复合材料底座能够降低舰艇的声音和磁特性。

热交换器

海军舰艇上的热交换器要经受严酷的海水腐蚀和侵蚀,因此维护费用高。由此还降低了使用寿命。美国海军正在考虑使用CFRP的热交换器。

管道系统

复合材料在海军舰艇上的最早应用就是管道。1951,美国海军在一艘护航驱逐舰上安装了复合材料管道,望其比传统的黄铜管道便宜、质轻和更耐腐蚀,果复合材料管道在运输热水时迅速降解并开始渗漏。60年代,提高了复合材料管道的质量和耐久性后,国皇家海军将其安装在突击艇的压舱系统中。70年代早期,国海军在其巡逻护卫舰上也安装了复合材料管道。据估计,合材料管道的生产安装成本比黄铜或不锈钢管低15%50%。美英海军正继续挖掘复合材料管道的潜在应用价值。

目前,CFRP在海军舰艇上的应用非常广泛。但是,大部分已经成熟的技术仅应用于相对较小的海军舰艇(巡逻艇,MCMV、护卫舰)或大型舰艇的非结构、非关键性部件。随着科学的发展和技术的进步,CFRP在海军舰艇上的应用必将日益成熟。

第三篇:SiC增强铝基复合材料

碳 化 硅 增 强 铝 基 复 合 材 料

班级:gj材料102

姓名:陈琨

指导老师:张小立2012年6月6日

SiC增强铝基复合材料

摘要:SiC增强铝基复合材料能充分发挥SiC颗粒和金属基体的各自优势,而且可以进行成分设计,与基体合金相比,具有优异的机械性能和物理性能、高的比强度和比模量、良好的抗疲劳性能、低的热膨胀系数和良好的热稳定性,而且材料各向异性小,成本低廉,是一种具有广阔应用前景的先进材料,自问世以来一直受到材料科学及工程应用领域极大的重视,正在部分取代传统的金属材料而应用在航空航天、汽车、电子封装和体育器械等对材料性能要求较高的领域。本文将综合介绍和分析影响其导热性能、热膨胀系数及热稳定性的主要因素;SiC增强铝基复合材料的研究和进展,并比较了几种该复合材料的制备工艺,包括搅拌铸造法、压力铸造法、无压渗透法、喷雾沉积法、离心铸造法和粉末冶金法等;SiC增强铝基复合材料断裂韧性的影响因素,其影响因素有增强相的尺寸、形状以及含量,热处理工艺,基体与增强相具有不同的膨胀系数,金属基体的化学成分等,并在前人研究的基础上提出了几点设想。

关键词:SiC 颗粒;铝基复合材料;研究方法;导热性;热膨胀性;断裂韧性;影响因素

前言

近年来在金属基复合材料中,以颗粒、短纤维、晶须等非连续相增强的铝基复合材料(SiC Reinforced Aluminium Matrix Composite)因其良好的可再加工性和各向同性而倍受重视。由于其具有高的比强度、比刚度、导热性, 优良的摩擦性能,与铝合金密度相当,以及可调配的热膨胀系数等优点而成为目前国内外专家学者研究的热点之一。而SiCp 价格低廉,来源广泛,用它作为增强相,可以改善铝基或铝合金基体的高、低温强度,提高其弹性模量,增强其耐磨性能。所以铝基复合材料受到人们越来越广泛的关注, 国内外已对其进行了大量的研究报道。

1.SiC增强铝基复合材料的制备工艺 【1】

2 目前生产SiCp增强铝基复合材料的方法主要有搅拌铸造法、压力铸造法、无压渗透法、喷雾沉积法、离心铸造法和粉末冶金法等。

1.1 搅拌铸造法

搅拌铸造法突出的优点是对设备要求低、工艺简单、易于实现,是制造铝基颗粒增强复合材料最常用的方法。图1 为其示意图。

搅拌铸造法分为液相法和半固态法两类。

液相法是利用电磁或机械搅拌,在基体金属完全是液相的状态时向旋涡中逐渐投入颗粒,使其分散,待颗粒等增强物得到润湿、分散均匀后浇入金属模型中(或再进行挤压),制成复合材料。用搅拌铸法制备SiCp增强铝基复合材料是先将铝锭放入坩埚,待其熔化后加入镁块,急速搅拌使之形成快速流动的旋涡。在旋涡中心投入SiCp( SiCp 的质量分数为12%—20% ),继续搅拌10—20 min(搅拌速度为950 r/ min, 熔体温度约730℃),然后迅速倒入通水激冷的铸模,得到复合材料。文献【2】对处于熔点以上的铝液及SiCp 施加一定时间的电脉冲,由此制得的复合材料,增强相颗粒分布均匀,基体合金晶粒细小,致密度、强度、耐磨性均较高。

半固态铸造法是金属在熔点附近,液相及非枝晶固相共存状态下,把增强物加入到剧烈搅动的含有一定组分固相粒子的金属液中,这时,即使增强物和金属液润湿不好,但由于金属液中固相粒子的作用,也可使之得到较好的分散,然后铸造成近终形复合材料。使铝在760℃熔化后,降温至固相线与液相线之间,搅

3 拌熔体,并加入SiCp。因SiCp 的加入,会使熔体的粘度上升,随着粘度的上升再适当提高温度。待SiCp加完后,再升温至760℃,短时间急速搅拌使颗粒均匀地分布在熔体中,然后浇铸成型。

该方法制得的材料凝固组织晶粒细小、均匀,没有粗大的树枝晶,可以消除颗粒在熔体中的偏析。由于金属温度接近固相线温度,因此能消除金属从液相到固相凝固收缩引起的收缩缺陷,以及避免熔体因剧烈翻腾而大量吸入气体,但残留在半固态金属液中的气体和夹杂物不易排除。

1.2 压力铸造法

压力铸造法被认为是适合大规模生产铝基复合材料的主要工艺之一,近年来得到了很快的发展,在颗粒、晶须或短纤维增强的实用铝基复合材料的制造中应用最多,且最为成功。图2为压力铸造法示意图。

压力铸造法制备SiCp、晶须或短纤维增强铝基复合材料的工艺过程是首先把SiCp制成预制块,让铝或铝合金液在压力作用下渗入到预制块内制成复合材料。将SiCp与水及粘结剂充分搅拌混合后放入模具内加压至5MPa,随后在80℃恒温箱内烘48h出模,获得具有一定强度的预制块,其孔隙度为60%。压铸模和预制块预热至500℃,铝液加热至800℃浇注, 然后立即加压使铝液渗入预制块, 在125 MPa的压力下保压3 min,除去压力待其自然冷却后出模。制得的复合材料中含SiCp的体积分数为40%。

压力铸造法制备复合材料工艺难度相对较大,主要是制备SiCp或粉末预成形坯块比较困难,强度不高,预制块在压渗过程中易崩溃,而且金属熔体不易充分

4 地渗入到颗粒或粉末预成形坯内,最近的研究表明,通过增大压力的方法可以实现熔铝在粉末或颗粒预成形坯中的渗透。

1.3 无压渗透法

无压渗透法是预先把增强体用适当的粘结剂粘结,做成所需形状的预制坯, 然后将预制坯放在金属模具型腔内的适当位置,浇注金属液,利用金属液体的自重压力和表面张力,使其渗透到有增强体的预制坯中,凝固后即成所要求的金属基复合材料。这种方法主要适用于颗粒增强体和金属基材料的界面润湿性良好的金属基复合材料的制备。图3为无压渗透法示意图。

由于此方法中的金属液体能较好地浸润增强相的表面,为获得良好的界面结合创造了条件,且工艺相对压力铸造法简单,便于操作。但这种方法的关键是解决渗透气氛和颗粒之间润湿性的问题。同时还存在预制坯预热临界温度不好控制,浸渗时压力和金属液温度也不易掌握等问题。

1.4 喷射沉积法

喷射沉积法是将液态金属在高压下雾化,当液态金属从漏斗中流出的同时, 将增强体粒子喷入金属液流中,两相混合的雾化液滴沉积在容器中形成复合材料。图4 为喷射沉积法示意图。

采用工业纯铝(纯度为99.9%)与平均粒度为2—3um 的SiCp,喷射沉积制得SiCp的体积分数为35% 的SiCp增强铝基复合材料。材料中,孔隙数量少、尺寸小,SiCp 分布均匀。

此法因在喷射沉积过程中冷却速度很快,界面反应受到抑制,使SiC 和铝界面之间有害的化学反应来不及完全进行,所以强化颗粒分布均匀。由于增强体粒子在气流推动下高速射入熔体,所以对界面的润湿性要求不高,还可以消除颗粒偏析等不良组织。但SiCp 与基体金属是机械结合,使得材料的抗拉强度有限。另外还有孔洞,不适宜制备近终形产品。

1.5 离心铸造法

离心铸造法是在高速旋转的SiCp 多孔预制形体中均匀浇铸金属铝熔体,使其在离心压力作用下渗入粒子的间隙,凝固后得到被SiC 粒子化的陶瓷颗粒增强铝基复合材料。图5为离心铸造法示意图。

目前,国内外学者对用离心铸造法制备SiCp增强铝基复合材料还研究较少,但该方法可能会成为研制优质SiCp 增强铝基复合材料最有成效的技术之一。

1.6 粉末冶金法

粉末冶金法制备SiCp增强铝基复合材料是先将SiCp、铝粉和成形剂混合后压制成形,经过脱脂、烧结成为近终形成品。

在文献【3】中用粉末冶金法制备SiCp增强铝基复合材料。按设计成分,以酒精作分散剂进行球磨。混合14h后烘干、除气,再冷压成坯,然后在自动化热压炉中热压,压力为23MPa。热压时,采用流动高纯氩气保护。为了便于脱模,先在400℃保温,20min后再升温600℃。

粉末冶金法的最大优点在于成分的自由度宽。这种方法可以很好地控制复合材料的成分,从理论上讲是可以任意的配比,而且粉末冶金工艺也比较成熟。用粉末冶金方法制备SiC 增强铝基复合材料时,SiCp 与铝基体可以良好地融合成一体,在SiC 含量不同层间没有明显的界面。可将不同配比的粉末填铺模具中,冷压成形后再进行热压。当疲劳裂纹从SiCp 的高含量层向低含量层扩展时会发生偏折和分枝,从而出现裂纹延滞现象。但国内外学者用粉末冶金法来制备SiCp增强铝基复合材料的不太多。其原因是烧结过程不易控制,造成材料中孔隙多,而且在后续处理过程也不易消除,工业化成本较高。但粉末冶金法生产SiCp增强铝基复合材料的前景十分广阔,很值得探索。

7 粉末冶金方法的优点还体现于在其他工艺中所起的作用。例如在电子材料的封装壳体中所使用的SiCp增强铝基复合材料。为了与基片材料的热膨胀系数的匹配,往往需要SiC 的体积分数达60% —70% ,而且,为了得到高的密度与性能,一般需要采用压力熔浸法来制造。但是由于SiC 的含量多,所制备的材料往往难以进行后续加工。这就需要预先将SiCp制备成近终使形的预制坯,再将Al 熔浸入预制坯内的孔隙,形成致密的复合材料。而预制坯的制备采用的就是粉末冶金方法。为了精确地控制预制坯在成形与预烧结过程中尺寸的变化、预制坯的微观组织及孔隙的分布,以得到符合外观、形状、组织与性能要求的复合材料,都需要相应的粉末冶金的知识。

2. SiC增强铝基复合材料断裂韧性的影响因素 【4】

不同屈服强度及应变硬化率的材料,在相同载荷条件下断裂形式可能完全不同;同种材料,复合比的变化、应力状态的改变,使裂端空穴扩展与断裂机制会发生重大改变,大量实验表明,材料在加载过程中,空穴的扩展与塑性应变的相互影响会使断裂过程变得复杂。同时,试件在加载过程中裂端出现的塑性变形大小将不同,从而影响材料的断裂机制与断裂形式。

2.1 SiC增强铝基复合材料断裂形式

(1)正拉断,当加载过程塑性应变不大、体积应变较大的情况下,空穴的成核与扩张易于进行,启裂位置发生在裂端钝化区应力三维度有极大值处。启裂方向为该处最大拉应力作用面方向。

(2)剪切断裂,由于启裂点的位置不同,剪切实际存在两种情况一是当加载过程塑性应变较大时,虽然在钝化区域应力三维度有较大值,存在一定数目的成核空穴,但空穴扩张程度极小,正拉断不易发生,受空穴存在的影响,剪断发生在应力三维度有极大值处,启裂方向为该处最大剪应力方向。二是当加载过程中塑性应变很大时,的塑性变形已使材料内的空穴成核受到阻碍,应力三维度最大处也较小有空穴成核形成,再成为危险点,启裂方向为该剪应力作用方向.在危险区域出现的局部化剪切变形形成的剪切带是导致剪断旋生的主要因素。

8 (3)混合型断裂,在许多情况下断裂面上正拉伸断口与剪切斜断口占一定区域,启裂先发生于试件厚度中心,以空穴扩展向表面及前方发展,由于试件表面应力三维度变小、塑性变形增大.引起断裂机制改变,近表面区域为剪断,启裂方向较为复杂。

2.2 影响SiC增强铝基复合材料断裂韧度的因素分析

材料不同其屈服强度及应变硬化指数均可能不同,相同受力形式下,其断裂机制则可能不同。屈服强度及麟硬化指数高的材料,裂端塑性变化程度小,易于正拉断;反之,屈服强度及应变硬化指数低的材料产裂端塑性变形程度大,易于剪切断裂。复台比的不同,使裂端应力场产生了变化,用应力三维度值的大小可表示三轴应力状态的不同程度;应力三维度值高,则偏于受拉状态,材料易于正拉断;应力三维度值低,则偏于受剪状态,材料易于剪断。具体说来影响因素有:SiCp尺寸、数量、分布、形态与表面形态、基体的化学成份、热处理状态、MMCs的加工过程等。

(1)颗粒尺寸对复合材料断裂韧度的影响

在SiCp体积含量相同的情况下,颗粒的尺寸对断裂韧度的影响很大,颗粒过大时易产生低应力断裂,过小时易产生团聚现象。团聚颗粒内部联接较弱,在其后的变形中会出现重排,形成较大的孔洞。团聚颗粒周边的基体承受比无团聚颗粒附近基体更大的应力,因为团聚颗粒承载能力下降。小颗粒SiCp重排在基体晶粒边界,部分SiCp聚集,显微孔洞在此形成,导致应力集中.当SiCp尺寸大于2um后,断裂过程中由基体断裂控制变为颗粒断裂控制。大尺寸SiCp本身存在更多缺陷,更易在较小的应力下开裂。在一个较为台理的尺寸范围内,尺寸越小复合材料的断裂韧度就越好,这是因为颗粒越小,颗粒间的平均距离越短,对位错运动的约束增强,颗粒通过界面以机械约束的方式,对基体变形的限制范围也越大,从而强度更高。

(2)颗粒含量对复合材料断裂韧度的影响

SiCp含量增加,在制备过挫中易引起颗粒聚集,从而造成“显微疏松”成为应力集中源,在变形时易使材料内部损伤。造成内裂纹以致连通纹,在加工过程中聚集的颗粒之间发生相对滑动而萌生裂纹。从另一个角度来说.高含量颗粒复合材料的基体中已存在的剪应变要人火高于低颗粒含量复台材料的基体,微裂

9 纹的生成能和扩展能较低因此,在制备SiCp增强铝基复台材料时应使用体积分数低的SiCp增强相颗粒。

(3)颗粒的形状对复合材料断裂韧度的影响

有限元计算结果表明,当颗粒形状由球形变为梭形时,在颗粒尖角处应力集中过大。即使复台材料界面结合良好,颗粒尖角在外加应变水平较低时也会出现孔洞而断裂。而经钝化处理的SiCp由于尖角处的应力集中减小,可有效提高复合材料的塑性。

(4)由于增强相的存在而造成的应力集中

基体的变形将外加应力传递到SiCp上,增强相中部的应力达到5倍于基体的应力强度,这种应力传递是通过界面剪切进行的。Levy和Papaxian通过有限元分析指出,在由于增强体存在造成的应力集中区域附近,在加载过程中基体流动受到促进,但也有可能由于增强相和基体的不匹配,导致在增强相附近及该部位的基体较大的应力集中。

(5)由于增强相和基体热膨胀系数不同导致的热应力

复合材料从高温冷却后,热应力在界面附近基体中得到松驰井在界面附近的基体中产生大量的位错,位错密度随离开界面的距离增大而迅速减小。经过T6处理后。这些位错成为析出相的优先形核位置,从而在离界面一定距离的基体中形成无析出带,降低了该区的强度,基体的失效将首先发生在该处。 (6)热处理工艺对复合材料断裂韧度的影响

由于基体合金的屈服应力和加工硬化速度决定着基体承受应力的能力。也就决定着微裂纹或空洞形核所导致的失效以及它在高度约束条件下基体的流变能力。在复合材料中,不同的热处理工艺会使基体合金的屈服应力差异较大、应变集中状况也不同,对复合材料断裂韧度的影响极大。热处理有利于提高复合材料的断裂韧度,其影响主要是时效作用。加入SiCp颗粒后,其位错密度增加,时效促使其弥散相加速析出。Lewandowski等发现Al-Zn-Mg-Cn/20前者为广泛的颗粒断裂,而后者为近SiCp/Al基体界面处的断裂。自然时效与人为时效相比较,自然时效态由于水淬时造成的SiCp处于压应力状态比T6态更大,颗粒的断裂几率更小,人工时效比自然时效状态下的断裂韧度高,T6热处理工艺比T4热处理工艺更能提高复合材料的断裂韧度。

10 (7)基体的化学成份对复合材料断裂韧度的影响

据研究表明,在增强相SiCp的尺寸、含量及形状已定的情况下,基体的化学成份对复合材料的断裂韧度也有一定的影响,其实验所用样品及实验结果如表l和表2所示。从表2中可以看出Mg-Al(SiC)的主应力口σb与Mg-AL-Ca-(Sic)的主应力σb近似,而其屈服应力σ高于Mg-Al-Ca-(SiC)的屈服应力σ,延伸应力σ低于Mg-AL-Ca-(SiC)的延伸应力σ。由此可见,复合材料的机械性能随基体台金成份的变化而变化。

2.3 改善SiC增强铝基复合材料低强度与塑性的几点设想

影响铝基复合材料塑性的主要因素有3个:颗粒强度、界面粘结强度、基体韧性可以通过选择合适的材料制备和加工工艺,控制基体合金的特性、增强相的含量、形状、尺寸等方法来改善铝基复合材料的塑性。

(1)采用合理的制备工艺。制备过程中减少氧化、避免SiCp偏聚及有害的界面反应、减少杂质与气体疏松、改善增强体与基体的润湿性、增大冷速使基体晶粒细小。如选用喷射沉积法制备铝基复合材料坏料。

(2)对SiCp进行预处理,合理控制SiCp的含量、形状、尺寸。如通过SiCp预处理钝化尖角;选择合理的颗粒尺寸,使SiCp在制备与变形过程中既不会因尺寸过小而聚集,也不会因尺寸过大而容易断裂。

(3)尽可能建立影响SiC铝基复合材料断裂韧性的模型,如在基体合金化学成份一定的前提下建立增强相含量、形状以及尺寸对强度与韧性的影响模型,单一考虑其中的两个因素的互相影响可建立二维坐标在平面中找到一种表示;若考虑三者之间的相互影响。则可建立三维坐标,在空间某一个区域(曲面)内利用高斯公式或格林公式加之其它的辅助方法找到一个较为理想的表示,当然其复杂性

11 将远远超过两个因素存在时模型的建立。这种理论上的假设有数学依据,即可以在空问某一区域找到一个“最优值”。

3. SiC增强陆基复合材料的热性能研究 【5】

SiC增强铝基复合材料,不仅导热性能好,而且热膨胀系数可以设计调节。已经成为一种新型的电子封装材料。本文在参考近年来已有研究成果的基础上,对碳化硅颗粒增强铝基复台材料的热物理性能进行总结,探讨工艺参数对其热性能的影响规律。

3.1 导热性

SiCp增强铝基复合材料具有较高的热导率(170一200W/(m·K)),可以把电子元器件工作时产生的热量及时散发,提高整个器件的可靠性和稳定性。

复合材料的导热率取决于各组元的导热率、体积分数、增强体的分布和尺寸(或基体/增强体界面)。随着碳化硅颗粒的加入和体积分数的增加,复合材料 的导热率近似于直线规律下降。Hasselman研究了颗粒尺寸对SiCp增强铝基复合材料热传导率的影响,发现随颗粒尺寸的提高,复合材料的单位体积的界面面 积减少。界面热阻下降,热传导率提高。而当颗粒尺寸小于10 mm时,复合材料的热传导率由于受到大量界面热阻的作用而低于基体舍金。

于家康等【6】模拟研究了SiC颗粒尺寸及界面热导率对SiCp增强铝基复合材料有效热导率的影响。结果表明,当界面热导率一定、且界面厚度与颗粒尺寸之比不变时,颗粒尺寸对复合材料的热导率几乎没有影响;复台材料的热导率随界面热导率的增加而增大。并且当界面热导率较小时增大更快。实验中,颗粒尺寸一定时,复合材料的热导率随界面厚度的增加而减小,但其影响很小,这与模拟结果相同。

3.2 热膨胀性

研究认为,复合材料的热膨胀系数主要取决于基体合金的热膨胀系数和增强体通过基体/增强体界面对基体合金的制约程度。一方面,铝合金的热膨胀系数随温度的升高而增大,导致复合材料的热膨胀系数也随温度的升高而增大;另一方面,随着温度的提高,复合材料中增强体/基体界面传载能力下降,增强体对

12 合金膨胀的制约能力降低,也导致复合材料的热膨胀系数随温度升高而增大。SiCp增强铝基复合材料的热膨胀系数远低于铝台金,并且可以根据增强体和基体合金的情况进行调整和控制。随SiC颗粒体积分数的增加,热膨胀系数明显降低,体积分数为20%、40%、50%时分别与Cu、Be、Ti、不锈钢的热膨胀系数相当。此外,增强体的种类、尺寸、形状等因素也影响着复合材料的热膨胀行为。颗粒尺寸越大,热膨胀系数越大。这可能与SiC颗粒的氧化处理有关,颗粒越小,氧化程度越大,表面生成的SiO2越多,所得复合材料的热膨胀系数越小。

张建云【7】等人的研究指出,在温度低于200℃时,SiCp增强铝基复合材料的线膨胀系数随温度的升高有一定程度的增大,但高于200℃时增幅较大。张强【8】等人的实验结果也表明,SiCp增强铝基复合材料的热膨胀系数随温度的上升而增大,在300℃左右达到最大,随后随着温度的上升而下降。在200℃范围内,热膨胀系数在5.6 x10~7.5 x10¯б℃之间。这说明SiC增强铝基复合材料的热膨胀系数较小,能与电子元件基材良好匹配。

3.3 热稳定性

SiC增强铝基复合材料作为航空航天材料和先进的电子封装材料常在高温下使用,有时还在温度变化较大的环境下使用,因此要求其具有良好的热尺寸稳定性。但是,增强颗粒与铝基体热膨胀系数的差异,以及制造过程中(制备、热处理、二次加工等)在颗粒与基体界面附近产生的热残余应力场,都将会影响复合材料的组织结构、物理性能和机械性能,更是尺寸稳定性的主要影响因素。因此,从工艺出发改善SiC增强铝基复合材料的热稳定性有着重要意义。

李红章等【9】对SiC增强铝基复合材料的热变形行为进行了系统研究,在变形温度为300—500℃、应变速率为0.001—1s¯1的条件下进行了高温压缩变 形实验。结果表明,变形温度和应变速率对SiCp/7075Al复合材料的流变应力有强烈影响。流变应力随变形温度的升高、应变速率的降低而降低;随应变程度的增加而逐渐增加,出现峰值后逐渐下降。

韩媛媛等【10】利用有限元方法分析了颗粒增强铝基复合材料淬火过程中的热应力变化规律,在制备工艺、增强体体积分数、基体材料相同的条件下,讨论了颗粒形状对铝基复合材料热残余应力的影响。淬火处理后颗粒与基体界面附近产生很大的热残余应力场,使基体产生塑性应变。SiC颗粒形状不同,颗粒和基

13 体的界面附近的热残余应力场分布也不同。颗粒接近球形时,残余应力分布较均匀,且离界面越远越小;颗粒为尖角形时,残余应力分布不均匀,在尖角附近的基体中存在热应力集中和塑性应变。

结束语

SiC铝基复台材料性能优良、增强体SiCp的价格低廉,制造工艺简单,作为工程材料,在各个领域都具有广阔的应用前景及巨大的经济效益和社会效益。由于制备工艺灵活、热物理性能优异及可设计性等许多独特的优点,在航空航天、先进武器系统、光学精密仪器、电子器件、汽车工业和体育用品等领域将得到更加广泛的应用。越来越多的科技工作者正致力于SiC铝基复合材料这一领域的研究。随着科学技术的不断发展及相关领域科技工作者研究的不断深入,SiC铝基复合材料的相关研究将有很大的突破,也许不久的将来理想的模型一定会建立起来。在今后的研究中,应重视金属基复合材料的模型设计和计算机模拟分析,使材料制备能够定量描述,并建立金属基复合材料设计数据库。此外,在实验研究取得突破性进展、保证材料性能的条件下,应注重向工业化生产迈进,使其发展为一种特色产业。

14 参考文献:

【1】平延磊,贾成厂,曲选辉,周成. SiCp/Al复合材料的研究方法现状. 粉末冶金技术,2005,23(4):296—300 【2】刘兴江,曹丽云,王建中. 脉冲电场作用下SiCp增强铝基复合材料的制备. 轻合金加工技术, 2002, 30(4): 45—46 【3】许富民,齐民,朱世杰等. SiC 颗粒增强铝合金复合材料. 金属学报, 2002, 38(9): 998—1001 【4】罗彦祥. SiCp/Al复合材料断裂韧性的影响因素及思考. 宁夏师范学院学报(自然科学),2007,28(6):41—44 【5】王杏,田大垒,赵文卿. 碳化硅颗粒增强铝基复合材料的热性能研究. 有色金属加工,2007,36(6):23—25 【6】于家康,梁建芳,王涛. 高导热金属基复合材料的热物理性能研究. 复合材料导报,1998,13(3):48—51 【7】张建云,孙良新,洪平等. 电子封装用SiCp/ZL101复合材料热膨胀性能研究. 余杭材料工艺,2004(4):32—35 【8】张强,修子扬,宋美惠. 电子封装用SiCp/Al复合材料渗透法制备及渗透机制. 金属功能材料,2002,9(1):26—28 【9】李红章,张辉,陈振华. 7075Al/SiCp复合材料热压缩变形的研究. 长沙航空职业技术学院学报,2005,5(1):39—42 【10】韩媛媛,武高辉,李凤珍等. 颗粒形状对铝基复合材料热残余应力影响的有限元分析. 哈尔滨理工大学学报,2003,8(5):83—87

第四篇:“十三五”重点项目-航空航天用轻量化及结构增强高性能纤维复合

“十三五”重点项目-航空航天用轻量化及结构增强高性能纤维复合材料项目可行性研究报告

编制单位:北京智博睿投资咨询有限公司

0 本报告是针对行业投资可行性研究咨询服务的专项研究报告,此报告为个性化定制服务报告,我们将根据不同类型及不同行业的项目提出的具体要求,修订报告目录,并在此目录的基础上重新完善行业数据及分析内容,为企业项目立项、申请资金、融资提供全程指引服务。

可行性研究报告 是在招商引资、投资合作、政府立项、银行贷款等领域常用的专业文档,主要对项目实施的可能性、有效性、如何实施、相关技术方案及财务效果进行具体、深入、细致的技术论证和经济评价,以求确定一个在技术上合理、经济上合算的最优方案和最佳时机而写的书面报告。

可行性研究是确定建设项目前具有决定性意义的工作,是在投资决策之前,对拟建项目进行全面技术经济分析论证的科学方法,在投

1 资管理中,可行性研究是指对拟建项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。在此基础上,综合论证项目建设的必要性,财务的盈利性,经济上的合理性,技术上的先进性和适应性以及建设条件的可能性和可行性,从而为投资决策提供科学依据。

投资可行性报告咨询服务分为政府审批核准用可行性研究报告和融资用可行性研究报告。审批核准用的可行性研究报告侧重关注项目的社会经济效益和影响;融资用报告侧重关注项目在经济上是否可行。具体概括为:政府立项审批,产业扶持,银行贷款,融资投资、投资建设、境外投资、上市融资、中外合作,股份合作、组建公司、征用土地、申请高新技术企业等各类可行性报告。

报告通过对项目的市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等方面的研究调查,在行业专家研究经验的基础上对项目经济效益及社会效益进行科学预测,从而为客户提供全面的、客观的、可靠的项目投资价值评估及项目建设进程等咨询意见。

报告用途:发改委立项、政府申请资金、申请土地、银行贷款、境内外融资等

关联报告:

航空航天用轻量化及结构增强高性能纤维复合材料项目建议书 航空航天用轻量化及结构增强高性能纤维复合材料项目申请报告

2 航空航天用轻量化及结构增强高性能纤维复合材料资金申请报告

航空航天用轻量化及结构增强高性能纤维复合材料节能评估报告

航空航天用轻量化及结构增强高性能纤维复合材料市场研究报告

航空航天用轻量化及结构增强高性能纤维复合材料商业计划书 航空航天用轻量化及结构增强高性能纤维复合材料投资价值分析报告

航空航天用轻量化及结构增强高性能纤维复合材料投资风险分析报告

航空航天用轻量化及结构增强高性能纤维复合材料行业发展预测分析报告

可行性研究报告大纲(具体可根据客户要求进行调整) 第一章 航空航天用轻量化及结构增强高性能纤维复合材料项目总论

第一节 航空航天用轻量化及结构增强高性能纤维复合材料项目概况

1.1.1航空航天用轻量化及结构增强高性能纤维复合材料项目名称

3 1.1.2航空航天用轻量化及结构增强高性能纤维复合材料项目建设单位

1.1.3航空航天用轻量化及结构增强高性能纤维复合材料项目拟建设地点

1.1.4航空航天用轻量化及结构增强高性能纤维复合材料项目建设内容与规模

1.1.5航空航天用轻量化及结构增强高性能纤维复合材料项目性质

1.1.6航空航天用轻量化及结构增强高性能纤维复合材料项目总投资及资金筹措

1.1.7航空航天用轻量化及结构增强高性能纤维复合材料项目建设期

第二节 航空航天用轻量化及结构增强高性能纤维复合材料项目编制依据和原则

1.2.1航空航天用轻量化及结构增强高性能纤维复合材料项目编辑依据

1.2.2航空航天用轻量化及结构增强高性能纤维复合材料项目编制原则

1.3航空航天用轻量化及结构增强高性能纤维复合材料项目主要技术经济指标

1.4航空航天用轻量化及结构增强高性能纤维复合材料项目可行性研究结论

4 第二章 航空航天用轻量化及结构增强高性能纤维复合材料项目背景及必要性分析

第一节 航空航天用轻量化及结构增强高性能纤维复合材料项目背景

2.1.1航空航天用轻量化及结构增强高性能纤维复合材料项目产品背景

2.1.2航空航天用轻量化及结构增强高性能纤维复合材料项目提出理由

第二节 航空航天用轻量化及结构增强高性能纤维复合材料项目必要性

2.2.1航空航天用轻量化及结构增强高性能纤维复合材料项目是国家战略意义的需要

2.2.2航空航天用轻量化及结构增强高性能纤维复合材料项目是企业获得可持续发展、增强市场竞争力的需要

2.2.3航空航天用轻量化及结构增强高性能纤维复合材料项目是当地人民脱贫致富和增加就业的需要 第三章 航空航天用轻量化及结构增强高性能纤维复合材料项目市场分析与预测

第一节 产品市场现状

第二节 市场形势分析预测

第三节 行业未来发展前景分析

第四章 航空航天用轻量化及结构增强高性能纤维复合材料项目建设规模与产品方案

5 第一节 航空航天用轻量化及结构增强高性能纤维复合材料项目建设规模

第二节 航空航天用轻量化及结构增强高性能纤维复合材料项目产品方案

第三节 航空航天用轻量化及结构增强高性能纤维复合材料项目设计产能及产值预测

第五章 航空航天用轻量化及结构增强高性能纤维复合材料项目选址及建设条件

第一节 航空航天用轻量化及结构增强高性能纤维复合材料项目选址

5.1.1航空航天用轻量化及结构增强高性能纤维复合材料项目建设地点

5.1.2航空航天用轻量化及结构增强高性能纤维复合材料项目用地性质及权属

5.1.3土地现状

5.1.4航空航天用轻量化及结构增强高性能纤维复合材料项目选址意见

第二节 航空航天用轻量化及结构增强高性能纤维复合材料项目建设条件分析

5.2.1交通、能源供应条件 5.2.2政策及用工条件

5.2.3施工条件

6 5.2.4公用设施条件

第三节 原材料及燃动力供应

5.3.1原材料 5.3.2燃动力供应

第六章 技术方案、设备方案与工程方案 第一节 项目技术方案

6.1.1项目工艺设计原则

6.1.2生产工艺

第二节 设备方案

6.2.1主要设备选型的原则 6.2.2主要生产设备 6.2.3设备配置方案 6.2.4设备采购方式 第三节 工程方案

6.3.1工程设计原则

6.3.2航空航天用轻量化及结构增强高性能纤维复合材料项目主要建、构筑物工程方案

6.3.3建筑功能布局 6.3.4建筑结构

第七章 总图运输与公用辅助工程 第一节 总图布置

7.1.1总平面布置原则

7.1.2总平面布置

7.1.3竖向布置

7.1.4规划用地规模与建设指标

第二节 给排水系统 7.2.1给水情况

7.2.2排水情况

第三节 供电系统

第四节 空调采暖

第五节 通风采光系统

第六节 总图运输

第八章 资源利用与节能措施

第一节 资源利用分析

8.1.1土地资源利用分析

8.1.2水资源利用分析

8.1.3电能源利用分析

第二节 能耗指标及分析

第三节 节能措施分析

8.3.1土地资源节约措施

8.3.2水资源节约措施

8.3.3电能源节约措施

第九章 生态与环境影响分析

第一节 项目自然环境

9.1.1基本概况

9.1.2气候特点

9.1.3矿产资源

第二节 社会环境现状

9.2.1行政划区及人口构成 9.2.2经济建设

第三节 项目主要污染物及污染源分析

9.3.1施工期 9.3.2使用期

第四节 拟采取的环境保护标准

9.4.1国家环保法律法规

9.4.2地方环保法律法规

9.4.3技术规范

第五节 环境保护措施

9.5.1施工期污染减缓措施 9.5.2使用期污染减缓措施

9.5.3其它污染控制和环境管理措施

第六节 环境影响结论

第十章 航空航天用轻量化及结构增强高性能纤维复合材料项目劳动安全卫生及消防

第一节 劳动保护与安全卫生

10.1.1安全防护

9 10.1.2劳动保护 10.1.3安全卫生 第二节 消防

10.2.1建筑防火设计依据

10.2.2总面积布置与建筑消防设计

10.2.3消防给水及灭火设备

10.2.4消防电气

第三节 地震安全

第十一章 组织机构与人力资源配置

第一节 组织机构

11.1.1组织机构设置因素分析 11.1.2项目组织管理模式

11.1.3组织机构图

第二节 人员配置

11.2.1人力资源配置因素分析 11.2.2生产班制 11.2.3劳动定员

表11-1劳动定员一览表

11.2.4职工工资及福利成本分析

表11-2工资及福利估算表 第三节 人员来源与培训

10 第十二章 航空航天用轻量化及结构增强高性能纤维复合材料项目招投标方式及内容

第十三章 航空航天用轻量化及结构增强高性能纤维复合材料项目实施进度方案

第一节 航空航天用轻量化及结构增强高性能纤维复合材料项目工程总进度

第二节 航空航天用轻量化及结构增强高性能纤维复合材料项目实施进度表

第十四章 投资估算与资金筹措

第一节 投资估算依据

第二节 航空航天用轻量化及结构增强高性能纤维复合材料项目总投资估算

表14-1航空航天用轻量化及结构增强高性能纤维复合材料项目总投资估算表单位:万元

第三节 建设投资估算

表14-2建设投资估算表单位:万元

第四节 基础建设投资估算

表14-3基建总投资估算表单位:万元

第五节 设备投资估算

表14-4设备总投资估算单位:万元

第六节 流动资金估算

表14-5计算期内流动资金估算表单位:万元

11 第七节 资金筹措

第八节 资产形成

第十五章 财务分析

第一节 基础数据与参数选取

第二节 营业收入、经营税金及附加估算

表15-1营业收入、营业税金及附加估算表单位:万元 第三节 总成本费用估算

表15-2总成本费用估算表单位:万元

第四节 利润、利润分配及纳税总额预测

表15-3利润、利润分配及纳税总额估算表单位:万元 第五节 现金流量预测

表15-4现金流量表单位:万元 第六节 赢利能力分析

15.6.1动态盈利能力分析

16.6.2静态盈利能力分析

第七节 盈亏平衡分析

第八节 财务评价

表15-5财务指标汇总表

第十六章 航空航天用轻量化及结构增强高性能纤维复合材料项目风险分析

第一节 风险影响因素

16.1.1可能面临的风险因素

12 16.1.2主要风险因素识别

第二节 风险影响程度及规避措施 16.2.1风险影响程度评价

16.2.2风险规避措施

第十七章 结论与建议

第一节 航空航天用轻量化及结构增强高性能纤维复合材料项目结论

第二节 航空航天用轻量化及结构增强高性能纤维复合材料项目建议

第五篇:玻璃纤维增强PA66原料投产前含水率的测定

1.在精密天平上用称量瓶取5g玻璃纤维增强PA66原料。

2.将其与其他原料一起放入干燥机内(保证相同的温度和时间)进行干燥处理。

3.达到工艺规定的干燥处理条件后将称量瓶取出放入干燥皿内(避免在空气中吸收水分)冷却。

4.冷却至室温时,在称量其质量并记录数据。其质量损失即为水分的质量。

含水率按下列公式计算:

G1-G2α=————X100%

G1

α:为含水率。

G1:干燥前的塑料质量(g)。

G2:干燥前的塑料质量(g)。

5.填好报告单送成型工段。

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:通用航空公司企业文化下一篇:托幼机构管理工作计划