三角形内心的向量证明

2023-04-02

第一篇:三角形内心的向量证明

三角形内心的向量表示形式

有这样一个高考题:

已知O,N,P在ABC所在平面内,且OAOBOC,NANBNC0,且PAPBPBPC,则点PCPAO,N,P依次是ABC的(

)

(A)重心 外心 垂心

(B)重心 外心 内心

(C)外心 重心 垂心

(D)外心 重心 内心

答案为C,即分别为外心、重心、垂心,通过此题我们可以发现三角形的这三个“心”的向量表示形式非常和谐美观。而三角形的“心”常见的有四个,我们不仅会想三角形内心的向量表示形式是什么呢?

内心的向量表示有三种常见的形式,网络以及资料上面,对于它们的证明往往不完整,下面我把内心的向量表示形式及其验证的完整过程给读者介绍一下.

(1)点I是ABC所在平面内一点,I是ABC内心的充要条件是

CACBBICI0

CACBABAC分析:此条件直观意义较强,如即分别为与AB、AC同

ABACAIABACABACBCBABCBA向的单位向量AM、AN的差向量MN,由条件可得MN与AI垂直,而MN为等腰AMN的底边,故AI为A的角平分线,同理可得BI、CI亦为角平分线,即I是ABC内心.

上面的条件直观意义较易发现,然而形式较为复杂,下面介绍一个较为简单的充要条件,你能做出证明吗?

(2)如图,ABC的边长分别为a、b、c,点I是ABC所在平面内一

点,I是ABC内心的充要条件是aIAbIBcIC0

证明:已知点I为ABC的内心,延长AI交BC于点D, 则BDcBDcac,所以,BD DCbBCbcbcAIABAIbccbc ,所以

acIDBDADabcabc连接BI,则有bcbcbccAD=(ABBD)(ABBC) 因此,AIabcabcabcbcbccbcbc(AB(ACAB))(ABAC) abcbcabcbcbcbcbcbcABAC ABACabcabcabcbcbc(abc)AIbABcAC

aAI(bABbAI)(cACcAI)bIBcIC

aIAbIBcIC0

反之,当aIAbIBcIC0时,可得点I为ABC的角平分线的交点,即为三角形的内心.

此题的证明需要利用角平分线的性质定理与比例的性质,在化简变形的过程中要特别注意. (2)若0为平面内任一点,则点I为ABC的內心的充要条件为abcOAOBOC

abcabcabc证明:由(1)知aIAbIBcIC0 OI a(OIOA)b(OIOB)c(OIOC)0  (abc)OIaOAbOBcOC

 从而有OIabcOAOBOC

abcabcabc上面我们提到的三角形的四个“心”非常奇妙,这一点从它们的向量表示形式上也能够体现出来,在平时的学习中要注意体会;同时向量法是研究几何图形性质的重要方法,而上面的证明过程也告诉我们把几何图形中的几何量用向量表示出来后,灵活运用平面几何中的比例关系及比例的性质是再进行向量运算的“先行军”.

第二篇:向量与三角形内心、外心、重心、垂心知识的交汇

一、四心的概念介绍

(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、四心与向量的结合

(1)OAOBOC0O是ABC的重心.证法1:设O(x,y),A(x1,y1),B(x2,y2),C(x3,y3)

(x1x)(x2x)(x3x)0

(y1y)(y2y)(y3y)0

OAOBOC0

x1x

yy1

x2x33y2y3

3O是ABC的重心.

证法2:如图

OAOBOC OA2OD0

AO2OD

A、O、D三点共线,且O分AD

为2:

1O是ABC的重心

BDC

(2)OAOBOBOCOCOAO为ABC的垂心.证明:如图所示O是三角形ABC的垂心,BE垂直AC,AD垂直BC, D、E是垂足.

OAOBOBOCOB(OAOC)OBCA0 OBAC

同理OABC,OCAB

O为ABC的垂心

(3)设a,b,c是三角形的三条边长,O是ABC的内心

aOAbOBcOC0O为ABC的内心.证明:

ABc

AB

ACAC方向上的单位向量, 分别为AB、cb

ACb

平分BAC,

ABcACb

AO(),令

bcabc

AO

bcabc

(

ABc

ACb

)

化简得(abc)OAbABcAC0

aOAbOBcOC0

(

4O为ABC的外心。

典型例题:

例1:O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足

OPOA(ABAC),0, ,则点P的轨迹一定通过ABC的()

A.外心B.内心C.重心D.垂心 分析:如图所示ABC,D、E分别为边BC、AC的中点.ABAC2AD

OPOA2AD OPOAAP AP2AD

BDC

AP//AD

点P的轨迹一定通过ABC的重心,即选C.

例2:(03全国理4)O是平面上一定点,A、B、C是平面上不共线的三个点,动点P

满足OPOA,0, ,则点P的轨迹一定通过ABC的(B)

A.外心B.内心C.重心D.垂心

分析:

AC方向上的单位向量,

分别为AB、

AB

AC平分BAC,

点P的轨迹一定通过ABC的内心,即选B.例3:O是平面上一定点,A、B、C是平面上不共线的三个点,动点P

满足

OPOAAB

AC,0, ,则点P的轨迹一定通过ABC的

()

A.外心B.内心C.重心D.垂心

分析:如图所示AD垂直BC,BE垂直AC, D、E是垂足

. 

BC

=

=0

点P的轨迹一定通过ABC的垂心,即选D.练习:

1.已知ABC三个顶点A、B、C及平面内一点P,满足PAPBPC0,若实数满足:ABACAP,则的值为()

A.2B.

32C.3D.6

2.若ABC的外接圆的圆心为O,半径为1,OAOBOC0,则OAOB() A.

12

B.0C.1D.

12

3.点O在ABC内部且满足OA2OB2OC0,则ABC面积与凹四边形

ABOC

面积之比是() A.0B.

32

C.

54D.

43

4.ABC的外接圆的圆心为O,若OHOAOBOC,则H是ABC的()

A.外心B.内心C.重心D.垂心

5.O是平面上一定点,A、B、C是平面上不共线的三个点,若OA

BCOB

CAOCAB,则O是ABC的()

A.外心B.内心C.重心D.垂心

OHm(OAOBOC),ABC的外接圆的圆心为O,6.两条边上的高的交点为H,

则实数m =

→→→→1ABACABAC→→→

7.(06陕西)已知非零向量AB与AC满足(+ )·BC=0 · = , 则

2→→→→|AB||AC||AB||AC|△ABC为()

A.三边均不相等的三角形B.直角三角形 C.等腰非等边三角形D.等边三角形

8.已知ABC三个顶点A、B、C,若AB

ABC为()

ABACABCBBCCA,则

A.等腰三角形B.等腰直角三角形

C.直角三角形D.既非等腰又非直角三角形 练习答案:C、D、C、D、D、

1、D、C

第三篇:三角形四心的向量表示

从动和静两个角度看三角形中四“心”的向量表示

平面几何中中三角形的四“心”,即三角形的内心、外心、重心、垂心。在引入向量这个工具后,我们可以从动和静两个角度看三角形中的四“心”的向量表示,其一可以使我们对三角形中的四“心”有全新的认识;其二使我们对向量形式的多样性和向量运算的灵活性有更清楚的认识。

一.从静止的角度看向量的四“心”

1.已知点O是三角形ABC所在平面上一点,若OAOBOC0,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析:若OAOBOC0,则OAOBOC,设以OA、OB为邻边的平行四边形为OACB,OC与AB交于点D,则D为AB的中点,由OAOBOC得,OCOC,即C、O、D、C四点共线,故CD为ABC的中线,所以O在边AB的中线上,同理可证, O在边AC的中线上, O在边BC的中线上所以O是三角形ABC的重心.

 2. 已知点O是三角形所在平面上一点,若OAOBOBOCOCOA,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析:由OAOBOBOC得,OB(OAOC)0,即OBCA0,所以OBC,A同理可证:OCAB,OABC,所以O是ABC的垂心.

3. 已知点O是三角形所在平面上一点,若aOAbOBcOC0,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析::若aOAbOBcOC0,又因为OBOAAB,OCOAAC,则(abc)OAbABcAC0.所以AObcABACABAC,因为与分别表示AB和AC方向上的单位向量,设abc|AB||AC||AB||AC|ABAC+,则AP平分BAC.又AO、APAP共线,BO平分BAC,知AO平分BAC。同理可证,|AB||AC|CO平分BAC。从而O是ABC的内心。

2224.已知点O是三角形所在平面上一点,若OAOBOC,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

222222分析:因为OAOBOC,所以OAOBOC,即OAOBOC,所以O是ABC的外心。

二.从运动的角度看三角形的四“心”

1.已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足OPOA(ABAC),R,则动点P一定通过ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心 解:OPOA(ABAC) ,可得AP(ABAC),由于ABAC表示以AB,AC为邻边的平行四边形的对角线,所以点P在边BC的中线所在直线上,,故动点P的轨迹一定通过ABC的重心. 2.已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足ABAC+ OPOA,R,则动点P一定通过ABC的(

) |AB||AC|(A)内心

(B)外心

(C)重心

(D)垂心

ABABACACABAC+ 得,AP+ 。由于+ 表分析:由OPOA|AB||AC||AB||AC||AB||AC|示BAC的平分线所在的方向向量。故当R时,动点则动点P一定通过ABC的内心。

3已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足ABAC+  ,R,则动点P一定通过ABC的(

) OPOA|AB|cosB|AC|coCs(A)内心

(B)外心

(C)重心

(D)垂心

ABACABAC+ 得,AP+ 。分析: 由OPOA|AB|cosB|AC|cosC|AB|cosB|AC|cosCABACABBCACBC+ B CBCB,C0由于所以cosAB|B|coAsC|C|cos|AB|coBsA|C|C。即点P的轨迹是过点A且垂直于BC的直线,故动点P的轨迹一定通过ABC的垂心。 APB0C4. 已知O平面上一个定点,A、B、C是平面内不共线三点,动点P满足OBOCOP2ABAC+ ,R,则动点P一定通过ABC的(

) sA|C|coC|AB|coBs(A)内心

(B)外心

(C)重心

(D)垂心

ABAC+ |AB|cosB|AC|cosCABACABAC+ ,当R时, + 表示垂直于可得DP|AB|cosB|AC|cosC|AB|cosB|AC|cosCOBOCOBOC分析:设BC的中点为为D,则OD,所以由OP22BC的向量,所以DP为线段BC的垂直平分线,故动点P的轨迹一定通过ABC的外心. 上面通过动和静两个角度看三角形的四”心”的向量表示,得出了椒优美的结论,使我们对向量的四心有了新的认识,更好的体会到辩证的和谐的统一.

第四篇:三角形的四心的向量表示

222(1)O为ABC的外心OAOBOC.外心(三条边垂直平分线交点) (2)O为ABC的重心OAOBOC0.重心(三条边中线交点) (3)O为ABC的垂心OAOBOBOCOCOA.垂心(高线交点)(4)O为ABC的内心aOAbOBcOC0.内心(角平分线交点)

方向上的单位分别为证明:前三个心的性质都好证明,下面给出问题(4)的证明:cb

向量,平分BAC, cb

), (cbBCBA同理:BOu() acuABACBCBA11ABAOOB()u()[()u]AB()AC cbaccacab

11()u1a11bccacu()u1得代入解得, bcacabcu0ab三角形的四心的向量表示 设O为ABC所在平面上一点,角A,B,C所对边长分别为a,b,c,则

bc() abccb

化简得(abc)bc, abc

第五篇:向量中的三角形心的问题

向量中的三角形“四心”问题

学习向量的加减法离不开三角形,三角形的重心、垂心、内心、外心是三角形性质的重要组成部分,你知道它们的向量表示吗?你能证明吗?下面的几个结论也许能给同学们一点帮助。

结论1:若点O为△ABC所在的平面内一点,满足点O为△ABC的垂心。 证明:由,所以

。同理可证

,得

,即

,则

。故O为△ABC的垂心。

结论2:若点O为△ABC所在的平面内一点,满足,则点O为△ABC的垂心。

证明:由。同理可证

,得

。容易得到

,所以

由结论1知O为△ABC的垂心。

结论3:若点G为△ABC所在的平面内一点,满足ABC的重心。 证明:由,所以

,得

,则点G为△

。设BC边中点为M,则

,即点G在中线AM上。设AB边中点为N,同理可证G在中线CN上,故点G为△ABC的重心。

结论4:若点G为△ABC所在的平面内一点,满足为△ABC的重心。

,则点G证明:由,得。由结论3知点G为△ABC的重心。

,得结论5:若点P为△ABC所在的平面内一点,并且满足

,则点P为△ABC的内心。

证明:由于方向的单位向量为,与

,可得

同方向的单位向量为

,则

。设与同

。因为

,知点P在∠A为单位向量,所以向量的平分线上。

同理可证点P在∠B的平分线上。 故点G为△ABC的内心。

在∠A的平分线上。由结论6:若点O为△ABC所在的平面内一点,满足,则点O为△ABC的外心。

证明:因为,所以

同理得

,所以。故点O为△ABC的外心。

由题意得

,得说明:以上几个结论不仅给大家展示了三角形的“四心”的向量表示,而且是向量加减法应用的很好典例,值得大家关注。

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:暑假学习心得体会题目下一篇:十佳文明窗口事迹材料

热门文章

三角形教案