仿真技术论文范文

2024-01-09

仿真技术论文范文第1篇

关键词:集装箱码头; 三维仿真; 组件平台; 组件划分粒度

文献标志码:A

Component platform of container terminal

3D simulation system

LU Houjun, CHANG Daofang, MI Weijian

(Container Supply Chain Eng. Research Center, Ministry of Edu., Shanghai Maritime Univ., Shanghai 200135, China)

Key words: container terminal; 3D simulation; component platform; component partition granularity收稿日期:2009-10-14 修回日期:2009-12-04

基金项目:上海市科委重点项目(08210510500, 071705207);上海市科委工程研究中心建设项目(08DZ2210104);

上海海事大学科研基金项目(032238)

作者简介: 陆后军(1985—),男,安徽全椒人,助教,硕士,研究方向为虚拟现实,(E-mail)smulhj@126.com;

苌道方(1978—),男,河南新乡人,博士,讲师,研究方向为虚拟现实,(E-mail)dfchang@shmtu.edu.cn0 引 言

集装箱码头作业效率的高低直接影响集装箱供应链物流系统的整体服务水平.随着集装箱码头作业机械逐渐大型化、作业类型逐渐复杂化,使得通过定量分析的方法去研究和分析码头营运过程中产生的大量随机性数据变得异常复杂.因此,国内外学者针对如何分析和优化集装箱码头动态物流系统作了大量研究.真虹[1]提出采用离散事件仿真技术构建集装箱码头装卸工艺优化仿真平台,重点讨论集装箱码头装卸工艺设计方案的评价及指标获取;SHABAYEK等[2]采用Witness仿真软件实现香港Kwai Chung集装箱码头二维仿真系统,通过统计码头营运数据,对其物流预测准确度进行仿真验证.相对于集装箱码头二维平面仿真结果数据的抽象性和非直观性,KLAASSENS等[3]提出基于三维仿真技术的码头作业仿真系统;另外,HORSTHEMKE等[4]论述三维图形技术在港口仿真中的应用与意义.国内很多学者也对特定领域内组件式仿真方法展开研究.段作义等[5]提出基于构件的航空工业分布式虚拟现实系统,研究各组件之间的通信语义和语法;李春雁[6]阐述应用已有可视化组件进行仿真的方法,采用Arena软件实现大窑湾集装箱码头二维仿真系统.显然,上述研究或实现大多是针对某一集装箱码头的仿真系统,没有说明不同装卸工艺下集装箱码头三维仿真系统的组件体系结构,不仅开发周期长、总体成本高,且不能满足不同码头三维仿真系统的快速构建需求.

通过对不同集装箱码头功能节点的分析,本文提出1种可快速构建集装箱码头三维仿真系统的软件体系结构,允许通过多个具有不同功能的仿真组件协同实现特定业务的仿真需求,从而大大提高集装箱码头三维仿真系统的开发效率.

2 集装箱码头三维仿真组件模型

2.1 集装箱码头业务描述

集装箱码头物流系统由集装箱、船舶、装卸设备、泊位、堆场和通信设施等客观对象组成.按照集装箱流通的方向,集装箱码头作业过程主要包括进口卸船、进口提箱、出口集港和出口装船等4种作业类型.[7]不同集装箱装卸工艺下集装箱物流的表达形式与仿真过程存在较大差别.图1为自动化集装箱码头,与常规集装箱码头相比,其装卸工艺由岸桥、低架桥和地面平板小车等自动化装卸设备构成,不同装卸工艺决定集装箱码头三维仿真对象及其相图 1 自动化集装箱码头

示意图

互之间协作机制的不同.因此,有必要设计1种可灵活组装且适合不同装卸工艺要求下的柔性三维仿真系统构建方法,从而满足自动化装卸工艺和混合装卸工艺等不同类型集装箱码头的三维实时仿真要求.

2.2 仿真组件粒度划分

组件是应用系统可分离的部分.[8]仿真组件是指能够通过互换和搭配完成仿真系统特定功能模块的封装部分.集装箱码头三维仿真组件在满足仿真功能性要求的前提下,必须同时满足高内聚、低耦合的组件设计原则.仿真组件的合理划分是仿真软件实现过程中可操作性的决定性因素.划分粒度过小容易导致仿真组件装配过程复杂,不利于开发效率的提高;划分粒度过大则会使仿真组件的柔性变小,失去可复用的设计目标.每类组件可以派生或者泛化其子类组件,最终给出集装箱码头三维仿真组件体系结构,见图2.

图 2 集装箱码头三维仿真组件体系

(1)静态布局组件.该组件可派生出静态非资源组件和静态资源组件2类.前者指构成集装箱码头三维静态虚拟场景的对象,但不参与仿真过程计算,如码头内部路灯、路障及候工楼等,并且用户可通过拖拽实现快速虚拟场景搭建;后者用于描述构成集装箱码头三维静态虚拟场景但参与仿真过程计算的对象,如箱区、泊位及集卡车道等资源设施.

(2)码头装卸设备组件.该组件包含与集装箱码头各种装卸工艺相关的装卸搬运设备,其直接派生出子类岸边装卸设备组件、堆场装卸设备组件和水平运输设备组件,而其中的堆场装卸设备组件又可派生出轮胎吊和轨道吊等组件,其关系见图2.

(3)码头装卸对象组件.用于描述码头内部流通的集装箱,如20英尺箱和40英尺箱等.

(4)码头操作组件.对集装箱码头管理与决策的功能性封装,通过对集装箱码头业务的分析,将业务逻辑大致划分为调度与计划2类.该组件描述的是非可见对象,因此必须允许设计时设置可视化属性.

(5)运动学解算组件.集装箱码头虚拟现实系统涉及大量动态元素的实时运动仿真,如桥吊吊箱过程中的大小车运动状态描述与控制、着箱碰撞分析等.

(6)数据访问组件.将对Access,SQL Server和Oracle等数据库的访问进行封装,隐藏其实现细节,只提供功能接口;同时该组件提供其他组件读取不同数据格式三维模型文件功能.

(7)通信接口组件.提供不同应用程序之间的数据互访功能,其他组件可利用该组件获取外部数据,从而驱动仿真系统.

(8)图形渲染组件.对三维仿真中必须的三维空间进行渲染输出,允许平移、旋转和缩放等基本三维空间操作,为更好适应二维平面仿真需求,图形渲染组件重载部分图形输出函数,达到平面二维仿真的目的.可以通过基于Vega的漫游引擎[9]实现该组件.

2.3 仿真组件实现

遵循将数据和功能封装的原则,仿真组件的核心是提供三维仿真系统所需功能的接口,且各仿真组件之间可以通过接口相互操作.仿真组件实现的关键在于接口与实现分离,其本质是提供集装箱码头物流系统各节点的功能和服务,满足用户的可视化仿真需求.仿真组件对其他仿真组件或者外部程序提供统一的功能接口,但无法访问组件的内部结构.被封装的仿真对象以组件标准提供特定的仿真功能,并通过自身接口与外部程序实现数据交互协作,具体形式如函数、属性和方法等.图3为集装箱码头装卸设备三维仿真组件体系.设备组件成员变量包括Id,位置(x,y,z)和运载集装箱(ContainerArray);方法包括大车移动(WMove)和小车移动等(HMove)等.岸桥、场桥和集卡作为集装箱码头作业的3种主要设备,既继承其父类部分变量、方法,又根据物理特性增加相应成员,如岸桥成员变量同时说明岸桥所处泊位号和场桥所在的场箱贝.

图 3 集装箱码头装卸设备三维仿真组件体系

3 集装箱码头三维仿真组件平台

3.1 组件协作机制

为实现复杂的集装箱码头三维仿真系统,必须设计正确的组件调用机制,合理部署上述仿真组件.各组件作为客户端调用其他组件定义好的接口进行数据交互操作.根据不同装卸工艺下仿真系统功能上的实际需求,选择相关仿真组件进行相互协作实现集装箱码头整体仿真流程,组件协作机制见图4.图 4 仿真组件协作机制

低架平板小车、低架起重小车和地面平板小车等所有装卸设备都需要引用装卸对象组件,通过与装卸对象组件的协作实现各自状态参数的改变,最终以动态元素运动仿真的形式反映到仿真中.

3.2 三维仿真组件部署结构

合理部署组件对成功开发集装箱码头三维仿真系统至关重要.通过抽象分析系统功能,将组件体系划分为3个层次,见图5.数据获取层包含数据访问组件和通信接口组件,用于获得仿真所需的驱动数据支持业务逻辑层相应的调度计算;业务逻辑层包含码头操作组件、静态布局组件、码头装卸设备组件和码头装卸对象组件,通过业务逻辑组件中的计划和调度等组件实现驱动装卸设备、资源计算等三维仿真驱动功能;用户表示层用于向用户呈现可视化的虚拟场景,如三维图形、仿真统计等,同时允许用户进行必要的人机交互,形成人在回路的实时仿真系统.

图 5 三维仿真组件部署结构

4 三维仿真实例

4.1 基本数据准备

在自主研发的集装箱码头三维仿真组件基础上,结合本文所述仿真系统体系结构,以某公司自动化集装箱码头三维仿真系统构件过程为例说明本文所述方法的具体实现.该码头岸线长度372 m,其设备配置见表1.

表 1 自动化码头设备表编号类型数量/台1岸桥42地面平板小车143低架桥起重小车104低架桥平板小车105轮胎吊146低架桥64.2 组件应用部署

依据该码头实际装卸工艺要求选择合理的组件,按照正确调用机制进行组件部署,以可视化方式设置不同组件对象的仿真参数(见图6),最后按照营运数据驱动和调用各虚拟场景对象的方法函数及事件响应,完成各仿真对象之间的协作运行,当然仿真对象的各参数在运行过程会实时变化.

图 6 可视化参数设置界面

该三维仿真系统对自动化码头生产作业过程中产生的数据以三维虚拟场景的形式可视化,实时再现码头作业流程与现状.系统不仅为码头快速调度提供实时机械位置信息,同时为高层决策提供形象直观的码头全景.最后实现的仿真系统见图7.

仿真技术论文范文第2篇

一、信息技术与计算机技术的区别和联系

信息技术(Information Technology)是信息的获取、理解、分析、加工、处理、传递等有关技术的总称。信息技术还可以细分为计算机技术、通信技术、微电子技术、传感技术等。计算机技术是当前信息处理的核心,在实际的应用中我们在很多方面都依靠着计算机技术。

计算机技术是早于信息技术的,它是21世纪高度信息化的主要物质承担者和技术支持者。例如:机场中飞机的起飞降落控制需要计算机的支持,我们去超市买东西是通过计算机来汇总计价的,天文学家对地外文明的探询需要计算机对收集到的大量信号进行分析。世界上第一台计算机ENIAC体积非常的庞大,但是发展到今天一台功能更强大的掌上计算机就只有手机一样大小。计算机作为信息获取、分析、处理的一种重要工具在信息技术教育中占重要的位置,但我们决不能以计算机知识与技能的学习、掌握代替信息技术的学习与掌握,只能将计算机作为信息获取、分析、处理的工具进行学习。对计算机技术的学习应从信息技术的高度、信息技术的角度进行学习,而不是脱离这个前提进行学习。

在实际教学中,我们的老师往往忽视了信息技术的实际含义,把信息技术课当成是计算机课来上,无怪乎信息技术老师很多时候被学生称作:计算机老师或微机老师。我第一次给学生上课时都会告诉学生信息技术与计算机技术的区别,希望他们在以后的学习和生活中能够将二者区分开来,并且信息技术的学习能够使他们的一生都受益匪浅。但是多年的误导使的学生们一下子转不过弯来,甚至还有家长也认为,信息技术课是计算机课,就是教学生怎样“玩电脑”的。其实,信息在我们的日常生活中无处不在,打电话,看报纸,看电视,发短信,甚至人与人之间的交谈都是信息的一种表现形式。而在我们的平时教学工作中,信息技术的运用也是无处不在,就拿我们学校的多媒体教学来说,教师上课做个课件,一张小卡片甚至讲课都是信息技术的一种传播方式。我们把信息技术课与其它学科整合到一起了,而学生还在认为信息技术课就是计算机课,那是错误的。

二、信息技术教学的几个误区

在几年的教学实践中,让我切实认识到信息技术等同于计算机技术给教学上带来的问题,会明显产生下列几大误区:

1 误区一技术学习是教学目标

將技术要求当成教学目标,会直接导致三种错误学习观念:

(1)重上机实践,轻理论学习。

信息技术课程教学主要有理论课、上机实践课两种形式,理论课时数远小于上机实践课时数。学生潜意识中认为信息技术课就是计算机课程,会使用几种工具软件就行,认为自己会打字、会聊天、会上网,信息技术课就学好了。我认为,教师应强调理论课的指导,培养学生利用信息技术解决实际问题的能力,转变学习信息技术的趣向。在平时教学中,应根据学生阶段发展特点,合理安排理论学习,掌握信息技术基础知识。

(2)重知识传授,轻信息素养培养。

教师进行纯专业知识教学时,往往容易忽视信息技术与现实生活的联系,忽视了学生使用信息技术工具解决实际问题的能力培养。如在计算机动画制作初步教学中,对不同基础的学生,教师可以设置不同层次的任务,如对基础比较弱的学生,可以设置一些典型的模仿性任务,引起其兴趣,激发其求知欲,使他们感到“原来我也能做”,从而增强他们的自信心。

(3)重课本内容传授,轻信息道德的培养。

当今的社会各种信息层出不穷,既有大量的、丰富的学科知识、动人事迹等信息,也泛滥着一些不科学、伪科学、不健康的甚至有害的信息垃圾;计算机犯罪、计算机病毒肆虐、个人隐私遭到威胁等都是信息技术发展所带来的消极后果,因此在进行信息技术课程中,加强对学生使用信息技术的人文、伦理、道德和法制的教育,培养学生鉴别信息真伪的能力和负责任地使用信息技术,就显得非常重要。

2 误区二计算机是门独立学科

由于存在“学科本位”的思想以及应付会考等原因,部分教师只注重课本知识的教学,忽视学生综合能力的培养,缺乏与其他课程整合的意识,这也是信息技术教育的一大误区。信息技术课应融会到学校教育的方方面面,时时考虑到与其他课程的渗透,教师的这种意识甚至对学生的学习兴趣和能力都会产生很大影响。

以教学实例来看,同是讲VB程序课,一位老师只是把课本内容讲完了事,另一位老师则讲了如何用VB编写一个打印数学上的正弦和余弦函数图形,显然,后一位老师深刻领会了信息技术课的内涵,将这门课的学习与其他学科有机地联系在了一起,学生通过这节课不但能很好地掌握计算机知识也能联系到其他课程的学习,从课堂气氛和课后效果看,后者明显好于前者。如果计算机老师都能像这位老师这样,信息技术课的教学才会发挥应有的作用。其实,很多老师也知道计算机不过是一种工具,学习它的目的是希望能利用它更好地获取信息,掌握更高效的手段,从而更好地帮助学生学好各学科知识。

中学信息技术课程与计算机学科比较,它的综合性较强,所涉及的学科也需要更多些。它是一门综合学科和活动学科相结合的学科。

仿真技术论文范文第3篇

【摘要】 頻谱资源紧缺已成为限制无线通信技术发展的瓶颈,轨道角动量作为一种新型复用维度,由于其能够实现在同一频率同时传输多路信号,可以有效的提高系统的容量。本文通过对轨道角动量通信系统的误码率进行分析,并在此基础上引入信道编译码,建立了基于轨道角动量的通信系统编译码模型。实验结果表明,高斯噪声环境下,不同调制方式下轨道角动量通信系统误码率与标准通信信道结果相近,相比较2FSK、2PSK而言, 轨道角动量通信系统中QAM调制具有更稳定、更优秀的性能。同时,模型中信道编译码的引入为今后轨道角动量通信系统在提高通信系统容量、解决系统模式串扰等方面建立了研究基础。

【关键词】 轨道角动量 RS码 模式串扰 模型 误码率

随着通信技术的不断发展与更新,频谱资源需求也随之上升,如何能够更有效的利用频谱资源已经成为了人们研究的热点。轨道角动量作(orbital angular momentum ,OAM)为一种与相位、幅度、极化完全不同的新型维度被引入到无线通信中。关于OAM的编码[1]问题,主要有两个方向,一种是对OAM本身进行编码,将不同的模态对应成不同的码字进行传输;另外一种就是将OAM涡旋波作为载体进行信息传输。理论上OAM涡旋波在同一频率的各模态之间是正交的,互不干扰。但是,实际无线通信系统信号在传输过程中,由于涡旋电磁波产生方法存在的一些缺陷,会引起信号的失真、模式串扰等问题[2],信道编译码技术此时就显得尤为重要。里所(Reed-Solomon,RS)码其纠错能力强、构造方便算法相对简单等优点,逐步成为一种最有效、应用最广泛的信道编码。

本文提出一种基于RS码的多模态OAM通信系统信道编译码的实现方法。首先通过对OAM通信系统的研究,建立相应的模型。然后在此模型中引入RS编译码模块来实现多模态OAM通信系统信道编译码,为解决OAM各个模态串扰、信号失真等建立研究基础。

一、轨道角动量的信道编译码原理

在这一部分,我们提出如何通过在轨道角动量通信系统引入信道编译码来解决系统出现信号的失真、模式串扰等问题。

其中E,B分别为电场强度和磁感应强度, ε0为真空中的介电常数,r为场点的矢径。

SAM只有水平极化、垂直极化和圆极化三种状态,而OAM在理论上是具有无限多个状态的,而这无限多个状态又是相互正交的。

对具有OAM的通信系统进行信道编译码,实现多路信息的同频传输,有利于提高系统性能。图1为OAM通信系统编译码框图,通过在多模态OAM通信系统引入传统的RS码,将RS码与OAM很好的结合在一起,能够有效的降低系统误码率。

RS码的译码是从计算接收码字的伴随式入手。首先通过接收多项式r(x)求得N-K个伴随式。然后通过求解错误位置多项式来求解错误位置,根据错误位置找出错误值,得到实际错误符号个数,确定错误多项式。最后,将错误多项式与接收多项式对应位置相加,完成纠错。

二、通信系统建立

由于涡旋电磁波受相位影响较大,所以假设本文的OAM通信系统的发送端与接收端是视线传播。

本文所讨论的OAM通信系统是采用均匀圆形阵列天线(uniform circular arrays,UCA)产生携带OAM的电磁波。基于UCA的OAM通信系统模型如图2所示。OAM通信系统在发送端和接收端分别采用阵列天线,在发送端,可以通过改变阵元间馈电相位的关系来获得不同模态的OAM波。规则排列的圆形阵列多天线系统,利用电磁波的干涉和叠加原理,控制各个阵元之间馈电的相位差,获得涡旋电磁波的不同模态值。在接收端,系统通过UCA接收涡旋信号,实现涡旋信号的解调后,信息得以恢复。

系统中数字调制与解调主要采用三种方式: FSK,PSK, QAM。仿真系统的构建主要在于两个部分,发送端的螺旋调制器和接收端的螺旋解调器[6]。系统中采用缓存器对数据进行缓存,以此得到一个完整周期的数据。发送端螺旋调制器的功能就是将要传输的信号进行复制和移动相位l?? false,相当于将一列串联信号转换成并联信号进行发送。其中,φ表示相移的大小。各个相移信号对应一个天线,各个天线的信号相同且独立。要产生l个模态值,需要2l+1个天线。接收端螺旋解调器就是螺旋调制器的反向处理过程。螺旋解调器的作用就是将接收到的涡旋电磁波信号进行相移,使他们具有相同的相位并且叠加,如同并联信号到串联信号的转换。

三、实验结果

本文对所建立的OAM通信系统进行研究,分别对不同调制方式下未引入信道编译码的OAM通信系统与引入信道编译码的OAM通信系统进行了仿真分析。

3.1 不同调制方式下OAM通信系统的误码率

2FSK调制方式下基带系统的误码率曲线与理论的非相干检测误码率曲线相近。本文分别取本征值为l=2、l=3、l=4,对系统进行了误码率曲线的绘制,结果如图3(a)所示。2PSK调制方式下系统的误码率曲线如图3(b)所示,与2PSK调制下的误码率理论值相比较,当具有高的信噪比的时候OAM通信系统误码率更高,主要是因为OAM通信系统是通过相移操作来达到我们要的效果,所以对相移比较敏感。相比较2FSK、2PSK,无线通信中QAM调制具有更稳定、更优秀的性能。QAM调制比2PSK的具有更高的比特率,比2FSK有更低的错误概率。当QAM调制方式引入到OAM通信系统中,系统的误码率也比传统的QAM调制的误码率理论值更低,如图3(c)所示。仿真中所采用的QAM星座映射方式是最简单的星座映射方式环状8-QAM。

3.2 基于RS碼信道编译码的实现

为了解决因电磁涡旋波产生方法存在的一些缺陷,如涡旋电磁波在发送接收时天线不能对准、信道失真等情况引起的模式串扰等问题,需要在系统中加入信道编译码。

本文采用了多进制编码RS(7,3)码,调制方法采用8-QAM调制,以此来分析基于RS码的OAM通信系统的信道编译码实现。仿真结果如图4所示:

图4中QAM调制方式下,OAM通信系统的性能比理论上的QAM调制下更好。为获得同一误码率,OAM通信系统需要更低的信噪比。同时,在同一信噪比的条件下,OAM通信系统比传统的通信系统具有更低的误码率。

五、结束语

在本文中,我们研究了将OAM作为无线通信中一种调制方式应用RS编译码的一种通信系统。采用门特卡罗仿真来验证OAM应用在无线通信中的可行性,通过分析可以看出实现多路信息在同一频率的传输,可以提高频谱利用率,最终解决频谱资源有限的问题。所以,基于OAM系统的无线通信系统在下一代无线通信技术中具有很大的应用价值。我们可以采用多种方式来解决OAM在无线通信中的模式串扰问题 ,如:均衡技术、OAM时分编码、自适应调制和信道编码等。本文通过在OAM通信系统引入RS码,为今后研究OAM通信系统信道编译码提供了研究基础。RS码是一种特殊的多进制码,它可以解决生成多项式纠错能力的关系问题。并且由于RS码具有纠正多个错误的能力、编码效率高等特点,很适合用作OAM通信系统信道编译码的前期研究,并且可以为后期对OAM通信系统信道编译码的研究建立一定的研究基础。

参 考 文 献

[1] Allen B, Tennant A, Bai Q, et al. Wireless data encoding and decoding using OAM modes. Electronics Letters, 2014, 50(3): 232-233

[2] Ren Y, Zhang Y, Yue Y, et al. Efficient crosstalk mitigation of OAM based 400-Gbit/s QPSK data transmission in 1.1-km vortex fiber by using soft-decision LDPC codes: CLEO: Science and Innovations , 2013 .America, 2013: CM2G. 5.

[3] Nevels.R, Kish.L. Twisted waves: concept and limitations[J].Antennas and Propagation Society International Symposium(APSURSI) on IEEE , 2013,978(1):1460-1461.

[4] Gaffoglio R, Cagliero A, De Vita A, et al. OAM multiple transmission using uniform circular arrays: numerical modelling and experimental verification with two digital television signals. arXiv preprintar Xiv:1511.02341,2015.

[5] 白婷婷. 高速通信系统中RS编解码的应用. 电子测试,2015,23(02):57-59.

[6] Gaffoglio R, Cagliero A, De Vita A, et al. OAM multiple transmission using uniform circular arrays: numerical modelling and experimental verification with two digital television signals. arXiv preprintar Xiv:1511.02341,2015

仿真技术论文范文第4篇

关键词:仿真系统;轨道交通;培训;教学;功能设计

引言

近年来,随着我国国民经济的持续快速发展,城市化进程的不断加快,轨道交通因其无污染、低噪音、高速度等等优点,被越来越多的城市采用,已经成为现代化城市建设的标志之一。城市轨道交通是指利用轨道作为车辆导向的运输方式。并以客运为主,以电能为动力,采取轮轨运转方式的快速大运量公共交通之总称,一般包括有轨电车、地铁,轻轨交通、单轨交通和市郊铁路5种子系统。然而由于轨道交通行业的特殊性,操作人员既不能在运行着的系统或设备上进行实际操作试验,也不允许人为地设置学员观察处理,这就使得操作员难以在变电站的正常操作及事故处理中得到炼。传统采用的方法是通过书本讲授,在图纸或模拟板上练习操作和进行习,以培养运行人员的操作技能以及处理事故的能力,虽都起了一定的作缺乏真实感,培训效果不佳,一旦事故来临,因运行人员见得不多,往往乱,不知所措,常常处理不当,造成事故扩大。为了解决上诉传统培训过程中所出现的问题,我们设计了改仿真培训系统,伴随着计算机技术、系统工程与科学的迅速发展,仿真技术已经渗透到各行各业,并发挥着重要作用。因此,仿真培训是一种现代化的、高效率的培训手段,是提高操作工技能的一种有效途径。

采用先进的计算机系统模拟轨道交通的供电系统的运行模式,正常状态下的的倒闸作业以及事故状态下的处理手段,该系统建立的目的是为了培训从事轨道交通的员技术操作技能和在设备维护人员的故障判断能力,通过仿真培训,使工作人员短期内掌握日常正常操作和常见异常状态下的出来操作流程,掌握设备的操作流程和异常设备的处理方法。

1轨道交通仿真系统的硬件结构

仿真培训系统主要包括教师机、学员机、模型服务器三个部分,结构如图1所示。殊需要,教员和学员,不应该是“一对一”的关系,而是应该能同时满足几位甚至几十位学员同时独立地接受仿真培训,故采用“一对多”的方式,教员通过教员机给各个学员下达指令,学员在独立的学员机上完成操作。教员站与学员站通过互联网连接。

仿真培训系统采用了C/S结构,运算服务器是实现各种逻辑运算的核心设备,在系统仿真运行过程中,它将实时实现自动进路办理、进路搜索、进路解锁、列车自动驾驶、自动防护、车流管理等的运算功能。运算服务器采用高性能的工作站或计算机充当,教师机和学员机使用普通PC机。

2轨道交通仿真培训系统的软件结构及功能

本仿真培训系统的软件有应用服务器、教员机和学员机上的软件部分组成,这些软件之间相互协调工作,最终实现仿真培训的目的。客户端与服务器端的数据交互采用OPC通信技术。模型服务器端配置有工艺模拟软件,可动态响应教师机和学员机的操作指令,产生仿真数据。

2.1学员机结构及功能

学员机由多台PC机组成,主要进行轨道交通的理论学习,以及培训技术人员操作技能和故障判断能力,主要包含以下几个功能。

2.1.1顯示功能

(1)显示教员站发送过来的各种信息提示

(2)查看图纸功能:在屏幕的右上方设置了查看按钮,方便学员随时查看故障信息以及图纸,使学员能够通过图纸更快捷的找到故障。显示主控系统的示意简图及电力设备机电设备,备报警设备示意图等根据操作处理模块传送来的数据信息在对应工作站界面的示意图上设置不同的颜色或符号更直观地表示状态的变化动态反映出系统的运行情况。

2.1.2报警功能

当教师选择题目并确认出题结束后,学员机弹出所对应故障的报警界面,并将运行人员需对检修人员提供的信息显示给学员,方便学员对故障的判断,学员了解题目后,选择“开始答题”。

2.1.3操作模块

负责响应学员的操作命令,通过对学员的各项操作进行采集后,传给逻辑运算服务器,实现相应的逻辑运算。

2.2教员机结构及功能

2.2.1系统管理功能

教师可以对学员机和教员机的IP地址及输出端口令进行修改,设置教员机和学员机的密码,增加题目或修改已有故障题目,以及教师机可发送信息的编辑工作。

编制多种教案,灵活设置各种事件,选择各种教案进行演示、培训考核和研究。

2.2.2教师出题功能

各种障碍或异常情况的设置,故障设置:可利用鼠标在教练机界面的示意图上选定单个或多个系统部件发生故障或异常通过该模块处理使所选部件的状态信息发生相应变化传送至图形显示模块同时生成故障操作参考即故障的相应处理流程传送至评分模块。

2.2.3显示功能

显示主控系统的示意简图及电力设备机电设备,备报警设备示意图等,根据操作处理模块传送来的数据信息在对应工作站界面的示意图上设置不同的颜色或符号更直观地表示状态的变化动态反映出系统的运行情况。

2.2.4教师演示功能

教师可以选择所要启动的学员机和要演示的题目,确定出题以后,被选中的学员可以通过学员机的屏幕或者是大屏幕投影学习教师在教师机上的整个操作过程。

2.2.5教师机监控功能

当教师出题结束后,教员机自动转到监视界面,可以通过窗口统一监视或单窗口分别监视学员的操作情况,并可以对学员发出警告和其他提示信息,若学员出现严重错误,教师可以直接结束学员答题。

干预学员的操作过程,培训过程中,教员可以方便的设置、修改、插入、保存和删除各种事件、下达调度命令。

3系统特色

3.1学习模式

3.1.1教学模式

教学模式,主要包括轨道交通领域的信号、通信、电力、环境与设备系统、防灾自动报警系统、自动售票、屏蔽门、乘客资讯等系统的自动化技术的讲解,可以通过教员制作课件,通过讲课模式或是实际演示来实现这些轨道交通知识的讲解。还可以通过监控软件,使得一个指导教师能够同时指导多个学生的操作,各个学员可以同时独立通过各自学员台访问教师台,观看教员的实验演示,教员也可以随意切方便的通过监控软件查看学员的仿真实验操作窗口。

3.1.2自学模式

在学员机加上教师教员系统,便于学生把课堂上教员设计的教案重演,达到自我学习目的,且每个学员之间互不干预。

3.2培训模式

培训内容以关联的方式存放,这样使学员在学习某个部分的内容时,可以调用其他部分的内容,例如:在培训轨道交通的供电设备维护界面时,可以通过点击设备名获得该设备的电路图等相关内容,这种关联方式与人脑的思维关联性相似,所以更适合培训的需要。

在该系统的培训中,为了使仿真过程更加趋于现实环境,

我们还设计了两种培训模式:分工培训和协作培训,分工培训,就是学员独自完成教员分配分任务,以下是对协作培训的具体介绍。

协作培训。轨道交通中,许多工作需要多人协同完成,故培养和提高工作人员的协作能力是及其必要的,在该仿真培训系统中,引入轨道交通系统的协作特点,实现协作式培训,提高了仿真系统的真实性。

协作培训包括协作学习和协作操作,协作学习是通过小组或团队的形式组织学习,学员A解决问题时,学员B担任教员,其他学员观测他们解决问题的方法及过程,注意他们解决问题的技巧以及在该过程中的不足。协作操作是模拟现实中值班人员协同完成操作任务的一种演习。图3是以地铁中倒闸为例,实现学员的协作操作。

为实现协作机制,采用OPC技术实现学员间操作信息的传输,使客户端与服务器端通过OPC实现网络间的连接和数据通信,

4结语

综上所述,本文利用了计算机仿真技术,设计了一个轨道仿真培训系统,阐述了仿真培训系统的体系结构、软件结构和主要功能,轨道交通仿真系统为轨道交通的工作人员提供了一套生动的培训教材,强化了操作人员和维护人员对新设备新技术的学习能力,提高了工作人员的技术水平,提高了轨道交通的运行的安全性。通过仿真培训,可以缩短工人的技术培训时间,提高在岗职工技术素质和处理事故的应变能力。

再者,这种方法使培训效果与实际需要相吻合,又避免了对现实作业的干扰,对于一些特殊的领域还有助于节省费用,减少危险。如宇航员、深海潜水员、各种运输工具的驾驶员等,仿真培训正在越来越多的工作中广泛运用。

参考文献

[1]张炳达,邓粟,刘长胜.实物性与虚拟性相结合的变电站培训仿真系统[J]天津大学学报,2003 36(1)122 123

[2]吴超,何正友,钱清泉.地铁主控仿真培训系统的初步研究[J]交通运输工程与信息学报,2005 3(3)106-107

[3]王旭,張媛媛.变电二次设备仿真培训系统平台的设计与实现[J]

东北电力技术2005(2)48-48

[4]罗剑波,王元林.变电站培训仿真系统[J]电力系统自动化19972l(11)

[5]梁志坚,韦化,张伯明等.基于DTS的仿真教学试验系统的开发和应用电力系统及其自动化第二十一届学术年会论文集[c]

仿真技术论文范文第5篇

摘  要:通过单相桥式全控整流电路的具体实例,将Matlab/Simulink仿真技术应用于职业院校电力电子技术的实验教学。给出了单相桥式全控整流电路的仿真模型和电感负载下不同控制角的仿真波形,将控制角的变化对波形的影响清晰的呈现出来,参数的调整与设置非常方便。将仿真实践教学与课堂教学结合,直观、有效,使复杂的电力变化电路分析过程变得相对容易,激发了学生的学习兴趣,提升了课堂效率。

关键词:电力电子技术;虚拟仿真;Matlab /Simulink;整流电路

一、引言

电力电子技术是高等职业院校电气自动化专业的一门专业基础课,横跨电力技术、电子技术和控制技术三个领域,理论性、实践性都比较强。课程内容主要包括电力电子器件、电力变换电路和控制技术等内容。主要研究的是如何利用电力变换电路对电能进行转换、控制和优化,包括电压、电流、频率等参数的控制和变换。教学内容中,电能变换和控制是教学的重点,也是难点。由于理论较多,电路负载多样,控制角度不同,波形变化比较大,分析起来也相对困难。高职的学生在理解电路工作原理和分析波形时比较费力,容易混淆,学习的兴趣随着波形的变化慢慢消失殆尽。

实验是训练学生技能、提升理论水平不可或缺的手段。实物电路的搭接,是课堂教学的重要手段,也是电气工程、自动化等专业的学生所应具备的必不可少的能力。学院使用的教学平台是天煌教仪的DJDK-1型电力电子技术实验装置,平台采用的是挂件结构。在教学过程中有以下问题:1.实验装置采购于十年前,随着时间的推移,平台设备逐渐老化,实验过程中由于操作不当或者外部干扰,实验结果经常不尽如人意。比如在整流或逆变电路中,控制角度不一样,波形也不一样,经常出现实验结果和理论分析不符的情况。2.实验内容与职业教育不符,内容多以验证性的为主,学生通过外接挂件,要完成的工作是简单的接线、观测和计算。内容不具有综合性、创新性和设计性,再加上教学手段单一,教学方法落后,学生学习的主观能动性没有被激发出来,实验预期效果相对较差。3. 用电安全问题。大多数的电力电子实验是强电实验,或者弱电控制强电,实验过程中,经常会有学生由于操作不当,损坏实验器件和电气设备的情况,有安全隐患。基于以上原因,近年来,由于计算机和虚拟仿真技术的发展和进步,虚拟仿真系统成为学院电力电子教学的重要平台。

二、Matlab软件在电力电子技术仿真教学中的应用

由于电力电子器件所固有的非线性等特点,我们在对电力电子电路进行分析的过程中,常常遇到许多困难。Matlab、Pspise、Saber、Multisim等仿真软件为电力电子电路的分析提供了有效、方便的手段,简化了电力电子电路的设计和分析过程。这些软件提供了完善的元器件模型,并将各功能子程序模块化,学生只需简单的操作就可以建立和设计电路模型,易于操作。在教学过程中,常利用Matlab/Simulink中的电力系统仿真工具箱SimPower Systems对电力电子教学进行仿真实验,其具有建模简单,能动态显示仿真波形,結果易于观测等特点。利用Simulink工具箱可完成电力电子技术教学中的绝大部分的仿真实验,包括:单相相控整流电路、三相相控整流电路、逆变电路、直流斩波电路、交流调压电路等典型电路,学生还可根据课程需要设计简单的电路并进行建模仿真。将仿真软件引入实验教学中,充分发挥学生的想象力,让学生自己去设计和开发电路,并对电路进行建模、仿真、观测,极大地促进了学生主观能动性、创新思维和动手能力的提高。

三、典型应用电路的仿真

电力变换电路的电路结构相对复杂,在分析电路时其负载一般有电阻性负载、电阻-电感性负载和电阻-电感性负载接续流二极管三种形式。负载不同,流过负载的电压和电流也不同。在电阻性负载的分析中,由于电阻是线性元器件,流过电阻的电压和电流相位相同,分析相对简单;电阻-电感性负载中,由于电感器件的非线性,流过负载的电压和电流相位不同,通常情况下电压超前电流,并且控制角不同,输出电压、电流波形变化非常大,学生在分析时容易混淆。应用Matlab仿真软件,学生可自己动手设计应用电路,在同一虚拟示波器中观察不同负载,不同控制角下的输入输出波形,参数设置简单、仿真结果直观、方便对比。

下面以典型的单相桥式全控整流电路为例,介绍Matlab仿真软件在电力电子教学中的应用,重点介绍电阻-电感性负载时的仿真建模。

(一)单相桥式全控整流电路的电路结构及工作原理

单相桥式全控整流电路具有输出电压脉动小、功率因数高、整流变压器没有直流磁化等优点,在单相整流电路中应用广泛。

图1是单相桥式全控整流电路在不同负载下的原理图。图中四个晶闸管VT1、VT2、VT3、VT4构成整流桥,u2是变压器二次侧电压,iVT1和iVT2分别为流过晶闸管VT1和VT2的电流,ud为负载电压,id为负载电流。图1中,电路的负载从左至右分别为,电阻-电感性负载、电阻性负载、电阻-电感性负载加续流二极管。

在单相桥式全控整流电路中,闸管VT1、VT2为共阴极接法,晶闸管VT3、VT4为共阳极接法。控制时要求桥臂上的晶闸管同时成对导通,其中VT1、VT4是一对,VT2、VT3是一对,VT1、VT4和VT2、VT3构成两个整流路径。在给触发脉冲时,要保证两组门极触发信号的相位保持180°的相位差。调节控制角,可以使电路输出不同的波形,输出电压电流的平均值、有效值、功率因数等参数也会跟着变化。

(二)单相桥式全控整流电路的仿真

1.仿真模型的建立

根据图1所示,用MATLAB建立的仿真模型如下:

如图2所示,其中VT1、VT2、VT3、VT4为四个晶闸管模型,ug1、ug2、ug3、ug4为四路脉冲信号模型,用来产生控制信号;电源电压为正弦交流电,幅值220V,频率50Hz;iVT1、iVT2、uVT1、uVT2分别是加在晶闸管VT1、VT2电压和流过的电流;id、ud用来观测负载的电流和电压;Scope为示波器,用来观测各路电压、电流和脉冲信号。

2.模块参数的设置

(1)模块参数的设置:交流电压源的峰值设置为:“220*sqrt(2)V”,频率设置为“50Hz”,电阻和电感的设置分别为:“1Ω”和“0.01H”。脉冲信号的峰值电压设置为“3V”,周期设置为“0.02s”,脉冲宽度设置为“10%”。相位延迟用于设置触发角,计算公式为t=T*(α/360)。在设置触发角时,VT1、VT4是一对,二者必须相同,VT2、VT3是一对,二者必须相同,且这两对触发角必须相差180°。以触发角是30°时为例,VT1、VT4触发脉冲的相位延迟设置为0.02*(30°/360°),VT2、VT3触发脉冲的相位延迟设置为0.02*(30°/360°)+0.01。其它模块参设为默认设置即可。示波器的端口数根据需要进行设置。(2)仿真参数的设置:将开始时间设置为“0”,终止时间设置为“0.1”,算法设置为“ode23tb”。

3.仿真波形

为了方便对比,分别给出了触发角为30°和60°时的仿真波形。

图3和图4每个图的输入输出信号都是9路,信号由上至下分别为:输入正弦波u2;加在晶闸管VT1、VT2上的触发脉冲信号ug1、ug2;流过晶闸管VT1、VT2的电压uVT1、uVT2和电流 iVT1、iVT2;以及加在电阻-电感性负载的电压ud和流过其的电流id。9路信号基本涵盖了电路中所有元素的电压或电流波形,在同一虚拟示波器中显示,非常清晰明了,也方便观察对比,利于学生分析理解,学生对理论知识的理解更透测了,大大提升了学生的学习兴趣。

四、使用效果

经过几个学期的对比,将Matlab /Simulink仿真技术应用在电力电子技术课程的教学中,呈现出了比较好的教学结果,主要有:

第一,现实中,实验用的显示器一般为双踪示波器,最多可同时观测两路信号,并且由于操作不当或者设备老化,经常出现实际波形和理论不符的现象,达不到虚拟仿真呈现的效果。将Matlab应用于职业院校的电力电子技术实验教学,通过一个虚拟示波器可同时观测多路需要观察的信号波形,方便对比,加深了学生对理论知识的理解。

第二,在控制角一定的情况下,通过电路的仿真,可将电路中电源、晶闸管、负载中的电压和电流波形很清晰的在同一示波器中显示出来,方便观察、对比,结果清晰、明了。

第三,在仿真过程中,电路参数可“任意设置”,可以任意设置控制角的大小,任意设置负载和其他参数,非常方便。设置完参数后可立即觀测波形。在之前的实践教学中,电路连接完成,设置负载参数后,需要计算、推导才能得出正确的波形,现在职业院校的学生对计算推导很不感兴趣,教学效果差,仿真教学增强了学生的自信心。

第四,之前的实验内容以验证性为主,挂件已经是定好了的,实验内容基本不能更改,或者可以改动的内容很少,内容不具有综合性、创新性和设计性。将Matlab/Simulink仿真技术引入电力电子教学,学生可以根据兴趣,自己设计电路并进行仿真,结果也易于观测,增强了学生学习的兴趣。

五、结语

本文以单相桥式全控整流电路为例,将Matlab/Simulink仿真技术应用于电力电子技术的实验教学。给出了单相桥式全控整流电路的仿真模型和电阻-电感性负载在不同控制角下的仿真波形,将控制角的变化对波形的影响在虚拟示波器中很清晰的呈现出来,参数的调整非常方便。将仿真实践教学与课堂教学结合,这种方法直观、有效、快捷,使复杂的电力变化电路分析过程变得相对容易,可使学生比较容易掌握电路的工作原理并进行简单的应用电路设计。在高职院校的电力电子技术实践教学中引入虚拟仿真技术,增强了教学的直观性、可视性、便捷性和灵活性,使学生的学习兴趣得到而激发和提高,提升了课堂效率,教学效果相对之前,比较令人满意。

参考文献:

[1]汪先兵,王祥傲.基于仿真技术的电力电子技术课程教学研究[J].集宁师范学院学报,2019,41(6):100-103.

[2]赵健.Matlab虚拟仿真技术在高职电力电子技术课程教学中的应用[J].当代教育实践与教学研究,2019(21):167-168.

[3]范茂彦,张丽芳.Matlab仿真在电力电子技术应用型人才培养中的应用[J].教育教学论坛,2019(33):59-60.

[4]刘海波.《电力电子技术》实验教学改革探索与实践[J].实践科学与技术, 2012(8):95-97.

[5]程琼,黄圣超.《电力电子技术》课程教学的改革[J].理工高教研究,2008(2):109-110.

[6]陈丽茹.电力电子技术课程教学探究[J].中国电力教育,2011(2):68-69.

[7]葛瑜.技电力电子技术递阶式实验教学研究[J].实验技术与管理,2011(5):156-159.

上一篇:精益化管理论文下一篇:开放式教学论文