110kv变电站典型设计范文

2023-09-26

110kv变电站典型设计范文第1篇

1、所址选择 、负荷分级

2、选择变电所主变台数、容量和类型;

3、补偿装置的选择及其容量的选择;

4、设计电气主接线,选出数个主接线方案进行技术经济比较,确定 一个较佳方案;

5、进行短路电流计算;

6、选择和校验所需的电气设备;设计和校验母线系统;

7、变电所防雷保护设计;

8、进行继电保护规划设计;

9、绘制变电所电气主接线图,变电所电气总平面布置图,110kV高压配电装置断面图(进线或出线)。

二、110kV变电站设计二次部分

一、系统继电保护

1、110kV线路保护

每回110kV线路的电源侧变电站一般宜配置一套线路保护装置,负荷侧变电站可以不配。保护应包括完整的三段相间和接地距离及四段零序方向过流保护。

每回110kV环网线及电厂并网线、长度低于10km短线路、宜配置一套纵联保护。

三相一次重合闸随线路保护装置配置。 组屏:宜两回线路保护装置组一面屏(柜)。如110kV采用测控、保护共同组屏(柜)方式, 1个电气单元组一面屏(柜)。

2、110kV母线保护

双母线接线应配置一套母差保护;单母线分段接线可配置一套母差保护。

组屏: 独立组一面屏。

3、110kV母联(分段)断路器保护

母联(分段)按断路器配置一套完整、独立的,具备自投自退功能的母联(分段)充电保护装置和一个三相操作箱。

要求充电保护装置采用微机型,应具有两段相过流和一段零序过流。

4、备用电源自动投入装置配置原则

根据主接线方式要求,母联(分段、桥)断路器、线路断路器可配置备用电源自动投入装置。

组屏: 110kV断路器保护、备用电源自动投切均为独立装置,两套装置组一面屏。

5、故障录波器配置原则

对于重要的110kV变电站,其线路、母联(分段)及主变压器可配置一套故障录波器。

组屏: 组一面屏。

6、保护及故障录波信息管理子站系统

110kV变电站配置一套保护及故障录波信息管理子站系统,保护及故障信息管理子站系统与监控系统宜根据需要分别采集继电保护装置的信息。

二、调度自动化

7、远动系统设备配置

应配置相应的远动通信设备及测控单元等设备,其中远动通信设备按单套配置,并优先采用专用装置、无硬盘型,采用专用操作系统,远动与计算机监控系统合用测控单元。 组屏: 与监控系统统一组屏。

8、电能量计量系统

变电站内设置一套电能量计量系统子站设备,包括电能计量装置、电能量远方终端(或终端服务器)等。贸易结算用电能计量点配置主/副电能表,考核用电能计量点可按单电能表配置;电能表应为电子式多功能电能表. 组屏: 按照每面柜布置9只计量表组屏,电能量计量终端或终端服务器布置在其中一面屏中或单独组屏。

9、调度数据网接入原则

根据电网情况,可配置1套调度数据网接入设备。变电站宜一点就近接入相关的电力调度数据网。

三、系统及站内通信

10、光纤通信

光纤通信电路的设计,应结合各地市公司通信网规划建设方案进行。 系统通信在只有一路光纤通道的情况下,宜配置一路电力线载波通道备用;在没有光纤通道的情况下,可配置两路电力线载波通道。 新建110kV变电站可根据需求及通道条件配置1套数据通信网接入设备,

11、站内通信

220kV变电站不开设通信用电力载波通道;当保护只有一路独立光纤通道时,宜可配置一路保护专用高频通道。 一般不设置调度程控交换机。

可根据需求配置一套综合数据网设备。

信系统不设独立的视频监控和环境监控。

12、通信电源系统

一般变电站的通信电源系统按2套高频开关电源、1组蓄电池组或1套高频开关电源、1组蓄电池组考虑,也可采用2套独立的DC/DC转换装置。重要的变电站按2套高频开关电源、2组蓄电池组考虑

四、计算机监控系统

变电站计算机监控系统的设备配置和功能要求按无人值班设计。

13、计算机监控系统设备配置

监控系统应宜采用分层、分布、开放式网络结构,主要由站控层设备、间隔层设备和网络设备等构成。站控层设备按变电站远景规模配置,间隔层设备按工程实际建设规模配置。 包括站控层设备 、网络设备 、间隔层设备

14、测控装置组屏 除35(10)kV测控保护一体化装置就地布置在35(10)kV开关柜上外,其余测控装置应按照变电站实际规模配置。主变、

110、220kV测控及各电压等级母线电压采用集中组屏方式安装于二次设备室;每3~4个电气单元组一面屏。

15、其他功能特点

宜采用监控系统实现小电流选线功能。 AVQC功能宜由监控系统实现。

监控系统站控层工作站等设备采用站内UPS供电。间隔层I/O测

控设备采用直流供电。

16、系统网络结构

变电站宜采用单网结构,站控层网络与间隔层网络采用直接连接方式。

17、系统软件

主机兼操作员工作站应可采用安全的UNIX、LINUX或经过软件加固的WINDOWS等安全性较高的操作系统。

18、组屏

主机兼操作员站、打印机设备一般不组屏,相应配置计算机工作台;远动通信设备、智能型公用接口设备、网络交换机等设备组1面屏。除35(10)kV测控保护一体化装置就地布置在35(10)kV开关柜上外,其余测控装置应按照变电站实际规模配置。主变、110kV测控及各电压等级母线电压采用集中组屏方式安装于二次设备室;每3~4个电气单元组一面屏。

五、元件保护及自动装置

19、主变压器保护配置原则

主变压器微机保护应按主、后分开单套配置,主保护与后备保护宜引自不同的电流互感器二次绕组,变压器应配置独立的非电量保护。 当高压侧为内桥接线时,要求各侧电流互感器分别引入差动保护装置。

组屏: 每台主变压器组一面屏。 20、自动装置

35kV(10kV)小电流接地选线一般由监控系统实现。

根据系统要求配置微机型低频减载装置,35kV(10kV)线路一般采用一体化装置中的自动低频减载功能,也可独立设置。 组屏:低频减载组一面屏。

六、直流及UPS电源系统

配置单套蓄电池装置,可组柜安装,一般不设直流分屏。

不停电电源系统:一般容量较小馈线较少,可以与其他设备组屏。

七、其他二次系统

21、全站时间同步系统配置原则

全站设置1套统一的时间同步GPS系统,双时钟冗余配置。另配置扩展装置实现站内所有对时设备的软、硬对时。时间同步系统宜输出IRIG-B(DC)时码、1PPS 、1PPM或时间报文。

110kV变电站配置一套交流不停电电源系统(UPS)。可采用主机冗余配置方式,也可采用模块化N+1冗余配置。

22、二次系统安全防护

二次系统的安全防护应遵循电监会5号令《电力二次系统安全防护规定》及电监安全[2006]34号《电力二次系统安全防护总体方案》和《变电站二次系统安全防护方案》的有关要求。

23、图像监视及安全警卫系统

在110kV变电站内设置一套图像监视及安全警卫系统。其功能按满足安全防范要求配置,不考虑对设备运行状态进行监视。

24、火灾自动报警系统

110kV变电站应设置一套火灾自动报警系统。

25、二次设备的布置

110kV变电站二次设备的布置一般采用集中布置方式。站内不设通信机房,在主控楼内集中设置二次设备室。若变电站规模较大,采用户外敞开式布置或户内GIS方案,对应站内不同的设备布置情况,也可采用设就地继电器小室或按电压等级下放到GIS设备旁的分散布置方式。

应按工程最终规模规划并布置二次设备,备用屏(柜)位不少于总屏(柜)位的10~15%。

26、电压互感器二次参数选择

110kV及以下电压的双母线接线,宜在主母线三相上装设电压互感器。当需要监视和检测线路侧有无电压时,可在出线侧的一相上装设电压互感器。

宜设置专用的电压互感器二次绕组。电压互感器一般设剩余有保护用剩余电压绕组,供接地故障产生剩余电压用。

计量采用独立的电压互感器二次绕组,准确级的准确级,最低要求宜选0.2级;测量与保护I共用一个二次绕组,准确级宜选用电压互感器的准确级,最低要求选0.5(3P)级;;保护II采用独立的电压互感器二次绕组电压互感器的,准确级,为宜选3P和或6P;保护用电压互感器剩余电压绕组的准确级为6P。

根据工程情况,对220kV、110kV母线电压互感器,也可取消电压互感器剩余电压绕组。电压互感器配置四个主二次绕组。计量、测量、保护I、保护II分别采用各自独立的二次绕组,准确级分别为0.2/0.5/3P/3P(6P)。

25、电流互感器二次参数选择

220kV、110kV系统可按三相配置;35kV、10kV系统,依具体要求可按两相或三相配置;

每套保护(包括线路、主变及母线保护)宜使用专用的二次绕组。准确级:变压器主回路、220 kV及以上线路宜采用5P级,其他回路可采用10P级。

测量、计量一般应分别使用各自专用的二次绕组。准确级:一般为0.5、0.2级,供特殊用途的为0.5S、0.2S级,在满足准确级条件下,也可共用一个二次绕组。

故障录波装置可与保护共用一个二次绕组,也可单独使用一个二次绕组。准确级:5P级或10P级。

新建变电站,二次额定电流宜选1A,二次负荷一般为10~15VA(当二次额定电流为5A时,二次负荷一般为40~50VA)。

八、直流及UPS电源 总结:

1、变电站二次系统设计的技术原则,包括:系统继电保护、元件保护、计算机监控系统、电力调度数据网接入设备、二次系统安全防护设备,站内通信系统、变电站操作直流电源、交流不停电电源、图像监控系统等二次系统的技术要求和设备配置要求。

2、二次设备组屏方案和各个屏柜的功能配置。按照统一的配置原则和技术要求,根据变电站接线形式、一次设备类型,制定二次设备的典型组屏方案和各屏柜的功能配置,统一变电站二次设备的组屏方案、屏柜尺寸、形式、名称、标识及颜色等。

3、二次系统设备的技术规范,根据变电站二次系统典型设计配置原则和技术要求、各种典型二次设备组屏方案和各屏柜的功能配置,编制了96项二次设备的技术条件书,统一了二次系统及各屏柜的技术规范。

4、规范系统继电保护及元件保护的配置原则、通道组织原则和设备组屏原则。

5、规范计算机监控系统的配置原则和方案,包括整体网络结构,站控层软件、硬件配置,间隔层设备配置及组屏原则,站控层与间隔层通信所采用的技术和标准,监控系统与继电保护、保护故障信息管理子站以及站内其他智能装置的通信接口形式和技术要求等

6、规范变电站电气二次接线,包括防误闭锁实现方式,二次屏柜的供电方式,操作箱控制回路接线以及断路器、隔离开关机构箱控制回路接线等。

7、规范专业间配合的技术要求,包括系统继电保护对电流互感器、电压互感器变比、绕组数量、容量及精度的配置要求;系统继电保护对断路器跳闸线圈、操作电源的配置要求;保护对通信通道的要求、保护光电转换接口对通信电源的要求等。

8、规范保护和故障录波信息管理子站系统的配置原则及实施方案,包括:子站系统的构成、功能定位、数据采集方式,与监控系统的接口方式、子站信息传输方式等。

9、规范二次系统各类接口要求,包括:继电保护装置与计算机监控系统的接口及通信要求;继电保护装置、故障录波装置以及双端故障测距装置对时精度和接口要求。

10、规范站内通信设备的配置原则和方案,包括:通信蓄电池配置原则、通信机房布置、光缆引接方式、通信机柜尺寸等。

11、规范时间同步系统、图像监视系统的配置原则和方案。

110kv变电站典型设计范文第2篇

传统的110kV变电站主要以户外设计和安装为主,占地面积大,且设备容易被腐蚀,尤其在高污秽地区,还极易造成污闪事故的发生。为了建设坚强电网,发挥规模优势,提高资源利用率,提高电网工程建设效率,国家电网公司在2005年提出“推广电网标准化建设,各级电网工程建设要统一技术标准,推广应用典型优化设计,节省投资,提高效益”。典型设计坚持以“安全可靠、技术先进、保护环境、投资合理、标准统

一、运行高效”的设计原则,采用模块化设计手段,做到统一性与可靠性、先进行、经济性、适应性和灵活性的协调统一。

海阳市供电公司积极响应国家电网公司的号召,积极推广110kV变电站典型设计。本文就海阳市供电公司110kV变电站典型设计的应用实例予以阐述,以说明推广典型设计的重要意义。

1 110kV变电站典型设计应用实列

海阳市供电公司2006年开始采用110kV变电站典型设计,到目前为止,已经完成3座110kV变电站的设计、建设工作。从实际效果来看,具有较好的经济效益和社会效益,下面以110kV望石变电站为例对典型设计进行分析。

110kV望石变电站位于海阳市新建的临港产业区,该区域规划面积较小,但是电力负荷较为集中。该区域包括以莱福士造船厂在内的多个用电大户正在兴建中,而山东核电设备制造公司已经投产。根据该区域负荷预测及用电负荷性质,海阳市供电公司按照安全可靠、技术先进、投资合理、运行高效的原则,结合该站用电负荷集中、土地昂贵、临近海边(Ⅳ级污秽区)、电缆出线多等客观事实,对110kV望石变电站作了如下设计。

该站为半户内无人值班变电站(半户内布置方式即除主变压器以外的全部配电装置,集中布置在一幢主厂房的不同楼层的电气布置方式),变电站主体是生产综合楼,除主变压器外所有配电装置均安装在综合楼内。以生产综合楼和主变压器为中心,四周布置环形道路,大门入口位于站区东南角,正对生产综合楼主入口。综合楼共两层,一层为10kV配电装置室、电容器室、接地变压器室及主控室,二层为110kV GIS室。

1.1 电气主接线

变电站设计规模及主接线。通过负荷资料的分析,考虑到安全、经济及可靠性,确定110kV变电站主接线。电气主接线图如图1所示。通过负荷分析和供电范围,确定变压器台数、容量及型号,该设计中主变压器总容量为2×50MVA(110/10.5kV),一期(共两期)设计为1×31.5MVA(110/10.5kV),采用双绕组油浸自冷有载调压变压器。110kV出线共2回,一期1回,采用内桥接线方式。10kV出线共24回,一期24回,采用单母线分段接线方式。无功补偿电容器为2×6000(3000+3000)kvar,分别接入10kV两段母线上。

图1 110kV望石变电站主接线图

各级电压中性点接地方式。110kV侧直接接地,由于主变压器10kV侧没有中性点,而10kV侧全部采用电缆出线,电网接地电容电流较大,故采用了站用电与消弧线圈共用的接地变压器。

1.2 短路电流水平

根据终期(共两期)双绕组自冷变压器的容量、空载损耗、负载损耗、短路阻抗等相关参数,考虑电网远景规划,按照三相短路验算,并套用《国家电网公司输变电工程典型设计110kV变电站分册》中110kV变电站典型设计(方案B-1),确定110kV电压等级的设备短路电流为kA,10kV电压等级的设备短路电流为31.5kA。

1.3 主要电气设备选择

考虑城市噪音控制,选用双绕组低损耗自冷变压器,采用YNd11接线组别。因站址临近海边,空气湿度大及盐碱度高,故110kV设备采用六氟化硫封闭式组合电器,断路器额定电流为2000A,额定开断电流为31.5kA。10kV设备选用N2X系列气体绝缘开关柜,N2X开关柜采用单气箱结构,每个开关柜独立一个气箱,气箱内安装免维护的三工位开关和固封极柱式真空断路器,通过插接方式与其他元器件组合,实现和满足不同的主接线方式。该开关柜分成三个间隔:高压密封间隔,低压控制间隔,电缆和TA间隔。断路器为真空断路器,主变压器及分段回路额定电流为3150A,额定开断电流为31.5kA;出线回路额定电流为1250A,额定开断电流为20kA。

1.4 过电压保护及接地

110kV及35kV设备全部选用金属氧化物避雷器,并按照GB 11032-2000《交流无间隙金属氧化物避雷器》之规定进行选择。按照防直击雷原则进行理论计算,在主建筑屋顶安装避雷带及避雷针,用以保护主建筑物及主变压器。按照DL/T 621-1997《交流电气装置的接地》的规定进行电气设备接地,主接地网由水平接地体和垂直接地体组成复合接地网,将建筑物的接地与主接地网可靠连接,接地埋深0.8m。接地网实测电阻为0.43Ω。

1.5 站用电和照明

变电站远景采用2台干式接地变压器500/10.5-80/0.4,每台总容量为500kVA,其中站用电额定容量为80kVA。两台接地变压器分别经断路器接入10kV#

4、#5母线上。站用电为380/220V三相四线制中性点直接接地系统,站用变压器低压侧采用单母线分段接线。室外照明采用投光灯,室内工作照明采用荧光灯、白炽灯,事故照明采用白炽灯。事故照明为独立的照明系统。

1.6 计算机监控系统

计算机监控系统为分层分布式网络结构,能完成对变电站所有设备的实时监视和控制。电气模拟量采集采用交流采样,保护动作及装置报警等重要信号采用硬节点方式输入测控单元。系统具备防误闭锁功能,能完成全站防误操作闭锁。具有与电力调度数据专网的接口,软、硬件配置能支持联网的网络通信技术及通信规约的要求。全站设有一套双时钟源GPS对时系统,实现整个系统所有装置的时钟同步。监控系统可对110kV及10kV断路器、隔离开关、主变压器中性点接地开关、主变压器分接头、无功补偿装置、站用电源、直流系统、UPS系统等多方面进行监控。操作控制功能按分层操作设计,达到了任何一层的操作、设备的运行状态和选择切换开关的状态都处于计算机监控系统的监控之中。

1.7 保护装置的配置

整个保护系统全部选用微机型保护装置。主变压器保护包括差动保护和后备保护,在主控室集中组屏安装。10kV保护测控装置采用保护测控一体化装置,装设在成套开关柜上,10kV线路保护具有低周减载功能。另外,10kV系统还具有小电流接地选线功能。

1.8 直流系统

直流系统额定电压为220V,设单组阀控式铅酸免维护蓄电池组和双套冗余配置的高频开关电源充电装置,并设置一套微机型直流接地自动检测装置。蓄电池容量为100Ah。该系统还配置一台UPS,容量为3kVA,UPS系统为站内计算机监控系统、保护装置、通信设备等重要二次设备提供不间断电源。

1.9 图象监控系统和火灾探测报警系统

大楼入口处设置摄像头;主控室、电容器室、接地变压器室以及各级电压配电装置室均安装室内摄像头;主变压器区安装室外摄像头。监控信号通过光缆传送到调度主站,用以完成变电站全站安全及设备运行情况的监控。

站内配置一套火灾报警系统。火灾报警控制器设置在主控楼内。当有火灾发生时,报警系统可及时发出声光报警信号,显示发生火灾的地点,并通过通信接口和光缆,将信息最终传至调度端。

2 结束语

该典型设计的变电站与常规室外布置变电站相比具有以下优点。第一,土地占用面积不足常规变电站的三分之一。第二,该站临近海边,属高污秽地区。所有配电设备均室内布置,尤其是110kV及10kV配电设备全部采用气体绝缘全密封开关设备,有效地防范了污闪事故的发生。第三,配电设备检修周期长,供电可靠性高。第四,采用接地变压器,很好地解决了10kV电缆出线引起的电网接地大电容电流。第五,具备了无人值班的条件,实现了变电站无人值班。

110kv变电站典型设计范文第3篇

传统的110kV变电站主要以户外设计和安装为主,占地面积大,且设备容易被腐蚀,尤其在高污秽地区,还极易造成污闪事故的发生。为了建设坚强电网,发挥规模优势,提高资源利用率,提高电网工程建设效率,国家电网公司在2005年提出“推广电网标准化建设,各级电网工程建设要统一技术标准,推广应用典型优化设计,节省投资,提高效益”。典型设计坚持以“安全可靠、技术先进、保护环境、投资合理、标准统

一、运行高效”的设计原则,采用模块化设计手段,做到统一性与可靠性、先进行、经济性、适应性和灵活性的协调统一。

海阳市供电公司积极响应国家电网公司的号召,积极推广110kV变电站典型设计。本文就海阳市供电公司110kV变电站典型设计的应用实例予以阐述,以说明推广典型设计的重要意义。

1 110kV变电站典型设计应用实列

海阳市供电公司2006年开始采用110kV变电站典型设计,到目前为止,已经完成3座110kV变电站的设计、建设工作。从实际效果来看,具有较好的经济效益和社会效益,下面以110kV望石变电站为例对典型设计进行分析。

110kV望石变电站位于海阳市新建的临港产业区,该区域规划面积较小,但是电力负荷较为集中。该区域包括以莱福士造船厂在内的多个用电大户正在兴建中,而山东核电设备制造公司已经投产。根据该区域负荷预测及用电负荷性质,海阳市供电公司按照安全可靠、技术先进、投资合理、运行高效的原则,结合该站用电负荷集中、土地昂贵、临近海边(Ⅳ级污秽区)、电缆出线多等客观事实,对110kV望石变电站作了如下设计。

该站为半户内无人值班变电站(半户内布置方式即除主变压器以外的全部配电装置,集中布置在一幢主厂房的不同楼层的电气布置方式),变电站主体是生产综合楼,除主变压器外所有配电装置均安装在综合楼内。以生产综合楼和主变压器为中心,四周布置环形道路,大门入口位于站区东南角,正对生产综合楼主入口。综合楼共两层,一层为10kV配电装置室、电容器室、接地变压器室及主控室,二层为110kV GIS室。

1.1 电气主接线

变电站设计规模及主接线。通过负荷资料的分析,考虑到安全、经济及可靠性,确定110kV变电站主接线。电气主接线图如图1所示。通过负荷分析和供电范围,确定变压器台数、容量及型号,该设计中主变压器总容量为2×50MVA(110/10.5kV),一期(共两期)设计为1×31.5MVA(110/10.5kV),采用双绕组油浸自冷有载调压变压器。110kV出线共2回,一期1回,采用内桥接线方式。10kV出线共24回,一期24回,采用单母线分段接线方式。无功补偿电容器为2×6000(3000+3000)kvar,分别接入10kV两段母线上。

图1 110kV望石变电站主接线图

各级电压中性点接地方式。110kV侧直接接地,由于主变压器10kV侧没有中性点,而10kV侧全部采用电缆出线,电网接地电容电流较大,故采用了站用电与消弧线圈共用的接地变压器。

1.2 短路电流水平

根据终期(共两期)双绕组自冷变压器的容量、空载损耗、负载损耗、短路阻抗等相关参数,考虑电网远景规划,按照三相短路验算,并套用《国家电网公司输变电工程典型设计110kV变电站分册》中110kV变电站典型设计(方案B-1),确定110kV电压等级的设备短路电流为kA,10kV电压等级的设备短路电流为31.5kA。

1.3 主要电气设备选择

考虑城市噪音控制,选用双绕组低损耗自冷变压器,采用YNd11接线组别。因站址临近海边,空气湿度大及盐碱度高,故110kV设备采用六氟化硫封闭式组合电器,断路器额定电流为2000A,额定开断电流为31.5kA。10kV设备选用N2X系列气体绝缘开关柜,N2X开关柜采用单气箱结构,每个开关柜独立一个气箱,气箱内安装免维护的三工位开关和固封极柱式真空断路器,通过插接方式与其他元器件组合,实现和满足不同的主接线方式。该开关柜分成三个间隔:高压密封间隔,低压控制间隔,电缆和TA间隔。断路器为真空断路器,主变压器及分段回路额定电流为3150A,额定开断电流为31.5kA;出线回路额定电流为1250A,额定开断电流为20kA。

1.4 过电压保护及接地

110kV及35kV设备全部选用金属氧化物避雷器,并按照GB 11032-2000《交流无间隙金属氧化物避雷器》之规定进行选择。按照防直击雷原则进行理论计算,在主建筑屋顶安装避雷带及避雷针,用以保护主建筑物及主变压器。按照DL/T 621-1997《交流电气装置的接地》的规定进行电气设备接地,主接地网由水平接地体和垂直接地体组成复合接地网,将建筑物的接地与主接地网可靠连接,接地埋深0.8m。接地网实测电阻为0.43Ω。

1.5 站用电和照明

变电站远景采用2台干式接地变压器500/10.5-80/0.4,每台总容量为500kVA,其中站用电额定容量为80kVA。两台接地变压器分别经断路器接入10kV#

4、#5母线上。站用电为380/220V三相四线制中性点直接接地系统,站用变压器低压侧采用单母线分段接线。室外照明采用投光灯,室内工作照明采用荧光灯、白炽灯,事故照明采用白炽灯。事故照明为独立的照明系统。

1.6 计算机监控系统

计算机监控系统为分层分布式网络结构,能完成对变电站所有设备的实时监视和控制。电气模拟量采集采用交流采样,保护动作及装置报警等重要信号采用硬节点方式输入测控单元。系统具备防误闭锁功能,能完成全站防误操作闭锁。具有与电力调度数据专网的接口,软、硬件配置能支持联网的网络通信技术及通信规约的要求。全站设有一套双时钟源GPS对时系统,实现整个系统所有装置的时钟同步。监控系统可对110kV及10kV断路器、隔离开关、主变压器中性点接地开关、主变压器分接头、无功补偿装置、站用电源、直流系统、UPS系统等多方面进行监控。操作控制功能按分层操作设计,达到了任何一层的操作、设备的运行状态和选择切换开关的状态都处于计算机监控系统的监控之中。

1.7 保护装置的配置

整个保护系统全部选用微机型保护装置。主变压器保护包括差动保护和后备保护,在主控室集中组屏安装。10kV保护测控装置采用保护测控一体化装置,装设在成套开关柜上,10kV线路保护具有低周减载功能。另外,10kV系统还具有小电流接地选线功能。

1.8 直流系统

直流系统额定电压为220V,设单组阀控式铅酸免维护蓄电池组和双套冗余配置的高频开关电源充电装置,并设置一套微机型直流接地自动检测装置。蓄电池容量为100Ah。该系统还配置一台UPS,容量为3kVA,UPS系统为站内计算机监控系统、保护装置、通信设备等重要二次设备提供不间断电源。

1.9 图象监控系统和火灾探测报警系统

大楼入口处设置摄像头;主控室、电容器室、接地变压器室以及各级电压配电装置室均安装室内摄像头;主变压器区安装室外摄像头。监控信号通过光缆传送到调度主站,用以完成变电站全站安全及设备运行情况的监控。

站内配置一套火灾报警系统。火灾报警控制器设置在主控楼内。当有火灾发生时,报警系统可及时发出声光报警信号,显示发生火灾的地点,并通过通信接口和光缆,将信息最终传至调度端。

2 结束语

该典型设计的变电站与常规室外布置变电站相比具有以下优点。第一,土地占用面积不足常规变电站的三分之一。第二,该站临近海边,属高污秽地区。所有配电设备均室内布置,尤其是110kV及10kV配电设备全部采用气体绝缘全密封开关设备,有效地防范了污闪事故的发生。第三,配电设备检修周期长,供电可靠性高。第四,采用接地变压器,很好地解决了10kV电缆出线引起的电网接地大电容电流。第五,具备了无人值班的条件,实现了变电站无人值班。

110kv变电站典型设计范文第4篇

在20世纪90年代, 国内外曾经追捧过现场总线这一网络形式, 但是由于当时在技术上不够成熟而且采用的设备总线信息量大传输速度也比较慢, 因此造成了总线标准不统一, 阻碍了技术的发展。以太网经过了多年的发展, 在技术上已经日趋成熟。伴随着微芯片技术在以太网中的发展, 以太网已经可以十分方便的应用于变电自动化系统。由于以太网具有高速、可靠、安全灵活的特点, 可以使变电站综合自动化系统有广阔的应用前景。

1 变电站通信系统构成

根据IEC国际电工委员会电力系统控制与通信技术委员会的划分, 变电站内的设备可划分为如下三个层次。

(1) 设备层:主要是包括各类一次设备像TA/rv、电容、线路、开关等。

(2) 间隔层:主要包括各类二次设备, 如保护、测最、自动装置、采集、控制、故障录波等, 这类设备都能够独立完成具体的功能, 并且能够与外部进行信息交换。

(3) 管理层:是对整个变电系统进行安全检测、控制、管理并可以与变电站外部进行数据交换, 如当地监控微机、与控制中心通信的通信机处理等。

在管理层与间隔层之间, 有会有大量的数据交换, 一方面, 间隔层的各类设备需要将采集的信息传输到监控系统以及中央控制中心, 在此期间不仅数据量很大, 而且对于时效性要求非常高, 测量值以及信号刷新的都要求在3s内完成;另外一方面, 在管理层中系统时钟、控制以及调节命令、运行参数的整定命令, 也需要快速下发到各个智能设备。间隔层中各个智能设备间也有着数据交换, 但是数据交换量较少, 对时效性要求不高。此外各类保护设施大部分都是独立设备, 因此与其他设备之间产生的数据交换量较少, 因此对于时效性要求也不高。通过上述情况我们可以分析出, 在变电站自动化系统中除了考虑间隔层的横向所能按照所内一次设备的分布来进行配置, 再有条件的情况下, 还应该尽可能把间隔层设备安装在开关箱中;对于各个间隔设备应该尽量保持相对独立, 使其通过站内通信网络互联并能够与管理层的设备进行快速的通讯。

2 变电站通信网在信息传递中的存在的主要问题

(1) 自动化场站与主站之间的数据传递交换速率低。一般常见的综合自动化变电场站监控系统接入主站系统主要有两种:模拟四线方式以及低速率数据传输技术。这两种接入模式的数据传输速率受到光端机或者低速数据接口以及监控系统的限制, 通常传输效率较低。

目前, 大部分的综合自动化变电站为了减少误码率都采用600biffs在模拟通道内进行。

但是由于电网规模的不断扩大, 变电站的监控信息量也越来越大, 在这种效率低的传输方式下, 信息延时就成了影响电网调度安全的重要因素。

因此, 利用光纤通信网络的以太网传输接口, 就可以实现在变电站安装网络设备, 从而实现变电站监控系统数据网络化传输。网络化传输不仅仅提高了远动通信信道的传输数据的速率, 同事增加了通道的可靠性, 可以很方便的利用TELNET等网络指令在远程对自动化系统来进行维护。

(2) 由于自动化变电站内的智能装置间数据传输效率低, 因此在现有的自动化变电站中, 出现很多不同厂家不同型号的设备, 其与后台接口形式多样, 如利用lon网、串口、can网、以太网等方式根据自己的传输协议进行通讯, 通信过程中, 又需要经过各种接口以及传输协议之间的转换, 经常出现传输效率低、报文丢失等问题。

3 变电站综合自动化系统通讯网的基本设计原则

通讯系统是评价变电站自动化程度的重要标准, 其主要包括站内采集控制系统和变电站控制管理层的通讯联系, 变电站在与当地调度中心之间的通讯中, 通讯系统的构架设计十分重要。为此变电站的通讯网络的设计需要遵循以下几个原则来设计。

(1) 由于电力系统的服务需要连续性以及对国民生产的重要性, 通讯网络的可靠性必须放在第一位的。

(2) 通讯系统网络应该能够合理分配通讯负荷, 从而保证不会出现通讯拥堵或者瓶颈现象, 想要保证信道的负荷不过载, 在设计时就需要尽量采用分层分布式的通讯结构。此外系统还应该按照站内通信网络的信息指标要求的高低来进行分类处理。另外由于通讯网络系统的设计应该保证拥有良好的扩展性, 以及功能组合灵活、日后维护调试方便等诸多要求。

(3) 在通讯接口上应该尽量多采用国际标准来设计, 设计的基本原则是兼容当前各类标准的通讯接口, 并对未来系统升级扩展做好提前量。

(4) 要针对各种类型的变电站的现场实际状况以及变电站的应用情况选择通讯网络的拓扑结构, 以期达到网络结构灵活多样并且能够具有延续性。

(5) 通讯网络采用的协议应该使用国际标准的通讯协议以及通讯规约。

(6) 对于通信媒介的选用, 设计原则是在技术要求上支持采用光纤, 但实际工程中也考虑以屏蔽电缆为主要的通信媒介。

摘要:随着科技的进步以及信息化水平的不断提高, 对于电压等级较低以及以下的配电变电站中, 实行自动化改造已经成为了发展的主要方向。而自动化变电站就一定要通过一定的通讯手段与中央控制中心互联, 因此要保证在实时通讯中数据能够快速传递, 这就需要认真规划合理设计通讯网络, 本文也将就变电站通讯系统的设计发表自己的看法。

关键词:通讯,变电站,网络

参考文献

[1] 代芬, 张承学, 王大方.CAN总线在低压变电站综合自动化系统中的应用[J].电力情报, 2002, 3.

[2] 李光颖, 郑瑞忠.浅谈智能变电站系统[J].电力自动化设备, 2001, 6.

[3] 李光文.发电厂/变电站监控系统远动功能设计方案[J].电力自动化设备, 2001, 10.

[4] 陈学辉.变电站自动化系统应用的几点体会[J].电力自动化设备, 2003, 8.

110kv变电站典型设计范文第5篇

现代社会经济高速发展, 家用电器日益增多, 不管是种类还是数量方面都大大提高, 用电量也随之迅猛增加, 这对于日益完善的供电系统有着必要的联系, 而其中110k V变电站又起到了重要作用。而要保证110k V变电站良好的进行供电, 就需要保障供电系统的安全稳定。然而台风、雷暴、暴雨等极端恶劣天气条件下产生的雷击现象, 将会给电力供应系统造成影响, 甚至能直接破坏整个110k V变电站。因此, 必须要加强110k V变电站的防雷措施, 加强其防雷接地技术的效果和作用, 从而达到尽可能的完善110k V变电站防雷接地技术, 为供电网络提供更可靠安全的供电环境。

1.110k V变电站防雷接地设计的原则

110k V变电站防雷原则就是要将尽可能的降低雷击造成的线路损失。一切从实际出发, 根据不同区域的不同情况, 在防雷措施方面也同样采取不同的方法, 并结合当地自然环境、生态环境、地理地质条件环境、以及线路周边环境等要素, 经过实地考察后, 设计出安全可靠又符合实际的防雷措施, 以此达到110k V变电站的防雷目的。除此之外, 还需要进行对110k V变电站分段评估, 对有可能发生事故, 或已经破损的线路进行维修或评估补充等, 将可能造成的雷击现象的影响尽可能的减少, 以此使110k V变电站能够更加安稳运行。

2. 雷击的分类

雷击主要体现为两种, 一种是直击雷, 另一种是感应雷。直击雷就是雷击直接作用于变电站的电气设备, 此时会形成强大的电流和较高的电压。在雷击电流通过电气设备的过程中会产生热效应和机械效应, 从而对变电站造成严重的破坏, 所以直击雷对变电站的正常运行影响很大。感应雷也叫做二次雷。当雷电发生时会出现雷电放电和电磁脉冲现象, 雷电过压通过金属管道和电缆对变电站控制室内的设备产生严重的电磁干扰。一方面, 雷击过程中产生的电磁场能让变电站内一些设备产生暂态电压, 影响电气设备的正常运行。另一方面, 雷击电流通过接地网接入大地时, 会形成一定的冲击电位, 在接地网的某些区域产生雷击流的反击现象, 或者出现局部放电现象, 从而影响电气设备的绝缘性。

3.110k V变电站防雷设计

3.1 合理接地网材料

在110k V变电站接地时, 必须保证接地网材料的接地电阻和接地电流符合专业标准, 尽可能延长接地电网的使用寿命。普通接地线的使用寿命符合上述设施的设计和使用寿命。所选择的地面材料具有高稳定性, 特别是随着外部环境的变化, 接地电阻发生变化。如果选择将铁材料磨碎, 在长期使用过程中会导致严重腐蚀程度的增加;如果选择接地铜材料, 其受外界环境影响较小, 由于腐蚀问题引起的电阻增加缓慢, 更稳定。但铜的成本高, 不适合综合应用。为了解决这个问题, 可以使用人造地线降低接地电阻。例如, 电离器早期的离子接地将导致较低的电阻, 接地电阻随着时间的推移趋于稳定。技术原理是将大量化学物质进入周围土壤, 使周围土壤电阻率发生变化。但是, 必须进行防腐蚀工作。另外石墨粉也可以选择。在长期使用中, 接地电阻可以保持在稳定状态, 具有高性能稳定性。

3.2 接地设计

对于变电站, 只有防雷装置不够, 接地必须符合相关要求, 否则会导致设备成本和设备的电位上升, 引起雷击。因此, 接地装置是合理的或不直接与人员和设备的安全有关。变电站接地技术可分为直接和间接两种情况, 无论是直接或间接接地, 目的是否相同, 以减少过电压引起的雷击。在施工过程中, 接地必须满足以下要求:接地网应连接到建筑物基础的加固和天然金属接地。尽可能将自然接地物体作为主体, 以人造体为辅助形状尽可能靠近环。有一个统一的接地网, 接地一个接地点。

3.3 接地网的布置

选择地面扁钢的尺寸, 然后设置接地网。变电站配有水平接地和垂直接地的封闭接地网, 并提供压力带。以重庆110k V变电站接地网布局为例, 对混凝土设计进行了说明。其具体布局参数为水平网格, 矩形, 垂直13, 水平16, 每间距约5m, 地面深度约0.8m, 接地网格外缘封闭, 外缘角应为制成电弧, 不小于压力带间隔半径的一半, 内部接地压力水平与站台入口设置为压力带的“上限”。所有这些做法都应在施工图中进行说明。在站立的垂直接地极直径为50mm, 长2.5m, 车间地面0.8m, 顶部焊接接地。间距应大于接地极长度的两倍。由于大中型地网的垂直接地, 降低接地电网接地电阻的效果非常小, 从2%降至8%。因此, 本网站只能在主变压器, 避雷针和避雷器中, 增强电流扩散的影响, 并安装集中接地, 其余只设计少量接地电极。如果测量的接地电阻太大, 则接地电极的地面深度可达数米甚至几米, 可以降低总接地电阻。为了减少屏蔽, 深井接地电极最好放在接地网周围。

总之, 110k V变电站防雷设计在电力系中变电站有着非常重要的地位, 而雷击是影响变电站正常运行的重要的因素, 为了有效地降低雷击对变电站运行造成不良影响, 就必须在施工设计时, 根据不同雷击确定防雷设计方案, 同时在日常工作中增强对防雷设施的监控和维护, 从而尽可能的降低雷击对电网系统造成的不良影响, 提高电网运行的稳定性。

摘要:随着中国经济的飞速发展和人民生活水平的提高, 人们日常生活中的电力发挥着非常重要的作用。无论是在办公室还是在日常生活中, 我们都不开电。为确保电力正常使用, 110kV变电站必须保证安全可靠的运行。110kV变电站是电力系统的枢纽, 是交流中心, 是电源电压和电流的集中和分配, 自然现象的雷电可能导致110kV变电站设备造成很大破坏, 所以在工程设计过程中, 加强基础控制110kV变电站采矿措施, 有效保证电力系统的正常运行。对于日常生活和工作有着非常重要的作用, 希望本文的分析能为以后的具体工作起到实际的参考。

关键词:110kV变电站,防雷接地,设计

参考文献

[1] 黄嘉文.110kV变电站的防雷接地设计探讨[J].科技与创新, 2016, (11) :146+149.

110kv变电站典型设计范文第6篇

一、主接线设计

主接线在设计的过程中较为复杂, 虽然能够具有一定的可靠性, 但是因为接线方式的复杂反而容易出现故障问题, 一旦出现故障将会难以检测, 维护也较为困难。因此在保证供电可靠的情况下要尽量简化主接线的设计, 然后确定变压器的承载量, 根据电气的特点确定变电站的主接线形式, 最常用的主接线形式就是线路-变压器, 110kv的变电站电源进线选择T形进行接线[1]。选择这种接线方式是因为高压设备少、占地面积小、接线方式简单, 在出现电源失电时能够通过备用自投的方式转移负荷, 并在最短的时间内恢复电源。

二、主变压器选择

在安装主变压器之前, 需要先对整个变电站运行系统进行实地考察, 根据实际情况选择合适的变压器, 根据安装的面积以及运行结构的复杂程度选择变压器的安装数量。而确定安装数量时, 需要以总容量与占地面积作为考核的指标, 比如, 当变电站的用电量在某一阶段有较大的差距, 或着承载的符合很多, 应该安装两台以上的变压器, 如果变压器能够从低压侧电网中获取足够的电源, 将不需要太多的变压器, 只需要一台主变压器即可。但是大多数的情况下110kv的变电站需要安装两台甚至两台以上的变压器, 这样才能够保证变压器的正常运行, 安装两台以上是为了预防其中一台变压器发生故障后另一台变压器能够承载一定的负荷, 保证变电站的正常运行。

(一) 布置结构

110kv变电站的布线方式中, 高型的布置形式相比中型与半高型都较好, 布置形式各有特色, 高型布置需要对母线进行隔离。但是操作较为复杂, 抗震性能弱;中型布置成本较低, 抗震性能好, 维护难度小[2];半高型不适用于简单的变电站设计, 但是能够将装置的距离减小, 并且增加一部分的布线面积。一个完整的变电站系统需要有良好的防震功能, 如果变电站的负荷承重较大, 不能采用浅埋的方式, 需要采用12m长的管桩作为支撑, 防止建筑物沉降, 增加设备的使用寿命。

(二) 直流系统设计

为了给变电站的一次设计的设备进行供电, 需要在变电站内设置直流系统, 直流系统的设计需要采用单母线分段的形式进行接线, 并在每一个分段位置设立开关, 每一段的母线都要有蓄电池, 还要有一套充电的装置用于存储电池, 每套系统采取的供电方式都是混合型的, 需要设立相应的检测装置, 并根据供电方式的不同采取不同的检测形式, 比如110kv的变压器采取的是放射型的供电形式, 方式为双回路, 通过直流馈线屏获取电源;而10kv需要根据实际的情况对每一段母线进行双回路的设置。

三、110kv变压器和线路的保护

(一) 变压器误动的原因

1.电缆屏蔽层接地线不正确导致变压器误动

110kv变电站中馈线为10kv, 采用的是带有屏蔽层的点看, 并且电缆屏蔽层需要同时接地, 采用这种方式能够达到抗干扰的效果。10kv馈线一般采用的是穿心式[3], 穿过电缆安装在开关柜的出线处, 如果接地发生短路故障将会产生不平衡的电流。但是当电缆屏蔽层的两端接地之后, 感应电流会在零序TA感应到电流, 如果不立即进行处理将会直接影响到零序保护, 从而引起变压器的越级。

2.10kv馈线保护拒动

目前很多的电网系统大部分采用的都是微机型, 保护的性能得到了极大的提高, 但是移位型号较多, 产品的质量不一, 导致散热的功能出现一定的差异, 装置会时常发生故障, 根据110kv变电站保护故障进行分析, 电源插件、跳闸出口的插件最容易发生故障, 如果出现故障后没有及时处理, 将会出现拒动。

(二) 变压器保护的方法

(1) 防止电缆屏蔽层接地线不正确。电缆屏蔽层接地线的接线方式要正确, 必须自上而下穿过零序TA, 穿过零序TA时不能碰到地线, 需要与电缆支架绝缘, 电缆的屏蔽层需要留出头部与尾部, 用于升流使用, 其余的部分采用绝缘材料进行绝缘, 当接地线低于零序TA时, 不能直接穿过零序TA, 要特别注意接地线的引出点。同时要加强技术人员的专业技能的培训, 使每一位安装人员都要清除的掌握零序TA的安装方式, 特别是电缆专业的人员, 严格执行零序TA的安装方式, 正确安装电缆屏蔽层的接地线。验收管理要加强, 继电保护以及电缆安装等需要共同掌握零序TA的安装接地线的方法。 (2) 防止馈线开关拒动。在选择开关设备时需要慎重考虑性能, 综合考虑质量、可靠性、运行程度、故障率等情况, 对使用时间较长的开关设备及时更换, 对经常出现故障的设备进行维修, 要有步骤的逐渐淘汰开关柜, 更换为电动型或者弹簧型的开关柜, 对控制回路进行维护, 发现故障后立即进行处理, 采用性能良好的线圈方式烧坏, 解决线圈问题的作为开关配套设备的关键。

四、结束语

设计人员要遵守国家工程建设的相关制度, 考虑全局利益, 处理好安全与经济之间的关系, 考虑实际情况, 选择适合工程建设的标准, 利用科学化、现代化的技术与设备进行建设, 做到与时俱进。110kv变电站在日常生活以及工业中非常常见, 因此, 选择适合的变压器以及布线的方式, 在满足用户的用电需求的情况下保证供电的安全性与可靠性, 让变电站的设计逐渐变得更加完善。

摘要:在电力系统中, 电压的转换与分配都需要借助变电站完成, 变电站就是将不同的电网连接在一起, 并对电能进行控制与分流。而变电站一次设计直接影响整个电网的运行效率, 因此对110kv的变电站一次设计提出了更高的要求, 本文主要针对110kv的变电站进行一次设计, 并分析变压器以及线路的保护措施。

关键词:110kv变电站,一次设计,变压器,线路

参考文献

[1] 梁娟, LiangJuan.城郊110kV变电站主变压器及主线路设计[J].机械管理开发, 2015, 30 (10) :18-20.

[2] 何牧. 110kV变电站一次电气设计探析及其对变电站智能化的要求[J].科技与创新, 2016 (20) :143-143.

上一篇:中国共产党建党90周年范文下一篇:30mw光伏并网发电项目范文