热力学第二定律的例子范文

2023-09-23

热力学第二定律的例子范文第1篇

本节介绍热力学第二定律,该定律与热力学第一定律是构成热力学知识的理论基础,热力学第一定律对自然过程没有任何限制,只指 出在任何热力学过程中能量不会有任何增加或损失,热力学第二定律解决哪些过程可以发生,教学时要注意讲清二者的关系。

对于热力学第二定律,教材先从学生比较熟悉的热传导过程的方向性入手,研究与分子热运动有关的过程的方向性问题,以期引起学生思维的深化,也作为学习热力学第二定律的基础。

教材介绍了热力学第二定律的两种表述:一种是按照热传导过程的方向性表示,另一种是按照机械能与内能转化过程的方向性表述,这两种表述都表明:自然界中一切与热现象有关的实际宏观过程都是不可逆的,教学时,要注意说明这两种不同表述的内在联系,讲清这两种表述的物理实质。

第二类永动机是指设想中的效率达到100%的热机,由于在自然界中把热转化为功时,不可避免地把一部分热传递给低温的环境,所以第二类永动机不可能制成。

【设计思想】 1. 从实际问题导入,从简单的实验开始,尽可能引导学生联系自己熟悉的,身边的生活现象的实例,在教学内容上使物理贴近学生生活、联系社会实际,体现《标准》倡导的“从生活走向物理,从物理走向社会”的理念。

2. 积极创设情景,开展师生、生生间的对话交流,开展小组合作讨论学习,使教学过程能够确立学生在教学活动中的中心地位,让学生从自己的学习体验和感悟中获得知识,向学生学习活动要效益,体现以学生为中心的原则。

3.热力学第二定律不象以往的实验定律可以推导和验证,是在大量实验事实的基础上总结出来,内容的表述比较抽象和难以理解,教师要引导学生对关键词的作深刻地理解,要引导学生多运用实例来辅助理解。

4.夯实知识基础,灵活运用技能是三维教学目标中第一要素,本节课除了使用教材中“问题与练习”外,还设计了四道练习题,在教学过程中结合学生的学习状况灵活使用,帮助学生更好理解定律。《课后思考题》有助于学生更深刻地理解定律。

【教学目标】

一、 知识与技能

1.了解热传递过程的方向性。

2.知道热力学第二定律的两种不同的表述,以及这两种表述的物理实质。 3.知道什么是第二类永动机,为什么第二类永动机不可能制成。

二、 过程与方法

1.热力学第二定律的表述方式与其他物理定律的表述方式有一个显著不同,它是用否定语句表述的。

2.热力学第二定律的表述不只一种,对任何一类宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述,学习本节时注意这一方法。

三、 1. 情感、态度与价值观

通过学习热力学第二定律,可以使学生明白热机的效率不会达到100%,我们只能想办法尽量提高热机的效率,但不能渴求达到100%。

2. 生。

【重点、难点分析】:

重点:热力学第二定律两种常见的表述。

难点:1.热力学第二定律的开尔文表述。

2.自然界中进行的涉及热现象的宏观过程都具有方向性。 【课时安排】: 1课时 【课前准备】:

教师:多媒体课件,一个电冰箱模型,一盆凉水,准备一个酒精灯和一个铁块,铁钳。 学生:课前预习课文,在家观察自家的电冰箱。 【教学设计】:

引入新课:

【问题】我们在初中学过,当物体温度升高时,就要吸收热量;当物体温度降低时,就要放出热量。而自然界发生的一切过程中的能量都是守恒的,但不违背能量守恒定律的宏观过程并都能发

且热量公式Q = cm△t,这里有一个有趣的问题:地球上有大量的海水,它的总质量约为1.4×10t , 如果这些海水的温度降低0.1C,将要放出多少焦耳的热量?海水的比热容为C=4.2×10J/(kg·℃)。下面请大家计算一下。

学生计算:Q = 4.2×10×1.4×10×10×0.1 J = 5.8×10J 这相当于1800万个功率为100万千瓦的核电站一年的发电量。为什么人们不去研究这“新能源”呢?原来,这样做是不可能的,这涉及物理学的一个基本定律,这就是本节要讨论的热力学第二定律。

【设计意图】:从实际问题入手,唤起学生对学习的兴趣。从学生已有的热学知识出发引入新的知识,使过渡自然,减少学生对新知识的唐突性。

【板书】 第四节 热力学第二定律

【板书】

一、热传递的方向性

教师实验,点燃酒精灯,用钳夹住事先准备好的铁块,在火焰上灼烧一段时间后,问学生现在如果用手摸会出现什么现象?下面把灼热的铁块放入冷水中,过一段时间,拿出铁块现在你们敢用手摸吗?通过这个实验说明什么问题?

学生思考,教师给予启发

学生答:热量从温度高的物体自发地传给温度低的物体

再让学生列举一些这样的例子,例如:雪花落在手上就融化,挨着火炉就温暖等等。 利用课本中“思考与讨论”开展小组讨论并进行对话交流。

教师反问学生:有没有可能发生这样地现象,热量自发地从低温物体传给高温物体,使低温物体的温度越来越低,高温物体的温度越来越高。这里所说的“自发地”,指的是没有任何外界的影响或帮助。学生思考讨论一会后,有的同学可能产生疑问:电冰箱内部的温度比外部低,为什么致冷系统还能够不断地把冰箱内的热量传给外界的空气?

事前我们让大家观察自家的电冰箱,请同学做简要的回答,教师进行点拨。然后,展示电冰箱模型给学生简要讲解(多媒体课件)。

318

323o

3

18

这是因为电冰箱消耗了电能,对致冷系统做了功。一旦切断电源,电冰箱就不能把其内部的热量传给外界的空气了。相反,外界的热量会自发地传给电冰箱,使其温度逐渐升高。

【学生总结】热传导的方向性:两个温度不同的物体相互接触时,热量会自发地从高温物体传给低温物体。要实现相反过程,必须借助外界的帮助,因而产生其他影响或引起其他变化。

【板书】结论:热力学第二定律的一种表述:热量不能自发地从低温物体传到高温物体。这是热力学第二定律的克劳修斯表述。

老师讲解对定律的理解:这里阐述的是热传递的方向性.在这个表述中,“自发”二字指的是:当两个物体接触时,不需要任何第三者的介入、不会对任何第三者产生任何影响,热量就能从一个物体传向另一个物体.当两个温度不同的物体接触时,这个“自发”的方向是从高温物体指向低温物体的。

教师指出:热力学第二定律的克劳修斯表述实质上就是:热传递过程是不可逆的。 【设计意图】:

1. 联系学生熟悉的,身边的生活现象,使知识的学习贴近学生的生活,使学生感受物理知识就在身边,存在于生活,强化学生的实践意识,使情感成为学习动力。

2. 通过师生的对话交流,在互动中实现思维的碰撞,突出学生的学习过程,体现以学生为中心的原则,从自己的学习体验和感悟中获得知识,向学生学习活动要效益。

3. 热力学第二定律的克劳修斯表述中的“自发”是定律表述的关键词,教师要引导学生作深刻理解。 【板书】

二、热力学第二定律的另一种表述(第二类永动机)

前面我们学习了第一类永动机,不能制成的原因是什么?(违背了能量守恒),什么是第二类永动机呢? 分组合作学习,思考讨论下列问题: 1.热机是一种把什么能转化成什么能的装置? 2.热机的效率能否达到100%? 3.第二类永动机模型 4.机械能和内能转化的方向性

然后由各小组代表回答,教师进行思路点拨 1.热机是一种把内能转化成机械能的装置 2.热机的效率不能达到100% 原因分析:

以内燃机为例,气缸中的气体得到燃烧时产生的热量为Q1,推动活塞做工W,然后排出废气,同时把热量Q2散发到大气中,

由能量守恒定律可知:Q1 = W + Q2

我们把热机做的功W和它从热源吸收的热量Q1的比值叫做热机的效率,用η表示 η=W / Q1

实际上热机不能把得到的全部内能转化为机械能,热机必须有热源和冷凝器,热机工作时,总要向冷凝器散热,不可避免的要由工作物质带走一部分热量Q2,所以有:Q1>W 因此,热机的效率不可能达到100%,汽车上的汽油机械效率只有20%~30%,蒸汽轮机的效率比较高,也只能达到60%,即使是理想热机,没有摩擦,也没有漏气等能量损失,它也不可能把吸收的热量百分之百的转化成机械能,总要有一部分散发到冷凝器中。

师生总结:热力学第二定律的另一种表述: 【板书】不可能从单一热源吸收热量,使之完全变成功,而不产生其他影响。这是热力学第二定律的开尔文表述 (也称第二类永动机)。

教师应该强调定律内容“而不产生其他影响”这个条件,举出“绝热膨胀”的例子加以说明。 第二类永动机并不违反能量守恒定律,人们为了制造出第二类永动机作出了各种努力,但同制造第一类永动机一样,都失败了。

为什么第二类永动机不可能制成呢?

因为机械能和内能的转化过程具有方向性。机械能全部转化成内能,内能却不能全部转化为机械能,同时不引起其他变化。

再举实例,说明有些物理过程具有方向性。

〈学生思考回答,教师引导点拨〉 1.气体的扩散现象。

2.书上连通器的小实验(气体向其中膨胀)。 【板书】热力学第二定律的两种表述

表述一:不可能使热量由低温物体传递到高温物体,而不引起其他变化

(按照热传递的方向性来表述的)

表述二:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。也可表述为第二类永动机是不可能制成的。(机械能与内能转化具有方向性)

这两种表述是等价的,可以从一种表述导出另一种表述,所以他们都称为热力学第二定律。

热力学第二定律揭示了有大量分子参与的宏观过程的方向性。(自然界中进行的涉及热现象的宏观过程都具有方向性)。

因此,对任何一类宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述。如图中,盒子中间有一个挡板,左室为真空,右室有气体。撤去挡板后右室的气体自发地向左室扩散,而相反的过程不可能自发地进行。因此,热力学第二定律也可以表述为:气体向真空的自由彭胀是不可逆的。

【注意】 :不管如何表述,热力学第二定律的实质在于揭示了:一切与热现象有关的实际宏观过程都是不可逆的。

【本节小结】:回过头分析引入的例子,学生应用热力学第二定律分析,老师点拨总结。进一步说明第二类永动机不能制成的,违背热力学第二定律。

【设计意图】:

1.热力学第二定律的开尔文表述比较抽象和难以理解,需要学生通过合作学习,在讨论和交流中认识规律,再通过教师的点拨指导才能更好的理解和掌握规律。

2. 热力学第二定律是在大量实验事实的基础上总结出来的,教学过程要引导学生多运用实例来辅助理解。

热力学第二定律的例子范文第2篇

本节介绍热力学第二定律,该定律与热力学第一定律是构成热力学知识的理论基础,热力学第一定律对自然过程没有任何限制,只指 出在任何热力学过程中能量不会有任何增加或损失,热力学第二定律解决哪些过程可以发生,教学时要注意讲清二者的关系。

对于热力学第二定律,教材先从学生比较熟悉的热传导过程的方向性入手,研究与分子热运动有关的过程的方向性问题,以期引起学生思维的深化,也作为学习热力学第二定律的基础。

教材介绍了热力学第二定律的两种表述:一种是按照热传导过程的方向性表示,另一种是按照机械能与内能转化过程的方向性表述,这两种表述都表明:自然界中一切与热现象有关的实际宏观过程都是不可逆的,教学时,要注意说明这两种不同表述的内在联系,讲清这两种表述的物理实质。

第二类永动机是指设想中的效率达到100%的热机,由于在自然界中把热转化为功时,不可避免地把一部分热传递给低温的环境,所以第二类永动机不可能制成。

【设计思想】 1. 从实际问题导入,从简单的实验开始,尽可能引导学生联系自己熟悉的,身边的生活现象的实例,在教学内容上使物理贴近学生生活、联系社会实际,体现《标准》倡导的“从生活走向物理,从物理走向社会”的理念。

2. 积极创设情景,开展师生、生生间的对话交流,开展小组合作讨论学习,使教学过程能够确立学生在教学活动中的中心地位,让学生从自己的学习体验和感悟中获得知识,向学生学习活动要效益,体现以学生为中心的原则。

3.热力学第二定律不象以往的实验定律可以推导和验证,是在大量实验事实的基础上总结出来,内容的表述比较抽象和难以理解,教师要引导学生对关键词的作深刻地理解,要引导学生多运用实例来辅助理解。

4.夯实知识基础,灵活运用技能是三维教学目标中第一要素,本节课除了使用教材中“问题与练习”外,还设计了四道练习题,在教学过程中结合学生的学习状况灵活使用,帮助学生更好理解定律。《课后思考题》有助于学生更深刻地理解定律。

【教学目标】

一、 知识与技能

1.了解热传递过程的方向性。

2.知道热力学第二定律的两种不同的表述,以及这两种表述的物理实质。 3.知道什么是第二类永动机,为什么第二类永动机不可能制成。

二、 过程与方法

1.热力学第二定律的表述方式与其他物理定律的表述方式有一个显著不同,它是用否定语句表述的。

2.热力学第二定律的表述不只一种,对任何一类宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述,学习本节时注意这一方法。

三、 1. 情感、态度与价值观

通过学习热力学第二定律,可以使学生明白热机的效率不会达到100%,我们只能想办法尽量提高热机的效率,但不能渴求达到100%。

2. 生。

【重点、难点分析】:

重点:热力学第二定律两种常见的表述。

难点:1.热力学第二定律的开尔文表述。

2.自然界中进行的涉及热现象的宏观过程都具有方向性。 【课时安排】: 1课时 【课前准备】:

教师:多媒体课件,一个电冰箱模型,一盆凉水,准备一个酒精灯和一个铁块,铁钳。 学生:课前预习课文,在家观察自家的电冰箱。 【教学设计】:

引入新课:

【问题】我们在初中学过,当物体温度升高时,就要吸收热量;当物体温度降低时,就要放出热量。而自然界发生的一切过程中的能量都是守恒的,但不违背能量守恒定律的宏观过程并都能发

且热量公式Q = cm△t,这里有一个有趣的问题:地球上有大量的海水,它的总质量约为1.4×10t , 如果这些海水的温度降低0.1C,将要放出多少焦耳的热量?海水的比热容为C=4.2×10J/(kg·℃)。下面请大家计算一下。

学生计算:Q = 4.2×10×1.4×10×10×0.1 J = 5.8×10J 这相当于1800万个功率为100万千瓦的核电站一年的发电量。为什么人们不去研究这“新能源”呢?原来,这样做是不可能的,这涉及物理学的一个基本定律,这就是本节要讨论的热力学第二定律。

【设计意图】:从实际问题入手,唤起学生对学习的兴趣。从学生已有的热学知识出发引入新的知识,使过渡自然,减少学生对新知识的唐突性。

【板书】 第四节 热力学第二定律

【板书】

一、热传递的方向性

教师实验,点燃酒精灯,用钳夹住事先准备好的铁块,在火焰上灼烧一段时间后,问学生现在如果用手摸会出现什么现象?下面把灼热的铁块放入冷水中,过一段时间,拿出铁块现在你们敢用手摸吗?通过这个实验说明什么问题?

学生思考,教师给予启发

学生答:热量从温度高的物体自发地传给温度低的物体

再让学生列举一些这样的例子,例如:雪花落在手上就融化,挨着火炉就温暖等等。 利用课本中“思考与讨论”开展小组讨论并进行对话交流。

教师反问学生:有没有可能发生这样地现象,热量自发地从低温物体传给高温物体,使低温物体的温度越来越低,高温物体的温度越来越高。这里所说的“自发地”,指的是没有任何外界的影响或帮助。学生思考讨论一会后,有的同学可能产生疑问:电冰箱内部的温度比外部低,为什么致冷系统还能够不断地把冰箱内的热量传给外界的空气?

事前我们让大家观察自家的电冰箱,请同学做简要的回答,教师进行点拨。然后,展示电冰箱模型给学生简要讲解(多媒体课件)。

318

323o

3

18

这是因为电冰箱消耗了电能,对致冷系统做了功。一旦切断电源,电冰箱就不能把其内部的热量传给外界的空气了。相反,外界的热量会自发地传给电冰箱,使其温度逐渐升高。

【学生总结】热传导的方向性:两个温度不同的物体相互接触时,热量会自发地从高温物体传给低温物体。要实现相反过程,必须借助外界的帮助,因而产生其他影响或引起其他变化。

【板书】结论:热力学第二定律的一种表述:热量不能自发地从低温物体传到高温物体。这是热力学第二定律的克劳修斯表述。

老师讲解对定律的理解:这里阐述的是热传递的方向性.在这个表述中,“自发”二字指的是:当两个物体接触时,不需要任何第三者的介入、不会对任何第三者产生任何影响,热量就能从一个物体传向另一个物体.当两个温度不同的物体接触时,这个“自发”的方向是从高温物体指向低温物体的。

教师指出:热力学第二定律的克劳修斯表述实质上就是:热传递过程是不可逆的。 【设计意图】:

1. 联系学生熟悉的,身边的生活现象,使知识的学习贴近学生的生活,使学生感受物理知识就在身边,存在于生活,强化学生的实践意识,使情感成为学习动力。

2. 通过师生的对话交流,在互动中实现思维的碰撞,突出学生的学习过程,体现以学生为中心的原则,从自己的学习体验和感悟中获得知识,向学生学习活动要效益。

3. 热力学第二定律的克劳修斯表述中的“自发”是定律表述的关键词,教师要引导学生作深刻理解。 【板书】

二、热力学第二定律的另一种表述(第二类永动机)

前面我们学习了第一类永动机,不能制成的原因是什么?(违背了能量守恒),什么是第二类永动机呢? 分组合作学习,思考讨论下列问题: 1.热机是一种把什么能转化成什么能的装置? 2.热机的效率能否达到100%? 3.第二类永动机模型 4.机械能和内能转化的方向性

然后由各小组代表回答,教师进行思路点拨 1.热机是一种把内能转化成机械能的装置 2.热机的效率不能达到100% 原因分析:

以内燃机为例,气缸中的气体得到燃烧时产生的热量为Q1,推动活塞做工W,然后排出废气,同时把热量Q2散发到大气中,

由能量守恒定律可知:Q1 = W + Q2

我们把热机做的功W和它从热源吸收的热量Q1的比值叫做热机的效率,用η表示 η=W / Q1

实际上热机不能把得到的全部内能转化为机械能,热机必须有热源和冷凝器,热机工作时,总要向冷凝器散热,不可避免的要由工作物质带走一部分热量Q2,所以有:Q1>W 因此,热机的效率不可能达到100%,汽车上的汽油机械效率只有20%~30%,蒸汽轮机的效率比较高,也只能达到60%,即使是理想热机,没有摩擦,也没有漏气等能量损失,它也不可能把吸收的热量百分之百的转化成机械能,总要有一部分散发到冷凝器中。

师生总结:热力学第二定律的另一种表述: 【板书】不可能从单一热源吸收热量,使之完全变成功,而不产生其他影响。这是热力学第二定律的开尔文表述 (也称第二类永动机)。

教师应该强调定律内容“而不产生其他影响”这个条件,举出“绝热膨胀”的例子加以说明。 第二类永动机并不违反能量守恒定律,人们为了制造出第二类永动机作出了各种努力,但同制造第一类永动机一样,都失败了。

为什么第二类永动机不可能制成呢?

因为机械能和内能的转化过程具有方向性。机械能全部转化成内能,内能却不能全部转化为机械能,同时不引起其他变化。

再举实例,说明有些物理过程具有方向性。

〈学生思考回答,教师引导点拨〉 1.气体的扩散现象。

2.书上连通器的小实验(气体向其中膨胀)。 【板书】热力学第二定律的两种表述

表述一:不可能使热量由低温物体传递到高温物体,而不引起其他变化

(按照热传递的方向性来表述的)

表述二:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。也可表述为第二类永动机是不可能制成的。(机械能与内能转化具有方向性)

这两种表述是等价的,可以从一种表述导出另一种表述,所以他们都称为热力学第二定律。

热力学第二定律揭示了有大量分子参与的宏观过程的方向性。(自然界中进行的涉及热现象的宏观过程都具有方向性)。

因此,对任何一类宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述。如图中,盒子中间有一个挡板,左室为真空,右室有气体。撤去挡板后右室的气体自发地向左室扩散,而相反的过程不可能自发地进行。因此,热力学第二定律也可以表述为:气体向真空的自由彭胀是不可逆的。

【注意】 :不管如何表述,热力学第二定律的实质在于揭示了:一切与热现象有关的实际宏观过程都是不可逆的。

【本节小结】:回过头分析引入的例子,学生应用热力学第二定律分析,老师点拨总结。进一步说明第二类永动机不能制成的,违背热力学第二定律。

【设计意图】:

1.热力学第二定律的开尔文表述比较抽象和难以理解,需要学生通过合作学习,在讨论和交流中认识规律,再通过教师的点拨指导才能更好的理解和掌握规律。

2. 热力学第二定律是在大量实验事实的基础上总结出来的,教学过程要引导学生多运用实例来辅助理解。

热力学第二定律的例子范文第3篇

本节介绍热力学第二定律,该定律与热力学第一定律是构成热力学知识的理论基础,热力学第一定律对自然过程没有任何限制,只指 出在任何热力学过程中能量不会有任何增加或损失,热力学第二定律解决哪些过程可以发生,教学时要注意讲清二者的关系。

对于热力学第二定律,教材先从学生比较熟悉的热传导过程的方向性入手,研究与分子热运动有关的过程的方向性问题,以期引起学生思维的深化,也作为学习热力学第二定律的基础。

教材介绍了热力学第二定律的两种表述:一种是按照热传导过程的方向性表示,另一种是按照机械能与内能转化过程的方向性表述,这两种表述都表明:自然界中一切与热现象有关的实际宏观过程都是不可逆的,教学时,要注意说明这两种不同表述的内在联系,讲清这两种表述的物理实质。

第二类永动机是指设想中的效率达到100%的热机,由于在自然界中把热转化为功时,不可避免地把一部分热传递给低温的环境,所以第二类永动机不可能制成。

【设计思想】 1. 从实际问题导入,从简单的实验开始,尽可能引导学生联系自己熟悉的,身边的生活现象的实例,在教学内容上使物理贴近学生生活、联系社会实际,体现《标准》倡导的“从生活走向物理,从物理走向社会”的理念。

2. 积极创设情景,开展师生、生生间的对话交流,开展小组合作讨论学习,使教学过程能够确立学生在教学活动中的中心地位,让学生从自己的学习体验和感悟中获得知识,向学生学习活动要效益,体现以学生为中心的原则。

3.热力学第二定律不象以往的实验定律可以推导和验证,是在大量实验事实的基础上总结出来,内容的表述比较抽象和难以理解,教师要引导学生对关键词的作深刻地理解,要引导学生多运用实例来辅助理解。

4.夯实知识基础,灵活运用技能是三维教学目标中第一要素,本节课除了使用教材中“问题与练习”外,还设计了四道练习题,在教学过程中结合学生的学习状况灵活使用,帮助学生更好理解定律。《课后思考题》有助于学生更深刻地理解定律。

【教学目标】

一、 知识与技能

1.了解热传递过程的方向性。

2.知道热力学第二定律的两种不同的表述,以及这两种表述的物理实质。 3.知道什么是第二类永动机,为什么第二类永动机不可能制成。

二、 过程与方法

1.热力学第二定律的表述方式与其他物理定律的表述方式有一个显著不同,它是用否定语句表述的。

2.热力学第二定律的表述不只一种,对任何一类宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述,学习本节时注意这一方法。

三、 1. 情感、态度与价值观

通过学习热力学第二定律,可以使学生明白热机的效率不会达到100%,我们只能想办法尽量提高热机的效率,但不能渴求达到100%。

2. 生。

【重点、难点分析】:

重点:热力学第二定律两种常见的表述。

难点:1.热力学第二定律的开尔文表述。

2.自然界中进行的涉及热现象的宏观过程都具有方向性。 【课时安排】: 1课时 【课前准备】:

教师:多媒体课件,一个电冰箱模型,一盆凉水,准备一个酒精灯和一个铁块,铁钳。 学生:课前预习课文,在家观察自家的电冰箱。 【教学设计】:

引入新课:

【问题】我们在初中学过,当物体温度升高时,就要吸收热量;当物体温度降低时,就要放出热量。而自然界发生的一切过程中的能量都是守恒的,但不违背能量守恒定律的宏观过程并都能发

且热量公式Q = cm△t,这里有一个有趣的问题:地球上有大量的海水,它的总质量约为1.4×10t , 如果这些海水的温度降低0.1C,将要放出多少焦耳的热量?海水的比热容为C=4.2×10J/(kg·℃)。下面请大家计算一下。

学生计算:Q = 4.2×10×1.4×10×10×0.1 J = 5.8×10J 这相当于1800万个功率为100万千瓦的核电站一年的发电量。为什么人们不去研究这“新能源”呢?原来,这样做是不可能的,这涉及物理学的一个基本定律,这就是本节要讨论的热力学第二定律。

【设计意图】:从实际问题入手,唤起学生对学习的兴趣。从学生已有的热学知识出发引入新的知识,使过渡自然,减少学生对新知识的唐突性。

【板书】 第四节 热力学第二定律

【板书】

一、热传递的方向性

教师实验,点燃酒精灯,用钳夹住事先准备好的铁块,在火焰上灼烧一段时间后,问学生现在如果用手摸会出现什么现象?下面把灼热的铁块放入冷水中,过一段时间,拿出铁块现在你们敢用手摸吗?通过这个实验说明什么问题?

学生思考,教师给予启发

学生答:热量从温度高的物体自发地传给温度低的物体

再让学生列举一些这样的例子,例如:雪花落在手上就融化,挨着火炉就温暖等等。 利用课本中“思考与讨论”开展小组讨论并进行对话交流。

教师反问学生:有没有可能发生这样地现象,热量自发地从低温物体传给高温物体,使低温物体的温度越来越低,高温物体的温度越来越高。这里所说的“自发地”,指的是没有任何外界的影响或帮助。学生思考讨论一会后,有的同学可能产生疑问:电冰箱内部的温度比外部低,为什么致冷系统还能够不断地把冰箱内的热量传给外界的空气?

事前我们让大家观察自家的电冰箱,请同学做简要的回答,教师进行点拨。然后,展示电冰箱模型给学生简要讲解(多媒体课件)。

318

323o

3

18

这是因为电冰箱消耗了电能,对致冷系统做了功。一旦切断电源,电冰箱就不能把其内部的热量传给外界的空气了。相反,外界的热量会自发地传给电冰箱,使其温度逐渐升高。

【学生总结】热传导的方向性:两个温度不同的物体相互接触时,热量会自发地从高温物体传给低温物体。要实现相反过程,必须借助外界的帮助,因而产生其他影响或引起其他变化。

【板书】结论:热力学第二定律的一种表述:热量不能自发地从低温物体传到高温物体。这是热力学第二定律的克劳修斯表述。

老师讲解对定律的理解:这里阐述的是热传递的方向性.在这个表述中,“自发”二字指的是:当两个物体接触时,不需要任何第三者的介入、不会对任何第三者产生任何影响,热量就能从一个物体传向另一个物体.当两个温度不同的物体接触时,这个“自发”的方向是从高温物体指向低温物体的。

教师指出:热力学第二定律的克劳修斯表述实质上就是:热传递过程是不可逆的。 【设计意图】:

1. 联系学生熟悉的,身边的生活现象,使知识的学习贴近学生的生活,使学生感受物理知识就在身边,存在于生活,强化学生的实践意识,使情感成为学习动力。

2. 通过师生的对话交流,在互动中实现思维的碰撞,突出学生的学习过程,体现以学生为中心的原则,从自己的学习体验和感悟中获得知识,向学生学习活动要效益。

3. 热力学第二定律的克劳修斯表述中的“自发”是定律表述的关键词,教师要引导学生作深刻理解。 【板书】

二、热力学第二定律的另一种表述(第二类永动机)

前面我们学习了第一类永动机,不能制成的原因是什么?(违背了能量守恒),什么是第二类永动机呢? 分组合作学习,思考讨论下列问题: 1.热机是一种把什么能转化成什么能的装置? 2.热机的效率能否达到100%? 3.第二类永动机模型 4.机械能和内能转化的方向性

然后由各小组代表回答,教师进行思路点拨 1.热机是一种把内能转化成机械能的装置 2.热机的效率不能达到100% 原因分析:

以内燃机为例,气缸中的气体得到燃烧时产生的热量为Q1,推动活塞做工W,然后排出废气,同时把热量Q2散发到大气中,

由能量守恒定律可知:Q1 = W + Q2

我们把热机做的功W和它从热源吸收的热量Q1的比值叫做热机的效率,用η表示 η=W / Q1

实际上热机不能把得到的全部内能转化为机械能,热机必须有热源和冷凝器,热机工作时,总要向冷凝器散热,不可避免的要由工作物质带走一部分热量Q2,所以有:Q1>W 因此,热机的效率不可能达到100%,汽车上的汽油机械效率只有20%~30%,蒸汽轮机的效率比较高,也只能达到60%,即使是理想热机,没有摩擦,也没有漏气等能量损失,它也不可能把吸收的热量百分之百的转化成机械能,总要有一部分散发到冷凝器中。

师生总结:热力学第二定律的另一种表述: 【板书】不可能从单一热源吸收热量,使之完全变成功,而不产生其他影响。这是热力学第二定律的开尔文表述 (也称第二类永动机)。

教师应该强调定律内容“而不产生其他影响”这个条件,举出“绝热膨胀”的例子加以说明。 第二类永动机并不违反能量守恒定律,人们为了制造出第二类永动机作出了各种努力,但同制造第一类永动机一样,都失败了。

为什么第二类永动机不可能制成呢?

因为机械能和内能的转化过程具有方向性。机械能全部转化成内能,内能却不能全部转化为机械能,同时不引起其他变化。

再举实例,说明有些物理过程具有方向性。

〈学生思考回答,教师引导点拨〉 1.气体的扩散现象。

2.书上连通器的小实验(气体向其中膨胀)。 【板书】热力学第二定律的两种表述

表述一:不可能使热量由低温物体传递到高温物体,而不引起其他变化

(按照热传递的方向性来表述的)

表述二:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。也可表述为第二类永动机是不可能制成的。(机械能与内能转化具有方向性)

这两种表述是等价的,可以从一种表述导出另一种表述,所以他们都称为热力学第二定律。

热力学第二定律揭示了有大量分子参与的宏观过程的方向性。(自然界中进行的涉及热现象的宏观过程都具有方向性)。

因此,对任何一类宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述。如图中,盒子中间有一个挡板,左室为真空,右室有气体。撤去挡板后右室的气体自发地向左室扩散,而相反的过程不可能自发地进行。因此,热力学第二定律也可以表述为:气体向真空的自由彭胀是不可逆的。

【注意】 :不管如何表述,热力学第二定律的实质在于揭示了:一切与热现象有关的实际宏观过程都是不可逆的。

【本节小结】:回过头分析引入的例子,学生应用热力学第二定律分析,老师点拨总结。进一步说明第二类永动机不能制成的,违背热力学第二定律。

【设计意图】:

1.热力学第二定律的开尔文表述比较抽象和难以理解,需要学生通过合作学习,在讨论和交流中认识规律,再通过教师的点拨指导才能更好的理解和掌握规律。

2. 热力学第二定律是在大量实验事实的基础上总结出来的,教学过程要引导学生多运用实例来辅助理解。

热力学第二定律的例子范文第4篇

关键词:力学定律;独立性;一致性

力学是一门古老的学科,它的发展与人类生产实践密切相关,虽然微观客体遵从量子力学规律,描述物体高速运动则是用相对论力学,但是,对于日常生产和生活中的大多数力学现象,经典力学仍然是适用的。力学定律是构成力学体系的重要组成部分,它揭示了物体运动时的变化规律。研究和探讨力学定律的内在关系,对我们学习力学和指导力学教学有着积极的意义。

1 牛顿三定律及其独立性分析

1.1 牛顿第一定律的独立性

牛顿第一定律的内容是:任何物体都要保持匀速直线运动或静止状态,直到外力迫使它改变运动状态为止。牛顿第一定律是牛顿第二定律的基础,首先牛顿第一定律为牛顿第二定律准备了概念(力、惯性质量、惯性系),并定性阐明力和运动的关系;其次牛顿第一定律主要说明物体不受外力作用时的运动状态,不受外力作用和物体所受外力矢量和为零(合力为零)不是一码事,不能把牛顿第一定律当成牛顿第二定律在F=0时的特殊情况,F=0肯定导出加速度a=0,但加速度等于零的运动是什么运动,牛顿第二定律不能回答,还是得由牛顿第一定律本身彻底阐明惯性运动(静止或匀速直线运动)。

显然,牛顿第一定律确实是完全独立的基本定律,用其解决的问题,别的任何规律都无法解决,牛顿第二定律、牛顿第三定律根本不能取代牛顿第一定律。

1.2 牛顿第二定律的独立性

牛顿第二定律的内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。用公式表达是F=ma。牛顿第二定律定量阐明了力与运动的关系,具体说是力、惯性质量和加速度的定量关系。牛顿第二定律揭示了物体质量的惯性本质,质量是物体惯性大小的定量量度,物体的质量越大,物体的惯性就越大,物体的质量是维持物体惯性运动的根本原因;力是改变物体运动状态的原因,即产生加速度的原因,力的作用产生加速度大小的难易程度取决于物体的惯性、质量。牛顿第二定律进一步表明:相同力作用于不同物体上,质量大的物体获得的加速度小,质量小的物体获得的加速大,即加速度大小与质量成反比;不同力作用于同一物体上,大力产生大的加速度,即加速度大小与外力成正比。牛顿第二定律同时给出了力的独立作用原理(叠加原理),即当存在多个力共同作用于同一物体时,物体获得的加速度是每个力单独作用时产生的加速度的矢量和,这为解决复杂力作用产生的运动效果提供了保障,能实现已知受力情况求解全部运动信息;反之,也可以由运动分析决定受力总效果,也即复杂运动可以分解简单运动的矢量叠加。总之,牛顿第二定律引入惯性、质量和全面完整刻画物体因受力作用而产生加速度中,加速度与外力及质量的定量关系F=ma,构成了牛顿第二定律独立于其他两条定律的深刻内涵和根本原因。

1.3 牛顿第三定律的独立性

牛顿第三定律的内容:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。公式表达式为F=-F'。牛顿第三定律研究的是物体之间相互作用制约联系的机制,研究对象至少是两个物体,两个以上的物体之间的相互作用,总可以区分成若干两两相互作用的物体对,于是由仅关注单一物体(只研究一个物体)的牛顿第一定律和牛顿第二定律出发,结合牛顿第三定律扩展了研究对象,就自然而然地解决了全部不论多么复杂的系统的动力学问题了。牛顿第三定律确实是完全独立的基本规律,它不能由牛顿第二定律推演得出,牛顿第二定律也代替不了牛顿第三定律,牛顿第一定律更不能取代牛顿第三定律。牛顿第三定律的正确性要靠大量实践来检验,牛顿第三定律其实是用力的语言表达的动量守恒定律,而动量守恒定律是自然界中普遍成立的少量几条基本物理规律之一,动量守恒定律在任何物理领域中均成立。

2 牛顿运动三定律内在一致性

牛頓运动三定律的内在一致性是指三定律不互相矛盾,均承前启后,一条龙逻辑相容构成有机整体。具体表现为:

(1)牛顿运动三定律在研究对象上呈递进关系。牛顿第一定律、牛顿第二定律只研究单一物体,可以只有一个物体,也可以是从众多物体中隔离出一个物体来作为研究对象,它们要解决的是这么一个物体,不受力作用或受很多力作用后的运动问题——静止或匀速直线运动,又或者获得多大加速度;牛顿第三定律扩展了研究对象,它研究的至少是两个以上的物体之间的相互作用,这种相互作用制约或影响了研究对象或研究对象以外的其他物体的运动。可见只有把牛顿第一定律、牛顿第二定律和牛顿第三定律有机结合才能顺理成章地解决全部复杂的动力学问题。由质点的动力学出发去解决质点组的力学问题、刚体的力学问题、振动的波动的力学问题、流体的力学问题。

(2)牛顿运动三定律都只在牛顿第一定律确定的惯性参考系成立。牛顿绝对时空中的惯性系虽然存在逻辑循环或称逻辑同一之难,但在动力学的力的语言表达中惯性系是理论体系必不可少的,确定了惯性参考系一切动力学问题迎刃而解了。此外,任何科学都不可能做到绝对真理,力学也是一门近似程度比较高的科学,不受力的物体不存在,绝对静止的物体不存在,宇宙中的引力不可避免,都要说明绝对的惯性系不存在,但近似的惯性系是始终存在的。地球是近似惯性系,太阳是近似程度更高的惯性系。牛顿运动三定律只在惯性系中适用,说明了三定律的一致性。

牛顿运动三定律只适用范围于实物物体、宏观、低速运动范围内,并且只能在惯性参考系中使用。非惯性系(加速系)中必须引入惯性力,才能使用牛顿定律,高速领域必须采用爱因斯坦相对论,微观领域必须使用量子力学。

参考文献

[1]张汉军,李进普.牛顿三定律是一个完整的理论体系——《工程力学》教材问题之一[J].承德民族职业技术学院学报,2003(2):13-14.

[2]王兰芳,邓家干.重新认识牛顿力学[J].陕西工学院学报,2003(4):38-41.

[3]冯浩,杨洋.牛顿力学在物理学中的地位[J].张家口师专学报,2003(6):57-61.

热力学第二定律的例子范文第5篇

热力学四定律:通常是将热力学第一定律及第二定律视作热力学的基本定律,但有时增加能斯特定理当作第三定律,又有时将温度存在定律当作第零定律。一般将这四条热力学规律统称为热力学定律。热力学理论就是在这四条定律的基础建立起来的。 热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。这一结论称做“热力学第零定律”。 热力学第一定律:热力学的基本定律之一。是能的转化与守恒定律在热力学中的表现。它指出热是物质运动的一种形式,并表明,一个体系内能增加的量值△E(=E末-E初)等于这一体系所吸收的热量Q与外界对它所做的功之和,可表示为 △E=W+Q热力学第一定律也可表述为:第一类永动机是不可能制造的。

热力学第二定律:它的表述有很多种,但实际上都是互相等效的。比较有代表性的有如下三种表述方式:

不可能使热量从低温物体传到高温物体而不引起其它变化(克劳修斯)。不可能从单一热源吸取热量,使之完全变成有用功而不产生其它影响(开尔文)。不可能制造第二类永动机(普朗克)。以上三种说法(也包括其它表述法)所描述的一个事实是:一切与热现象有关的实际宏观过程都是不可逆的。

热力学第三定律:“不可能使一个物体冷却到绝对温度的零度。”这就是热力学第三定律。根据热力学第三定律,在下一切物质都停止运动。

热力学第二定律的例子范文第6篇

1.知识目标:

(1)理解和掌握物体跟外界做功和热传递的过程中W、Q、ΔU的物理意义。 (2)会确定的W、Q、ΔU正负号。 (3)理解热力学第一定律ΔU =W+Q (4)会用ΔU =W+Q分析和计算问题。

(4)理解能量守恒定律,能列举出能量守恒定律的实例; (5)理解“永动机”不能实现的原理。 2.能力目标:

在培养学生能力方面,这节课中要让学生理解热力学第一定律ΔU =W+Q,并会用ΔU =W+Q分析和计算问题,培养学生利用所学知识解决实际问题的能力。

3.物理学方法教育目标:

能量守恒定律是自然科学的基本定律之一,应用能量守恒的观点来分析物理现象、解决物理问题是很重要的物理思维方法。

二、重点、难点分析

1.重点内容是热力学第一定律和能量守恒定律,强调能量守恒定律是自然科学中最基本的定律。学会运用热力学第一定律和能量守恒定律分析、计算一些物理习题。

2.运用能的转化和守恒定律对具体的自然现象进行分析,说明能是怎样转化的,对学生来说是有难度的。

三、教学方法

教师讲解,课件演示,指导学生看书

四、教具

计算机、大屏幕、自制多媒体课件

五、教学过程 (-)引入新课

上节课我们学习了改变内能的两种方式,做功和热传递,那么它们之间有什么数量关系呢?以前我们还学习过电能、化学能等各种形式的能,它们在转化过程中遵守什么规律呢?这节课我们就来研究这些问题。

【板书】第六节

热力学第一定律

能量守恒定律

(二)进行新课

【板书】

一、做功W、热传递Q、内能变化ΔU的物理意义

1.做功:做功使物体内能发生变化,实质是能量的转化,是一种形式的能量向另一种形式的能转化。功是能量转化的量度。

2.热传递:是能量的转移,内能由一个物体传递给给另一个物体,传递的能量用Q表示。

3.内能的改变:是物体内所有分子动能和势能之和发生了变化,宏观表现在温度和体积上的变化。

【板书】

二、W、Q、ΔU正负号的确定

1.W,外界对物体做功,W取正值;物体对外界做功,W取负值。 2.Q,物体吸热,Q取正值;物体放热,Q取负值。

3,ΔU,物体内能增加,ΔU取正值;物体减少,ΔU取负值。 【板书】

三、W、Q、ΔU之间的关系

一个物体,如果它既没有吸收热量也没有放出热量,那么,外界对它做多少功,它的内能就增加多少.

一个物体,如果它既没有对外做功,也没有其他物体对它做功,那么,它从外界吸收多少热量,它的内能就增加多少.

如果外界既向物体传热又对物体做功,那么物体内能的增加量就等于物体吸收的热量和外界对物体做的功之和.用ΔU表示物体内能的增加量,用Q表示物体吸收的热量,用W表示外界对物体做的功,那么ΔU=Q+W

2 这个式子所表示的,内能的变化量跟功、热量的定量关系,在物理学中叫做热力学第一定律.

【例题】 一定量的气体从外界吸收了2.6×10J的热量,内能增加了4.2×10J.外界对气体做了多少功?

由(1)式得 W=ΔU-Q =4.2×10J-2.6×10J =1.6×10J 外界对气体做的功是1.6×10J. 思考与讨论

上题中,如果气体吸收的热量仍为2.6×10J,但是内能只增加了1.6×10J,计算结果W将为负值.怎样解释这个结果?一般地讲,ΔU、Q、W的正值和负值各代表什么物理意义?

【板书】

四、能量守恒定律

【课件演示】让学生先看几个能量转化的例子(增强感性认识) 1.机械能与内能转化过程中能量守恒

(1)运动的汽车紧急刹车,汽车最终停下来。这过程中汽车的动能(机械能)转化为轮胎和路面的内能(假定这过程没有与周围物体有热交换,既不散热也不吸热)。摩擦力做了多少功,内能就增加多少。公式W=ΔE表示了做功与内能变化的关系,这公式也反映出做功过程中,机械能的损失数量恰好等于物体内能增加的数量。

(2)把一铁块放入盛有水的烧杯中,用酒精灯加热烧杯内水,直至水沸腾。在这一过程中,铁块从周围水中吸收了热量使它温度升高,内能增加。这过程中水的一部分内能通过热量传递使铁块内能增加。铁块吸收多少热量,它内能就增加多少。公式Q=ΔE表示吸收的热量与内能变化量的关系,也反映出铁块增加的内能数量与水转移给铁块的内能数量相等。

5

555555

5一般情况下,如果物体跟外界同时发生做功和热传递过程,那么,外界对物体所做的功W加上物体从外界吸收的热量Q,等于物体内能的增加ΔE,即

W+Q=ΔE 上式所表示的是功、热量和内能之间变化的定量关系,同时它也反映了一个物体的内能增加量等于物体的机械能减少量和另外物体内能减少量(内能转移量)之和。进而说明,内能和机械能转化过程中能量是守恒的。

2.其他形式的能也可以和内能相互转化

(1)介绍其他形式能:我们学习过机械运动有机械能,热运动有内能,实际上自然界存在着许多不同形式的运动,每种运动都有一种对应的能量,如电能、磁能、光能、化学能、原子能等。

(2)不仅机械能和内能可以相互转化,其他形式能也可以和内能相互转化,举例说明:(同时放映幻灯片)

① 电炉取暖:电能→内能 ② 煤燃烧:化学能→内能 ③ 炽热灯灯丝发光:内能→光能

(3)其他形式的能彼此之间都可以相互转化。画出图表让学生回答分析:

3.能量守恒定律

大量事实证明:各种形式的能都可以相互转化,并且在转化过程中守恒。

4 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体;在转化和转移过程中其总量不变.这就是能量守恒定律。

在学习力学知识时,学习了机械能守恒定律。机械能守恒定律是有条件限制的定律,而且实际现象中是不可能实现的。而能量守恒定律是存在于普遍自然现象中的自然规律。这规律对物理学各个领域的研究,如力学、电学、热学、光学等都有指导意义。它也对化学、生物学等自然科学的研究都有指导作用。

4.永动机不可能制成

历史上不少人希望设计一种机器,这种机器不消耗任何能量,却可以源源不断地对外做功。这种机器被称为永动机。虽然很多人,进行了很多尝试和各种努力,但无一例外地以失败告终。失败的原因是设计者完全违背了能的转化和守恒定律,任何机器运行时其能量只能从一种形式转化为另一种形式。如果它对外做功必然消耗能量,不消耗能量就无法对外做功,因而永动机是永远不可能制造成功的。

5.运用能的转化和守恒定律进行物理计算

例题:用铁锤打击铁钉,设打击时有80%的机械能转化为内能,内能的50%用来使铁钉的温度升高。问打击20次后,铁钉的温度升高多少摄氏度?已知铁锤的质量为1.2kg,铁锤打击铁钉时的速度是10m/s,铁钉质量是40g,铁的比热是5.0×10J/(kg·℃)。

首先让学生分析铁锤打击铁钉的过程中能量的转化。

归纳学生回答结果,指出铁锤打击铁钉时,铁锤的一部分动能转化为内能,而且内能中的一半被铁钉吸收,使它的温度升高。如果用ΔE表示铁钉的内能增加量,铁锤和铁钉的质量分别用M和m表示,铁锤打击铁钉时的速度用v表示。依据能的转化和守恒定律,有

2 5 铁钉的内能增加量不能直接计算铁钉的温度,我们把机械能转化为内能的数量等效为以热传递方式完成的,因此等效为计算打击过程中铁钉吸收多少热量,这热量就是铁钉的内能增加量。因此有

Q=cmΔt 上式中c为铁钉的比热,Δt表示铁钉的温度升高量。将上面两个公式联立,20Mv280%50%24℃ 得出t2cm经计算得出铁钉温度升高24℃。在这个物理计算过程中突出体现了如何应用能的转化和守恒定律这一基本原理。

应该注意,有的同学把上述题目中铁锤打击铁钉过程中的能量转化,说成“铁锤做功转化为热量”是不正确的。只能说做功与热传递在使物体内能改变上是等效的。

(三)课堂小结

热力学第一定律表示的是功、热量和内能之间变化的定量关系;自然界各种形式的能存在着相互转化过程,转化过程中总量是守恒的。能量守恒定律是自然界最基本的物理定律。

同学们要会分析一些自然现象中能是怎样转化的。

应该知道,根据能量守恒定律,永动机是不可能制造成功的。

通过课上的例题计算,学会运用能的转化和守恒定律解决物理问题的方法。

(四)说明

热力学第一定律和能量守恒定律是学生进入高中物理阶段后,第一次完整、细致地学习。此定律对今后学习物理是很重要的一个理论铺垫。教学上要重视,课堂上讲解要细致和透彻。

(五)布置作业

复习本节内容,完成练习六。

6

课后思考与讨论

有人设计了这样一台“永动机”:距地面一定高度架设一个水槽,水从槽底的管中流出,冲击一个水轮机,水轮机的轴上安装一个抽水机和一个砂轮.他指望抽水机把地面水槽里的水抽上去,这样循环不已,机器不停地转动,就可以永久地用砂轮磨制工件做功了(下图).

请你分析一下,高处水槽中水的势能共转变成哪几种形式的能,说明这个机器是否能够永远运动下去. 阅读材料

高空的气温为什么低

研究大气现象时常常用到热力学第一定律.通常把温度、压强相同的一部分空气作为研究的对象,叫做气团,直径上千米.由于气团很大,边缘部分和外界的热交换对整个气团没有明显的影响,即(1)式中Q=0,所以气团的内能的增减只等于外界对它做功或它对外界做功的多少:

ΔU=W 阳光烤暖了大地,地面又使得下层的气团温度升高,密度减小,因而上升.上升时气团膨胀,推挤周围的空气,对外做功,因此内能减小,温度降低.所以,越 7 高的地方,空气的温度越低.对于干燥的空气,大约每升高1km温度降低7℃(图10-13).

上一篇:如何做好生产管理工作范文下一篇:导师见面会学生发言稿范文