激光加工原理特点

2024-05-08

激光加工原理特点(精选5篇)

激光加工原理特点 第1篇

激光是最重大的发明之一, 具有巨大的技术潜力。它具有强度高、方向性好、单色性好的特点, 因此特别适合进行材料加工。激光加工是激光应用最有发展前途的领域, 国外已开发出20多种激光加工技术。从早期功率小、多用于打小孔和微型焊接到现在的大功率二氧化碳激光器和高重复频率钇铝石榴石激光器, 激光加工技术有了很大进展。激光的空间控制性和时间控制性很好, 能够自由地对加工对象的材质、形状、尺寸和加工环境进行控制, 特别适用于自动化加工。激光加工系统与计算机数控技术相结合可构成高效自动化加工设备, 已成为企业实行适时生产的关键技术, 为优质、高效和低成本的加工生产开辟了广阔的前景。

1 激光加工的原理

1.1 激光的特性

激光是一种光, 它具有一般光的共性 (折射、反射、干涉等) 。由于激光发射是受激辐射为主, 因而发光物质中基本上是有组织地、相互关联地产生光发射的, 发出的光波具有相同的频率、方向、偏振态和严格的位相关系, 所以激光拥有强度高、单向性好、相干性好和方向性好这些特性[1]。

1.2 激光加工的原理

由于激光的发散角小和单色性好, 理论上可以聚焦到尺寸与光的波长相近的小斑点上, 再加上其强度高, 因此其加工的功率密度可达到108~1010W/cm2, 温度可达1万摄氏度以上。在这样的高温下, 任何材料都将瞬时急剧熔化和汽化, 并爆炸性地高速喷射出来, 同时产生方向性很强的冲击。因此, 激光加工是工件在光热效应下产生高温熔融和受冲击波抛出的综合过程。

1.3 激光加工的设备及加工流程

激光加工的基本设备包括激光器、电源、光学系统及机械系统等四大部分。目前常用的激光器按激活介质的种类可以分为固体激光器和气体激光器, 如图1、图2所示。

激光加工过程大体上可分为如下几个阶段:

1) 将激光束照射工件 (在照射过程中, 光的辐射能部分被反射, 部分被吸收, 部分因热传导而损失) ;

2) 工件材料吸收光能;

3) 光能转变成热能使工件材料无损加热 (激光射到工件材料的深度很小, 所以在焦点的中央, 工件的表面温度迅速升高) ;

4) 工件材料发生熔化、蒸发、汽化并溅出, 从而从工件上去除或破坏掉;

5) 作用结束以及加工区冷凝。

1.4 激光加工的特点

1) 激光加工的光斑大小可以聚焦到很小, 甚至微米级, 而且输出功率可进行调节, 因此适用于进行精密精细加工;

2) 激光加工为非接触加工, 无机械力作用于工件上, 所以对工件不会产生损伤, 也不会产生工具的损耗问题;

3) 激光加工的速度快, 热影响区小, 容易实现加工过程的自动化;

4) 激光加工设备装置简单;

5) 激光加工可以通过透明介质对密闭容器内的工件进行加工。

2 激光加工的应用现状

由于激光加工有其它加工工艺无法比拟的优点, 因此它被广泛应用于很多行业进行材料加工、零件制造等, 例如激光快速成形技术、激光切割技术、激光打孔技术、激光焊接技术、激光打标技术、激光熔覆技术、激光近形 (LENS) 制造技术、激光划线技术、激光热处理和表面处理技术等。

2.1 激光快速成形技术

激光快速成形技术是根据零件的CAD模型, , 用激光束将光敏聚合材料逐层固化, 精确堆积成样件, 不需要模具和刀具即可快速精确地制造形状复杂的零件, 如图3所示。该技术已在航空航天、电子、汽车等工业领域得到广泛应用。美国、日本、德国已相继开发出多种快速成型技术, 如液体光敏树脂固化、熔融沉积成型、实体叠层制造、分层固化、选择性激光烧结、3D喷射印刷等技术[2]。

2.2 激光切割技术

激光切割技术是采用重复频率较高的脉冲激光器或连续输出的激光器, 将材料置于激光热源的照射下, 引起照射点材料温度急剧上升从而熔化、汽化被切材料。通过工件与激光束的相对移动, 同时用平行光轴的强气流吹走熔化或汽化了的材料, 形成光滑的切缝, 如图4所示。它既可以切割金属, 也可以切割非金属;既可以切割无机物, 也可以切割有机物。

2.3 激光打孔技术

激光打孔技术与激光切割技术基本原理相同, 都是使材料在激光热源照射下产生一系列热物理现象。利用激光几乎可以在任何材料上打出微小的孔, 如图5所示。目前, 激光打孔技术已应用于火箭发动机和柴油机的燃料喷嘴加工、钟表及仪表中的宝石轴承打孔等方面。在国外, 激光精密打孔已经达到很高的水平。瑞士某公司利用固体激光器给飞机涡轮叶片进行打孔, 可以加工直径从20μm到80μm的微孔, 并且其直径与深度之比可达1:80。激光束还可以在脆性材料如陶瓷上加工各种微小的异型孔如盲孔、方孔等[3]。

2.4 激光焊接技术

激光焊接是将聚焦后的高强度激光直接辐射至材料表面, 材料吸收的光能通过热传导向内部扩散, 使工件达到一定的熔池深度实现焊接, 如图6所示。激光焊接主要优点是能焊接多种金属, 焊接部位狭小, 深腔焊接不变形, 焊池周边无凹陷现象, 能补焊极硬钢板材料, 焊接不击穿薄板材料, 焊接工艺高超, 焊缝整齐美观。国外利用固体YAG激光器进行缝焊和点焊, 已有很高的水平。在激光焊接方面, 世界领先的国家有德国、瑞士、美国和日本[4]。目前, 高强铝合金激光焊接成果已经成功应用于空客飞机制造中。

2.5 激光打标技术

激光打标是在机械设备或产品上用激光器打上特殊标记和符号, 如图7所示。该技术在激光技术应用中占据最重要位置之一。其应用非常广泛[5], 目前已应用于电子工业、汽车工业、工具量具、航空航天、仪器仪表、包装工业、医疗产品、家用电器、键盘、面板、广告标牌、证件卡片、日常用品和珠宝钻石等领域。标记的材料是各类金属和非金属, 如不锈钢、铝合金、有机玻璃、塑料、陶瓷、合成材料、木材、橡胶、皮革制品、纸制品、印刷电路板、多种电子电器元件、香烟、钮扣、雷管、金属零件以及食品包装、药品包装等。

2.6 激光熔覆技术

激光熔覆技术是一种重要的材料表面改性技术, 亦被称为激光镀覆或激光表面硬化。它是以高能密度的激光为热源在基材表面熔覆一层熔覆材料, 使之与基材实现冶金结合, 在基材表面形成与基材具有完全不同成分和性能的合金层的表面改性方法。主要应用[6]诸如模具和汽轮机发动机零部件等的修复, 如图8所示。

2.7 激光近形 (LENS) 制造技术

激光近形制造是基于局域送粉的金属零件快速制造方法, 它是在激光涂覆技术的基础上发展起来的。在航空领域, 它可用于钛合金结构件的直接制造和制作大型带加强筋的整体薄壁结构零件[7], 还可用于大型金属零件的修复, 如汽轮机叶片的修复等, 如图9所示。目前, 该技术已经成为美国航空航天国防武器装备大型钛合金结构件的核心制造新技术之一。

2.8 激光划线技术

激光划线技术是生产集成电路的关键技术, 其划线细、精度高、加工速度快、成品率高。例如[8], 它能开出狭窄的切口, 几乎没有残渣, 热影响区小, 噪声小, 并可以节省15%~30%的材料。

2.9 激光热处理和表面处理技术

激光热处理和表面处理技术是利用高功率密度的激光束对金属进行表面处理的方法, 如图10所示。它可以对金属实现相变硬化、表面合金化等表面改性处理, 产生用其大表面淬火达不到的表面成分、组织、性能的改变。经激光处理后, 铸铁表面硬度可以达到HRC60度以上, 中碳及高碳的碳钢, 表面硬度可达HRC70度以上, 从而提高起抗磨性, 抗疲劳, 耐腐蚀, 抗氧化等性能, 延长其使用寿命。

2.1 0 激光雷达技术

激光雷达用激光器作为发射光源, 采用光电探测技术手段的主动遥感设备。它由发射系统、接收系统、信息处理等部分组成, 是激光技术与现代光电探测技术结合的先进探测方式。它具有高角分辨率、高速度分辨率、高距离分辨率、强抗干扰能力和良好的隐蔽性等优点, 在很多领域, 尤其是在军事领域、大气环境监测领域中得到了广泛的应用[9]。

2.1 1 激光全息照相技术

激光全息照相技术是利用激光的相干性原理, 将物体对光的振幅和位相反射 (或透射) 情况同时记录在感光板上, 形成三维空间的立体图像。其工作原理如图11所示[10]。

激光全息照相技术能够将物体表面发出的全部信息记录下来, 并能完全再现被摄物体光波的全部信息, 因此, 该技术在生产实践和科学研究领域中有着广泛的应用。

3 激光加工技术的展望

随着资源储量的日益减少, 本着可持续发展的思想, 激光加工技术作为新时代的新型加工工艺, 对提高产品质量、劳动生产率、自动化生产、“绿色制造”、减少材料损耗等方面起着越来越重要的作用[11]。同时, 随着科学技术的发展, 激光加工技术也得到了其它高新技术的有力支撑。激光产品必然有着非常广阔的前景[12]。

目前我国的激光加工技术与国外仍存在着一定的差距, 尤其体现在激光加工系统的核心部件品种少、技术落后、可靠性差, 对加工技术的研究少, 对精细加工技术的研究更为薄弱, 对紫外波激光进行加工的研究进行的极少, 激光加工设备的可靠性、安全性、可维修性、配套性较差, 难以满足工业生产的需要。而且许多有市场前景的成果停留在实验室的样机阶段。因此我们在保持对现有技术的持续改进的基础上, 还应顺应时代发展要求, 积极探索、开发更多具有实用价值的激光加工技术, 将研发中的激光技术转化为实用的加工技术, 拓宽激光加工的领域, 在电子、汽车、钢铁、石油、造船、航空等传统工业领域内进行激光技术的改造, 为信息、材料、生物、能源、空间、海洋等六大高科技领域提供崭新的激光设备和仪器。如此, 必能推动我国电子、机械制造业等的水平迈上一个新的台阶。

4 结论

激光加工技术是对传统加工技术的一次革命, 是国家生产力的进步。它对传统加工技术和新兴产业的发展, 对国民经济的发展起着巨大的推动作用。只要我们将已经成熟的激光技术转化为生产力, 加快技术改进, 提高光束质量与加工精度, 结合材料的加工工艺研究, 尽可能地占领激光精密加工市场, 就可以推动激光加工技术的迅速发展, 并最终会使激光加工形成较大的规模产业。

参考文献

[1]刘晋春, 白基成, 郭永丰.特种加工.5版[M].北京:机械工业出版社, 2008.

[2]张永忠, 石力开, 章萍芝, 徐骏.基于金属粉末的激光快速成型技术新进展[J].稀有金属材料与工程, 2000, 29 (6) :361.

[3]李祥友, 曾晓雁, 黄维玲.激光精密加工技术的现状和展望[J].激光杂志, 2000, 21 (5) :2.

[4]王家淳.激光焊接技术的发展与展望[J].激光技术, 2001, 25 (1) :48-54.

[5]邓树森.国激光加工产业现状及市场展望[J].激光技术与应用, 2007, 2 (2) :20.

[6]陈苗海.国内外激光加工产业和市场发展概况[J].激光技术与应用, 2004, 9:10.

[7]邓琦林.致密金属零件的激光近形制造[J].特种加工, 2000, 36 (1) :27.

[8]林树忠, 孙会来.激光加工技术的应用及发展[J].河北工业大学学报, 2004, 33 (2) :80.

[9]陈利, 贾友, 张尔严.激光雷达技术及其应用[J].河南理工大学学报, 2009, 28 (5) :583.

[10]杨帆, 杨宁.激光全息照相技术及其应用前景[J].中州大学学报, 2008, 25 (2) :106.

[11]邱星武.激光技术在材料加工领域的发展及应用[J].稀有金属与硬质合金, 2010, 38 (1) :60.

激光原理答案 第2篇

为了使氦氖激光器的相干长度达到1KM,它的单色性应为多少?

解答:设相干时间为,则相干长度为光速与相干时间的乘积,即

根据相干时间和谱线宽度的关系

又因为,由以上各关系及数据可以得到如下形式:

单色性===

解答完毕。

如果激光器和微波激射器分别在10μm、500nm和输出1瓦连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是多少。

解答:功率是单位时间内输出的能量,因此,我们设在dt时间内输出的能量为dE,则

功率=dE/dt

激光或微波激射器输出的能量就是电磁波与普朗克常数的乘积,即

d,其中n为dt时间内输出的光子数目,这些光子数就等于腔内处在高能级的激发粒子在dt时间辐射跃迁到低能级的数目(能级间的频率为ν)。

由以上分析可以得到如下的形式:

每秒钟发射的光子数目为:N=n/dt,带入上式,得到:

根据题中给出的数据可知:

把三个数据带入,得到如下结果:,3

设一对激光能级为E1和E2(f1=f2),相应的频率为ν(波长为λ),能级上的粒子数密度分别为n2和n1,求

(a)当ν=3000兆赫兹,T=300K的时候,n2/n1=?

(b)当λ=1μm,T=300K的时候,n2/n1=?

(c)当λ=1μm,n2/n1=0.1时,温度T=?

解答:在热平衡下,能级的粒子数按波尔兹曼统计分布,即:

(统计权重)

其中为波尔兹曼常数,T为热力学温度。

(a)

(b)

(c)

在红宝石调Q激光器中,有可能将几乎全部离子激发到激光上能级并产生激光巨脉冲。设红宝石棒直径为1cm,长度为7.5cm,离子浓度为,巨脉冲宽度为10ns,求激光的最大能量输出和脉冲功率。

解答:红宝石调Q激光器在反转能级间可产生两个频率的受激跃迁,这两个跃迁几率分别是47%和53%,其中几率占53%的跃迁在竞争中可以形成694.3nm的激光,因此,我们可以把激发到高能级上的粒子数看成是整个激发到高能级的粒子数的一半(事实上红宝石激光器只有一半的激发粒子对激光有贡献)。

设红宝石棒长为L,直径为d,体积为V,总数为N,粒子的浓度为n,巨脉冲的时间宽度为,则离子总数为:

根据前面分析部分,只有N/2个粒子能发射激光,因此,整个发出的脉冲能量为:

脉冲功率是单位时间内输出的能量,即

解答完毕。

试证明,由于自发辐射,原子在能级的平均寿命为。

证明如下:根据自发辐射的定义可以知道,高能级上单位时间粒子数减少的量,等于低能级在单位时间内粒子数的增加。即:

---------------①

(其中等式左边表示单位时间内高能级上粒子数的变化,高能级粒子数随时间减少。右边的表示低能级上单位时间内接纳的从高能级上自发辐射下来的粒子数。)

再根据自发辐射跃迁几率公式:,把代入①式,得到:

对时间进行积分,得到:

(其中随时间变化,为开始时候的高能级具有的粒子数。)

按照能级寿命的定义,当时,定义能量减少到这个程度的时间为能级寿命,用字母表示。

因此,即:

证明完毕

某一分子的能级E4到三个较低能级E1

E2

和E3的自发跃迁几率分别为A43=5*107s-1,A42=1*107s-1,A41=3*107s-1,试求该分子E4能级的自发辐射寿命τ4。若τ1=5*10-7s,τ2=6*10-9s,τ3=1*10-8s,在对E4连续激发且达到稳态时,试求相应能级上的粒子数比值n1/n4,n2/n4和n3/n4,并说明这时候在哪两个能级间实现了集居数

解:

(1)由题意可知E4上的粒子向低能级自发跃迁几率A4为:

则该分子E4能级的自发辐射寿命:

结论:如果能级u发生跃迁的下能级不止1条,能级u向其中第i条自发跃迁的几率为Aui

则能级u的自发辐射寿命为:

(2)对E4连续激发并达到稳态,则有:,(上述三个等式的物理意义是:在只考虑高能级自发辐射和E1能级只与E4能级间有受激吸收过程,见图)

宏观上表现为各能级的粒子数没有变化

由题意可得:,则

同理:,进一步可求得:,由以上可知:在E2和E4;E3和E4;E2和E3能级间发生了粒子数反转.7

证明,当每个模式内的平均光子数(光子简并度)大于1时,辐射光中受激辐射占优势。

证明如下:按照普朗克黑体辐射公式,在热平衡条件下,能量平均分配到每一个可以存在的模上,即

(为频率为γ的模式内的平均光子数)

由上式可以得到:

又根据黑体辐射公式:

根据爱因斯坦辐射系数之间的关系式和受激辐射跃迁几率公式,则可以推导出以下公式:

如果模内的平均光子数()大于1,即,则受激辐射跃迁几率大于自发辐射跃迁几率,即辐射光中受激辐射占优势。证明完毕

一质地均匀的材料对光的吸收系数为,光通过10cm长的该材料后,出射光强为入射光强的百分之几?

如果一束光通过长度为1M地均匀激励的工作物质,如果出射光强是入射光强的两倍,试求该物质的增益系数。

解答:设进入材料前的光强为,经过距离后的光强为,根据损耗系数的定义,可以得到:

则出射光强与入射光强的百分比为:

根据小信号增益系数的概念:,在小信号增益的情况下,上式可通过积分得到

解答完毕。

《激光原理》习题解答第二章习题解答

试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限次,而且两次往返即自行闭合.证明如下:(共焦腔的定义——两个反射镜的焦点重合的共轴球面腔为共焦腔。共焦腔分为实共焦腔和虚共焦腔。公共焦点在腔内的共

焦腔是实共焦腔,反之是虚共焦腔。两个反射镜曲率相等的共焦腔称为对称共焦腔,可以证明,对称共焦腔是实双凹腔。)

根据以上一系列定义,我们取具对称共焦腔为例来证明。

设两个凹镜的曲率半径分别是和,腔长为,根据对称共焦腔特点可知:

因此,一次往返转换矩阵为

把条件带入到转换矩阵T,得到:

共轴球面腔的稳定判别式子

如果或者,则谐振腔是临界腔,是否是稳定腔要根据情况来定。本题中,因此可以断定是介稳腔(临界腔),下面证明对称共焦腔在近轴光线条件下属于稳定腔。

经过两个往返的转换矩阵式,坐标转换公式为:

其中等式左边的坐标和角度为经过两次往返后的坐标,通过上边的式子可以看出,光线经过两次往返后回到光线的出发点,即形成了封闭,因此得到近轴光线经过两次往返形成闭合,对称共焦腔是稳定腔。

试求平凹、双凹、凹凸共轴球面腔的稳定条件。

解答如下:共轴球面腔的,如果满足,则腔是稳定腔,反之为非稳腔,两者之间存在临界腔,临界腔是否是稳定腔,要具体分析。

下面我们就根据以上的内容来分别求稳定条件。

对于平凹共轴球面腔,()

所以,如果,则是稳定腔。因为和均大于零,所以不等式的后半部分一定成立,因此,只要满足,就能满足稳定腔的条件,因此,就是平凹腔的稳定条件。

类似的分析可以知道,凸凹腔的稳定条件是:,且。

双凹腔的稳定条件是:,(第一种情况),且(第二种情况)

(对称双凹腔)

求解完毕。

激光腔的谐振腔由一曲率半径为1M的凸和曲率半径为2M的凹面镜构成,工作物质长度为0.5M,其折射率为1.52,求腔长在什么范围内谐振腔是稳定的。

解答如下:设腔长为,腔的光学长度为,已知,,,根据,代入已知的凸凹镜的曲率半径,得到:

因为含有工作物质,已经不是无源腔,因此,这里L应该是光程的大小(或者说是利用光线在均匀介质里传播矩阵)。

即,代入上式,得到:

要达到稳定腔的条件,必须是,按照这个条件,得到腔的几何长度为:,单位是米。解答完毕。

有一方形孔径共焦腔氦氖激光器,腔长L=30CM,方形孔径边长为d=2a=0.12CM,λ=632.8nm,镜的反射率为r1=1,r2=0.96,其他损耗以每程0.003估计。此激光器能否做单模运转?如果想在共焦镜面附近加一个方形小孔光阑来选择TEM00模,小孔的边长应为多大?试根据图2.5.5作一大略的估计。氦氖激光器增益由公式估算,其中的l是放电管长度。

分析:如果其他损耗包括了衍射损耗,则只考虑反射损耗及其他损耗的和是否小于激光器的增益系数,增益大于损耗,则可产生激光振荡。

如果其他损耗不包括衍射损耗,并且菲涅尔数小于一,则还要考虑衍射损耗,衍射损耗的大小可以根据书中的公式δ00=10.9*10-4.94N来确定,其中的N是菲涅尔数。

解答:根据,可以知道单程增益g0L=ln(1+0.0003L/d)=0.0723

由于反射不完全引起的损耗可以用公式2.1.24或者2.1.25来衡量

根据2.1.24得到:

δr≈-0.5lnr1r2=0.0204

根据题意,总的损耗为反射损+其他损耗,因此单程总损耗系数为

δ=0.0204+0.0003

如果考虑到衍射损耗,则还要根据菲涅尔数来确定衍射损系数:

此方形共焦腔氦氖激光器的菲涅尔数为:N=a2/(Lλ)=7.6,菲涅尔数大于一很多倍,因此可以不考虑衍射损耗的影响。

通过以上分析可以断定,此谐振腔可以产生激光振荡。又根据氦氖激光器的多普勒展宽达到1.6GHZ,而纵模及横模间隔根据计算可知很小,在一个大的展宽范围内可以后很多具有不同模式的光波振荡,因此不采取技术措施不可能得到基模振荡。

为了得到基模振荡,可以在腔内加入光阑,达到基模振荡的作用。在腔镜上,基模光斑半径为:

因此,可以在镜面上放置边长为2ω0s的光阑。

解答完毕。

试求出方形镜共焦腔面上模的节线位置,这些节线是等距分布吗?

解答如下:

方形镜共焦腔自再现模满足的积分方程式为

经过博伊德—戈登变换,在通过厄密-高斯近似,可以用厄密-高斯函数表示镜面上场的函数

使就可以求出节线的位置。由上式得到:,这些节线是等距的。解答完毕。

求圆形镜共焦腔和模在镜面上光斑的节线位置。

解答如下:圆形镜共焦腔场函数在拉盖尔—高斯近似下,可以写成如下的形式

(这个场对应于,两个三角函数因子可以任意选择,但是当m为零时,只能选余弦,否则整个式子将为零)

对于:

并且,代入上式,得到,我们取余弦项,根据题中所要求的结果,我们取,就能求出镜面上节线的位置。既

对于,可以做类似的分析。,代入上式并使光波场为零,得到

显然,只要即满足上式

最后镜面上节线圆的半径分别为:

解答完毕。

今有一球面腔,两个曲率半径分别是R1=1.5M,R2=-1M,L=80CM,试证明该腔是稳定腔,求出它的等价共焦腔的参数,在图中画出等价共焦腔的具体位置。

解:共轴球面腔稳定判别的公式是,这个公式具有普适性(教材36页中间文字部分),对于简单共轴球面腔,可以利用上边式子的变换形式判断稳定性,其中。

题中,在稳定腔的判别范围内,所以是稳定腔。

任意一个共焦腔与无穷多个稳定球面腔等价,一个一般稳定球面腔唯一对应一个共焦腔,他们的行波场是相同的。

等价共焦腔的参数包括:以等价共焦腔的腔中心为坐标原点,从坐标原点到一般稳定球面两个腔镜面的坐标和,再加上它的共焦腔的镜面焦距,这三个参数就能完全确定等价共焦腔。

根据公式(激光原理p66-2.8.4)得到:

因此

等价共焦腔示意图略。

某二氧化碳激光器采用平-凹腔,L=50CM,R=2M,2a=1CM,波长λ=10.6μm,试计算镜面上的光斑半径、束腰半径及两个镜面上的损耗。

解:此二氧化碳激光器是稳定腔,其中平面镜的曲率半径可以看作是无穷大。

根据公式(激光原理p67-2.8.6或2.8.7)得到:

其中第一个腰斑半径对应平面镜。上式中是这个平凹腔的等价共焦腔镜面上的腰斑半径,并且根据一般稳定球面腔与等价共焦腔的性质,他们具有同一个束腰。

根据共焦腔束腰光斑半径与镜面上光斑半径的关系可知:

作为稳定腔,损耗主要是衍射损,衍射损耗与镜面上的菲涅尔数有关,在损耗不大的情况下,是倒数关系。

即:

根据公式(激光原理p69-2.8.18或2.8.19)分别求出两个镜面的菲涅尔数

根据衍射损耗定义,可以分别求出:,10

证明在所有菲涅尔数相同而曲率半径R不同的对称稳定球面腔中,共焦腔的衍射损耗最低。这里L表示腔长,a是镜面的半径。

证明:

在对称共焦腔中,11

今有一平面镜和一个曲率半径为R=1M的凹面镜,问:应该如何构成一个平—凹稳定腔以获得最小的基模远场发散角,画出光束发散角与腔长的关系。

解答:

我们知道,远场发散角不仅和模式(频率)有关,还和腔的结构有关。根据公式2.6.14得到:,如果平面镜和凹面镜构成的谐振腔所对应的等价共焦腔焦距最大,则可以获得最小的基模光束发散角。

代入发散角公式,就得到最小发散角为:

发散角与腔长的关系式:

某二氧化碳激光器材永平凹腔,凹面镜的R=2M,腔长L=1M,试给出它所产生的高斯光束的束腰腰斑半径的大小和位置,该高斯光束的焦参数和基模发散角。

解答:

某高斯光束束腰光斑半径为1.14MM,波长λ=10.6μM。求与束腰相距30厘米、100厘米、1000米远处的光斑半径及相应的曲率半径。

解答:根据公式(激光原理p71-2.9.4,2.9.6)

把不同距离的数据代入,得到:,曲率半径

与不同距离对应的曲率半径为:,15

若已知某高斯光束的束腰半径为0.3毫米,波长为632.8纳米。求束腰处的q参数值,与束腰距离30厘米处的q参数值,与束腰相距无限远处的q值。

解答:

束腰处的q参数值实际上就是书中的公交参量(激光原理p73-2.9.12):

根据公式(激光原理p75-2.10.8),可以得到30厘米和无穷远处的q参数值分别为

无穷远处的参数值为无穷大。

某高斯光束束腰半径为1.2毫米,波长为10.6微米。现在用焦距F=2cm的锗透镜聚焦,当束腰与透镜距离分别为10米,1米,10厘米和0时,求焦斑大小和位置,并分析结果。

解答:

根据公式(激光原理p78-2.10.17和2.10.18)

当束腰与透镜距离10米时

同理可得到:

解答完毕

二氧化碳激光器输出波长为10.6微米的激光,束腰半径为3毫米,用一个焦距为2厘米的凸透镜聚焦,求欲得到焦斑半径为20微米及2.5微米时,透镜应该放在什么位置。

解答:根据公式(激光原理p78-2.10.18)

上式中束腰到透镜的距离l就是我们要求的参数,其他各个参数都为已知,代入题中给出的数据,并对上式进行变换,得到

当焦斑等于20微米时,(透镜距束腰的距离)

当焦斑等于2.5微米时,此提要验证

如图2.2所示,入射光波厂为10.6微米,求及。

解答:经过第一个透镜后的焦斑参数为:

经过第二个透镜后的焦参数为:

解方程可以求出题中所求。

某高斯光束束腰腰斑半径为1.2毫米,波长为10.6微米。现在用一个望远镜将其准直。主镜用曲率半径为1米的镀金反射镜,口径为20厘米;副镜为一个焦距为2.5厘米,口径为1.5厘米的锗透镜;高斯光束束腰与透镜相距1米,如图所示。求该望远镜系统对高斯光束的准直倍率。

解答:

根据公式(激光原理p84-2.11.19),其中,为望远镜主镜与副镜的焦距比。题中的反射镜,相当于透镜,且曲率半径的一半就是透镜的焦距。

已知:,,,(经过验证,光斑在第一个透镜表面形成的光斑半径小于透镜镜面尺寸,衍射效应很小,因此可以用准直倍率公式)

代入准直倍率公式得到:

解答完毕。

激光器的谐振腔有两个相同的凹面镜组成,它出射波长为λ的基模高斯光束,今给定功率计,卷尺以及半径为a的小孔光阑,试叙述测量该高斯光束焦参数f的实验原理及步骤。

设计如下:

首先明确焦参数的构成元素为腰斑半径,波长λ及参数,根据提供的数据,激光器的波长为已知,我们不可能直接测量腔内的腰斑半径(因为是对称腔,束腰在腔内),只能通过技术手段测量发射出来的光波场的腰斑半径,然后利用这里的z是由激光器腔中心到光功率计的距离,用卷尺可以测量。光功率计放置在紧贴小孔光阑的后面,沿着光场横向移动,测量出。把测量的和z代入公式,可以求出焦参数。

设计完毕(以上只是在理论上的分析,实际中的测量要复杂得多,实验室测量中会用透镜扩束及平面镜反射出射光,增加距离进而增加测量精度)

二氧化碳激光谐振腔由两个凹面镜构成,两个镜面的曲率半径分别是1米和两米,光腔长度为0.5米。

问:如何选择高斯光束腰斑的大小和位置,才能使它构成该谐振腔的自再现光束。

解答:

高斯光束的自再现条件是(激光原理p84-2.12.1及2.12.2):



根据公式(激光原理p78-2.10.17及2.10.18)

经过曲率半径为1米的反射镜后,为了保证自再现条件成立,腔内的束腰半径应该与经过反射镜的高斯光束的束腰相同,因此得到:

同理,经过第二个反射镜面也可以得到:

根据以上三个式子可以求出,,解答完毕。

(1)用焦距为F的薄透镜对波长为λ、束腰半径为的高斯光束进行变换,并使变换后的高斯光束的束腰半径(此称为高斯光束的聚焦),在和两种情况下,如何选择薄透镜到该高斯光束束腰的距离?(2)在聚焦过程中,如果薄透镜到高斯光束束腰的距离不变,如何选择透镜的焦距F?

解答:

(1)

根据可知,即

通过运算可得到:

或者(舍去)

(2)

参考《激光原理》p81-2.一定时,随焦距变化的情况。

试用自变换公式的定义式(激光原理p84-2.12.2),利用q参数来推导出自变换条件式

证明:

设高斯光束腰斑的q参数为,腰斑到透镜的距离为,透镜前表面和后表面的q参数分别为、,经过透镜后的焦斑处q参数用表示,焦斑到透镜的距离是=,透镜的焦距为F。

根据q参数变换,可以求出前表面、后表面、及焦斑处的q参数,分别是:

透镜前表面:

透镜后表面:

焦斑的位置:

把经过变换的代入到焦斑位置的q参数公式,并根据自再现的条件,得到:

由此可以推导出

证明完毕。

试证明在一般稳定腔中,其高斯模在腔镜面处的两个等相位面的曲率半径必分别等于各镜面的曲率半径。

证明

设一般稳定腔的曲率半径分别是、,腔长为,坐标取在这个稳定腔的等价共焦腔中心上,并且坐标原点到镜面的距离分别是和,等价共焦腔的焦距为。

根据

试从式和导出,其中的,并证明对双凸腔

解答:略

试计算,,的虚共焦腔的和.若想保持不变并从凹面镜端单端输出,应如何选择?反之,若想保持不变并从凸面镜输出,如何选择?在这两种情况下,和各为多大?

解答:

虚共焦腔的特点:激光原理p91,96

激光原理p97-2.1511,2.15.12

根据,同理:

单端输出:如果要从虚共焦非稳定腔的凸面镜单端输出平面波,并使腔内振荡光束全部通过激活物质,则凹面镜和凸透镜的选区要满足:,其中的a分别代表(按角标顺序)工作物质的半径、凹面镜半径、凸面镜半径

实施意义上的单面输出(从凸面镜端输出):按照图(激光原理p96-图2.15.2a)为了保证从凸面镜到凹面镜不发生能量损失,则根据图要满足:

因为凸面镜的尺寸不变,所以在曲率半径给定的条件下,凹面镜的半径应该为:

从凹面镜端输出,只要保证有虚焦点发出的光到达凹面镜后的反射光(平行光)正好在凸面镜的限度范围内,则可保证从凹面镜单端输出。

因此,此时只要满足即可,因此

这两种情况下的单程和往返损耗略。

解答完毕。

第三章习题

1.试由式(3.3.5)导出式(3.3.7),说明波导模的传输损耗与哪些因素有关。在其他条件不变时,若波导半径增大一倍,损耗将如何变化?若减小到原来的,损耗又将如何变化?在什么条件下才能获得低的传输损耗?

解:由及可得:

波导模的传输损耗与波导横向尺寸,波长,波导材料的折射率实部以及不同波导模对应得不同值有关。

(a)波导半径增大一倍,损耗减为原来的。

(b)波长减小到原来的一半,损耗减为原来的。

获得低的传输损耗应增大波导横向尺寸,选择折射率实部小的介质材料和小的波导模。

2.试证明,当为实数时,若,最低损耗模为模,而当时,为模,并证明模的损耗永远比模低。

证明:

(3.3.8)

对于以上三种不同模,参看书中表3.1,对于同一种模式,越小,损耗越小,因此以下考虑,模之间谁最小(中最小)题中设为实数,显然,所以,只需考虑与:

当时,小

当时,小

3.在波长时,试求在内径为的波导管中模和模的损耗和,分别以,以及来表示损耗的大小。当通过长的这种波导时,模的振幅和强度各衰减了多少(以百分数表示)?

解:由。

当时,4.试计算用于波长的矩形波导的值,以及表示,波导由制成,,计算由制成的同样的波导的值,计算中取。

解:

:

:。

5.某二氧化碳激光器用作波导管,管内径,取,管长10cm,两端对称地各放一面平面镜作腔镜。试问:为了模能产生振荡,反射镜与波导口距离最大不得超过多少?计算中激活介质增益系数。

解:,时,而平面反射镜所产生的耦合损耗为:,其中。

为使模能产生振荡则要求,得:,即反射镜与波导口距离不得超过1.66cm.第四章

静止氖原子的谱线中心波长为632.8纳米,设氖原子分别以0.1C、O.4C、O.8C的速度向着观察者运动,问其表观中心波长分别变为多少?

解答:

根据公式(激光原理P136)

由以上两个式子联立可得:

代入不同速度,分别得到表观中心波长为:,解答完毕(验证过)

设有一台麦克尔逊干涉仪,其光源波长为,试用多普勒原理证明,当可动反射镜移动距离L时,接收屏上的干涉光强周期性的变化次。

证明:

对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度移动,存在多普勒效应。在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。以上是分析内容,具体解答如下:

无多普勒效应的光场:

产生多普勒效应光场:

在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上)

第一次多普勒效应:

第二次多普勒效应:

在观察者处:

观察者感受到的光强:

显然,光强是以频率为频率周期变化的。

因此,在移动的范围内,光强变化的次数为:

证明完毕。(验证过)

在激光出现以前,Kr86低气压放电灯是最好的单色光源。如果忽略自然加宽和碰撞加宽,试估计在77K温度下它的605.7纳米谱线的相干长度是多少?并与一个单色性Δλ/λ=10-8的He-Ne激光器比较。

解:根据相干长度的定义可知。其中分母中的是谱线加宽项。从气体物质的加宽类型看,因为忽略自然和碰撞加宽,所以加宽因素只剩下多普勒加宽的影响。

根据P138页的公式4.3.26可知,多普勒加宽:

因此,相干长度为:

根据题中给出的氦氖激光器单色性及氦氖激光器的波长632.8纳米,可根据下述公式得到氦氖激光器的相干长度:

可见,即使以前最好的单色光源,与现在的激光光源相比,相干长度相差2个数量级。说明激光的相干性很好。

估算CO2气体在300K下的多普勒线宽ΔνD,若碰撞线宽系数α=49MHZ/Pa,讨论在什么气压范围内从非均匀加宽过渡到均匀加宽。

解:根据P138页的公式4.3.26可知,多普勒加宽:

因为均匀加宽过渡到非均匀加宽,就是的过程,据此得到:,得出

结论:气压P为1.08×103Pa时,是非均匀加宽与均匀加宽的过渡阈值,.当气压远远大于1.08×103Pa的情况下,加宽主要表现为均匀加宽。

(验证过)

氦氖激光器有下列三种跃迁,即3S2-2P4的632.8纳米,2S2-2P4的1.1523微米和3S2-3P4的3.39微米的跃迁。求400K时他们的多普勒线宽,并对结果进行分析。

解:根据P138页的公式4.3.26,可分别求出不同跃迁的谱线加宽情况。

3S2-2P4的632.8纳米的多普勒加宽:

2S2-2P4的1.1523微米的多普勒加宽:

3S2-3P4的3.39微米的多普勒加宽:

由以上各个跃迁的多普勒线宽可见,按照结题结果顺序,线宽是顺次减少,由于题中线宽是用频率进行描述,因此频率线宽越大,则单色性越好。

(验证过)

考虑二能级工作系统,若E2能级的自发辐射寿命为τS,无辐射跃迁寿命为τnr。假设t=0时激光上能级E2的粒子数密度为n2(0),工作物质的体积为V,发射频率为ν,求:

(1)自发辐射功率随时间的变化规律。(2)E2能级的原子在其衰减过程中发出的自发辐射光子数。(3)自发辐射光子数与初始时刻E2能级上的粒子数之比η2。

解:

(1)根据P11相关内容,考虑到E2的能级寿命不仅仅是自发辐射寿命,还包括无辐射跃迁寿命,因此,E2能级的粒子数变化规律修正为:,其中的τ与τS、τnr的关系为,为E2能级的寿命。

在时刻t,E2能级由于自发和无辐射跃迁而到达下能级的总粒子数为:

由于自发辐射跃迁而跃迁到激光下能级的粒子数为,因此由于自发辐射而发射的功率随时间的变化规律可以写成如下形式:

(2)由上式可知,在t-t+dt时间内,E2能级自发辐射的光子数为:

则在0-∞的时间内,E2能级自发辐射的光子总数为:

(3)自发辐射光子数与初始时刻能级上的粒子数之比为:

此题有待确认

根据激光原理4.4节所列红宝石的跃迁几率数据,估算抽运几率等于多少时红宝石对波长694.3纳米的光透是明的(对红宝石,激光上、下能级的统计权重为,且计算中可不考虑光的各种损耗)

解答:已知红宝石的,,分析如下:增益介质对某一频率的光透明,说明介质对外界光场的吸收和增益相等,或者吸收极其微弱,以至于对进入的光场强度不会产生损耗。对于本题中的红宝石激光器,透明的含义应该属于前者。

根据公式:

(激光原理P146-4.4.22)

由上边的第二项和第四项,可以得到:

--------------------------------------1

又因为小信号下(粒子数翻转刚刚达到阈值),因此,且

由此,方程组的第一个式子可以转变为:,代入1式,得到:

既然对入射光场是透明的,所以上式中激光能级发射和吸收相抵,即激光上能级的粒子数密度变化应该与光场无关,并且小信号时激光上能级的粒子数密度变化率为零,得到

最后得到:

解答完毕。(验证过)

短波长(真空紫外、软X射线)谱线的主要加宽是自然加宽。试证明峰值吸收截面为。

证明:根据P144页吸收截面公式4.4.14可知,在两个能级的统计权重f1=f2的条件下,在自然加宽的情况下,中心频率ν0处吸收截面可表示为:

-------------------------------------------------1

上式(P133页公式4.3.9)

又因为,把A21和ΔνN的表达式代入1式,得到:

证毕。(验证过)

已知红宝石的密度为3.98g/cm3,其中Cr2O3所占比例为0.05%(质量比),在波长为694.3nm附近的峰值吸收系数为0.4cm-1,试求其峰值吸收截面(T=300K)。

解:

分析:红宝石激光器的Cr3+是工作物质,因此,所求峰值吸收截面就是求Cr3+的吸收截面。

根据题中所给资料可知:

Cr2O3的质量密度为3.98g/cm3×0.05%=1.99×10-3g/cm3,摩尔质量为52×2+16×3=152g/mol

设Cr3+的粒子数密度为n,则n=2×(1.99×10-3

/152)×6.02×1023=1.576×1019/cm3

根据可知,根据n≈n1+n2,Δn=n1-n2,且,其中,可知E2能级粒子数密度接近于零,可求出Δn=n1=1.756×1019/cm3,代入到,可求出:

解答完毕。

在均匀加宽工作物质中,频率为ν1、强度为Iν1的强光增益系数为gH(ν1,Iν1),gH(ν1,Iν1)---

ν1关系曲线称为大信号增益曲线,试求大信号增益曲线的宽度ΔνH。

解:

大信号增益系数表达式为P153-4.5.17:

根据谱线宽度的定义:增益下降到增益最大值的一半时,所对应的频率宽度,叫做大信号增益线宽。

根据大信号增益曲线表达式可知,其中心频率处具有最大增益,即ν1=ν0时。在此条件下,增益最大值为:

根据,可求出当时满足增益线宽条件,因此,线宽位:

解答完毕。

有频率为ν1、ν2的两强光入射,试求在均匀加宽情况下:

(1)

频率为ν的弱光的增益系数。

(2)

频率为ν1的强光增益系数表达式。

(设频率为ν1和ν2的光在介质里的平均光强为Iν1、Iν2)

解:在腔内多模振荡条件下,P151-4.5.7应修正为:

根据P150-4.5.5可知,增益系数与反转粒子数成正比,即:

把修正后的反转粒子数表达式代入上式,得到:

因此,所求第一问“频率为ν的弱光的增益系数”为:

第二问“频率为ν1的强光增益系数表达式”为:

解答完毕。

激光上下能级的粒子数密度速率方程表达式为P147-4.4.28所示。

(1)

试证明在稳态情况下,在具有洛伦兹线型的均匀加宽介质中,反转粒子数表达式具有如下形式:,其中,Δn0是小信号反转粒子数密度。

(2)

写出中心频率处饱和光强Is的表达式。

(3)

证明时,Δn和Is可由P152-4.5.13及P151-4.5.11表示。

解:1

稳态工作时,由激光上、下能级的粒子数密度速率方程

(4.4.28)可得:

----------------------------------------------

---------------------------------------------2

------------------------------------------------------------------3

其中,由(3)式和(2)式可得:

整理得:

将(4)代入(1)式:

整理得:

其中,Δn0是小信号反转粒子数密度。

(2)

当ν1=ν0时,(3)

高功率的激光系统中

当时,Δn和Is可由P152-4.5.13及P151-4.5.11表示

设有两束频率分别为和,光强为和的强光沿相同方向或者相反方向通过中心频率为的非均匀加宽增益介质。试分别划出两种情况下反转粒子数按速度分布曲线,并标出烧孔位置。

分析:

非均匀加宽的特点是增益曲线按频率分布,当有外界入射光以一定速度入射时,增益曲线对入射光频率敏感,且产生饱和效应的地方恰好是外界光场频率对应处,而其他地方则不会产生增益饱和现象。当然,产生增益饱和的频率两边一定频谱范围内也会产生饱和现象,但是与外界光场对应的频率出饱和现象最大最明显。

设外界光场以速度入射,作为增益介质,感受到的表观频率为:,当增益介质的固有频率时,产生激光(发生粒子数反转)

而发生粒子数翻转所对应的速度为:

正方向:

负方向:

一、当都是正方向入射时,两束光对应的速度分别为:

也就是说在反转粒子数按速度分布图上,在速度等于和处形成反转粒子数饱和效应。

根据公式(激光原理p156-4.6.7)

对于,孔的深度为:

对于,孔的深度为:

又因为线型函数以为对称形式,且两个入射光产生烧孔的位置也以为中心对称分布,因此,产生烧孔的两个对称位置处的小信号反转粒子数相等,即,因此,两个烧孔的深度相比,因为,所以两个孔的深度入射光强大的反转粒子数深度大。

即:

两孔深度比:

二、两束光相对进入增益介质

类似上面的分析可得到:,可见烧孔位置重合,烧一个孔

因为两个光强不同的外场同时作用于某一品率处而产生增益饱和(反转粒子数饱和),因此,次品率处的光强是两个光强的和,因此,烧孔深度为

解答完毕。

第五章

激光振荡特性

2.长度为10cm的红宝石棒置于长度为20cm的光谐振腔中,红宝石694.3nm谱线的自发辐射寿命,均匀加宽线宽为。光腔单程损耗。求

(1)阈值反转粒子数;

(2)当光泵激励产生反转粒子数时,有多少个纵模可以振荡?(红宝石折射率为1.76)

解:(1)

阈值反转粒子数为:

(2)

按照题意,若振荡带宽为,则应该有

由上式可以得到

相邻纵模频率间隔为

所以

所以有164~165个纵模可以起振。

3.在一理想的三能级系统如红宝石中,令泵浦激励几率在t=0瞬间达到一定值,[为长脉冲激励时的阈值泵浦激励几率]。经时间后系统达到反转状态并产生振荡。试求的函数关系,并画出归一化的示意关系曲线(令)。

解:根据速率方程(忽略受激跃迁),可以知道在达到阈值之前,在t时刻上能级的粒子数密度与时间t的关系为

当时,即

由(1)可知,当时间t足够长的时候

由上式可知

由(2)式可得

所以

所以归一化的示意关系曲线为

4.脉冲掺钕钇屡石榴石激光器的两个反射镜透过率、分别为0和0.5。工作物质直径d=0.8cm,折射率=1.836,总量子效率为1,荧光线宽,自发辐射寿命。假设光泵吸收带的平均波长。试估算此激光器所需吸收的阈值泵浦能量。

解:

5.测出半导体激光器的一个解理端面不镀膜与镀全反射膜时的阈值电流分分别为J1与J2。试由此计算激光器的分布损耗系数(解理面的反射率)。

解:不镀膜的时候,激光器端面的反射率即为r,镀了全发射膜之后的反射率为R=1,设激光器的长度为l,则有

由这两式可以解得

即得到了激光器的分布损耗系数。

7.如图5.1所示环形激光器中顺时针模式及逆时针模的频率为,输出光强为及。

(1)如果环形激光器中充以单一氖同位素气体,其中心频率为,试画出及时的增益曲线及反转粒子数密度的轴向速度分布曲线。

(2)当时激光器可输出两束稳定的光,而当时出现一束光变强,另一束光熄灭的现象,试解释其原因。

(3)环形激光器中充以适当比例的及的混合气体,当时,并无上述一束光变强,另一束光变弱的现象,试说明其原因(图5.2为、及混合气体的增益曲线),、及分别为、及混合气体增益曲线的中心频率。

图5.1

图5.2

(4)为了使混合气体的增益曲线对称,两种氖同位素中哪一种应多一些。

解:(1)

(2)

时,及分别使用不同速度的反转原子,使用速度为的高能级原子,使用速度为的高能级原子,这样和不会彼此的争夺高能级原子,所以激光器可以输出两束稳定的激光。的时候,和均使用速度为0的高能级原子,两个模式剧烈竞争,竞争的结果是一束光变强,另一束光熄灭。

(3)

使用的原子以及的原子。使用的原子以及的原子,因此两个模式使用不同高能级原子,没有了模式竞争效应,因此两个模式均可以稳定的存在,没有了上面所说的一束光变强,另一束光熄灭的现象。

(4)

要是混合气体的增益曲线对称,必须使得和的增益曲线高度相等,即要满足:

欲使得,应使

因此,应该多一些。

8.考虑氦氖激光器的632.8nm跃迁,其上能级3S2的寿命,下能级2P4的寿命,设管内气压p=266Pa:

(1)计算T=300K时的多普勒线宽;

(2)计算均匀线宽及;

(3)当腔内光强为(1)接近0;(2)10W/cm2时谐振腔需多长才能使烧孔重叠。

(计算所需参数可查阅附录一)

解:(1)

T=300K时的多普勒线宽为

(2)

均匀线宽包括自然线宽和碰撞线宽两部分,其中

所以

(3)

设腔内光强为I,则激光器烧孔重叠的条件为

取进行计算。

当腔内光强接近0的时候

当腔内光强为的时候

9.某单模632.8nm氦氖激光器,腔长10cm,而反射镜的反射率分别为100%及98%,腔内损耗可忽略不计,稳态功率输出是0.5mW,输出光束直径为0.5mm(粗略地将输出光束看成横向均匀分布的)。试求腔内光子数,并假设反转原子数在t0时刻突然从0增加到阈值的1.1倍,试粗略估算腔内光子数自1噪声光子/腔模增至计算所得之稳态腔内光子数须经多长时间。

解:稳态时的功率输出可以表示为

稳态时的光子数为

下面来计算所需要的时间:

根据题意有,则

所以

因为,所以,所以有

10.腔内均匀加宽增益介质具有最佳增益系数gm及饱和光强ISG,同时腔内存在一均匀加宽吸收介质,其最大吸收系数为,饱和光腔为。假设二介质中心频率均为,,试问:

(1)此激光能否起振?

(2)如果瞬时输入一足够强的频率为的光信号,此激光能否起振?写出其起振条件;讨论在何种情况下能获得稳态振荡,并写出稳态振荡时腔内光强。

解:(1)

若增益介质和吸收介质的线宽分别为和,若,则在任何频率下,均小于,因此不能起振。如果(如下图所示),则当时不能振荡,当或者才能振荡。

(2)

若入射光强为,则增益介质的增益系数为

吸收介质的吸收系数为

假设增益介质的长度跟吸收介质的长度相等,则当满足的时候激光器起振,所以激光器起振的条件为

当两个介质的参量满足(2)式,入射光强满足(1)式的时候,激光器就可以起振,腔内光强不断增加,当腔内光强增加到

时去掉入射信号,此时可得稳定光强

11.低增益均匀加宽单模激光器中,输出镜最佳透射率Tm及阈值透射率Tt可由实验测出,试求往返净损耗及中心频率小信号增益系数(假设振荡频率)。

解:输出光强

阈值时有:

时,由(1)、(2)式可得:

12.有一氪灯激励的连续掺钕钇铝石榴石激光器(如图5.3所示)。由实验测出氪灯输入电功率的阈值为2.2kW,斜效率(P为激光器输出功率,为氪灯输入电功率)。掺钕钇铝石榴石棒内损耗系数。试求:

(1)

为10kW时激光器的输出功率;

图5.3

(2)

反射镜1换成平面镜时的斜效率(更换反射镜引起的衍射损耗变化忽略不计;假设激光器振荡于TEM00模);

(3)

图5.3所示激光器中换成0.1时的斜效率和=10kW时的输出功率。

解:均匀加宽连续激光器输出功率可以表示为

(1)为10kW时激光器的输出功率为:

(2)

图5.3所示的激光器

反射镜1换成平面镜之后

斜效率应为

(3)

图5.3所示激光器的单程损耗为

反射镜1的透过率改成之后,单程损耗变为

阈值泵浦功率为

光纤激光器原理及应用 第3篇

【关键词】光纤激光器 原理 应用

一、光纤激光器原理

利用掺杂稀土元素研制成的放大器给光波技术领域带来了革命性的变化。由于任何光放大器都可通过恰当的反馈机制形成器,因此光纤激光器可在放大器的基础上开发。目前开发研制的光纤激光器主要采用掺稀土元素作为增益介质。由于光纤激光器中纤芯很细,在泵浦光的作用下内极易形成高功率密度,造成工作物质的能级“粒子数反转”。因此,当适当加入正反馈回路(构成谐振腔)便可形成振荡。另外由于基质具有很宽的荧光谱,因此,光纤激光器一般都可做成可调谐的,非常适合于WDM系统应用。和半导体器相比,光纤激光器的优越性主要体现在:光纤激光器是波导式结构,可容强泵浦,具有高增益、转换效率高、阈值低、输出光束质量好、线宽窄、结构简单、可靠性高等特性,易于实现和的耦合。

我们可以从不同的角度对光纤激光器进行分类,如根据光纤激光器的谐振腔采用的结构可以将其分为Fabry-Perot腔和环行腔两大类。也可根据输出 波长数目将其分为单波长和多波长等。对于不同类型光纤激光器的特性主要应考虑以下几点:(1)阈值应越低越好;(2)输出功率与抽运光功率的线性要好; (3)输出偏振态;(4)模式结构;(5)能量转换效率;(6)器工作波长等。

二、光纤激光器的简述

光纤激光器和放大器的研究与应用引起了广泛的重视和兴趣,已能制备以硅和氟化铅为基质的掺杂稀土金属元素的光纤。用这些光纤制作成光源或光放大器在降低光通信系统的成本方面具有巨大的潜力。接铰和饵离子的光纤激光器已有多种波长的输出,包括900nm、1060nm和1550nm等。用输出波长为800nm的I'D作为泵浦源也可以获得光通信重要窗口波长(1550nm)的输出。

激光输出诺可以通过改变稀土离子所处的玻璃基质进行改变。由掺杂稀土元素离子的氟化错光纤可以在红外区产生波长为1050nm、1350nm、l 380nm和l 550nm的激光输出,其中1350nm波长非常有价值,因为利用以硅为基质的光纤要想得到这个波长的输出非常困难。此外,这种光纤能在2.08ftm、2.3f4m和2.7Pm的中红外波长区产生激光输出也具有十分重要的价值。这种光源可能在通信、医学、大气通信和光谱学方面得到应用。

光纤激光器的输出方式可以是连续的,也可以是脉冲的。光纤激光器的调Q和锁模以及亚纳秒脉冲业已获得。光纤激光器可以在其整个荧光谱范围内进行调节输出,最重要的是可以获得窄带宽、单纵模的输出,因此也可用于相干通信以及其他单色性要求较高的应用场合。光纤放大器的优越性能以及用LD作为泵浦源实现了放大,使其在光通信系统中的应用越来越广泛。

三、光纤激光器的应用

(一)标刻应用

脉冲光纤激光器以其优良的光束质量、可靠性、最长的免维护时间、最高的整体电光转换效率、脉冲重复频率、最小的体积、无须水冷的最简单、最灵活的使用方式,最低的运行费用使其成为在高速、高精度激光标刻方面的唯一选择。一套光纤激光打标系统可以由一个或两个功率为25W的光纤激光器,一个或两个用来导光到工件上的扫描头以及一台控制扫描头的工业电脑组成。这种设计比用一个50W激光器分束到两个扫描头上的方式高出达4倍以上的效率。该系统最大打标范围是175mm*295mm,光斑大小是35um,在全标刻范围内绝对定位精度是+/-100um。100um工作距离时的聚焦光斑可小到15um。

(二)材料处理的应用

光纤激光器的材料处理是基于材料吸收激光能量的部位被加热的热处理过程。1um左右波长的激光光能很容易被金属、塑料及陶瓷材料吸收。

(三)材料弯曲的应用

光纤激光成型或折曲是一种用于改变金属板或硬陶瓷曲率的技术。集中加热和快速自冷切导致在激光加热区域的可塑性变形,永久性改变目标工件的曲率。研究发现用激光处理的微弯曲远比其他方式具有更高的精密度,同时,这在微电子制造是一个很理想的方法。

(四)激光切割的应用

随着光纤激光器的功率不断攀升,光纤激光器在工业切割方面得以被规模化应用。比如:用快速斩波的连续光纤激光器微切割不锈钢动脉管。由于它的高光束质量,光纤激光器可以获得非常小的聚焦直径和由此带来的小切缝宽度正在刷新医疗器件工业的标准。

综上所述,光纤激光器技术是一个正在得到高度重视和迅速发展的新型技术研究热点,所涉及的科学研究和产品应用领域十分广泛,具有巨大的潜在应用价值和广阔的市场前景。随着各种类型光纤激光器技术的逐步成熟和商业化应用,将对相关领域的发展产生巨大的推动作用,同时也将引起相关技术领域的深刻变革。

【参考文献】

[1]刘德明, 向清. 黄德修光纤光学北京国. 防工业出版社,1995.

[2]张宝富等. 全光网络. 北京人民邮电出版社,2001.

[3]葛强,郑鸿章. 光纤激光器的应用[J]. 光机电信息,2003.

辣椒加工保藏原理与加工方法 第4篇

1 加工品败坏原因

1.1 微生物因素是败坏的主要因素

微生物种类繁多, 自然界无处不在。由有害微生物引起的败坏, 通常表现为生霉、腐烂、软化、变色、变味等, 会降低加工品品质或丧失食用价值。果蔬原料、加工机械、用具、空气等, 都有微生物存在, 而且果蔬具有丰富的营养, 极易滋生微生物而引起败坏。防止此类败坏, 一方面要做好清洁卫生, 尽量减少微生物基数;另一方面, 在加工过程中将其杀死或抑制。

1.2 化学因素是引起加工品败坏的重要因素

氧化、还原、分解、合成、溶解等化学反应, 都可以发生加工品败坏。表现为成品变色、变味、软化、维生素损失等, 既可以发生在加工品过程中, 也可发生在成品贮藏过程中。

化学变化发生有3个途径:一是果蔬本身化学成分的改变, 如果胶质的水解、黑蛋白反应等;二是果蔬原料与空气接触发生氧化反应, 如单宁氧化、抗坏血酸氧化等;三是果蔬原料与设备、容器等接触发生化学反应, 表现为腐蚀, 造成变色、变味等不良变化。与微生物引起的败坏相比, 一般化学变化程度较轻, 可在一定范围内存在, 不可能完全杜绝, 但要控制在一定范围内。

1.3 物理因素

一是光照。加工品经常受到日光照射, 会促进内部成分分解, 引起变化、变味。紫外线能促进抗VC和胡萝卜素氧化分解。二是温度。无论是工艺中, 还是贮存期, 长时期高温均会促进一系列的不良变化。如果胶质的水解、芳香物质的损失、褐变反应等。三是湿度。主要促进在产品贮存过程中的一些不良变化。如干制品的吸湿返潮, 果脯蜜饯的吸湿流汤, 罐头盖、壁的锈蚀等都是环境湿度高造成的。

2 加工保藏原理

加工保藏要根据败坏的原因, 采取相应的保藏措施。总的原则是:减少物理因素和化学因素的影响;消灭有害微生物, 或者造成不适于微生物活动的环境条件;加工品制作后与外界隔绝, 不再与空气、水分以及微生物接触。

2.1 脱水干燥保藏

水分是微生物生长繁殖和各种生化反应的必要条件, 将果品原料中的水分脱除一部分, 可以造成一种干燥缺水条件, 从而防止微生物的危害和各种生化反应进行, 使产品得以长期保存。

辣椒干制品的含水量一般在15%~20%, 此时微生物处于被迫休眠状态, 一旦含水量提高, 则又重新活动, 酶恢复活性, 各种生化反应开始进行, 从而发生败坏。因此, 干制品需要密封保存, 以防止吸湿返潮。

2.2 利用高渗透压溶液保藏

加入较多的食盐或糖, 形成较大的渗透压, 以抑制微生物活动, 酶也可因脱水而失去活性。如腌辣椒、辣椒脯。

2.3 发酵保藏

利用有益微生物发酵的代谢产物来压抑微生物, 使产品得以长期保存, 防止吸湿返潮。

2.4 杀菌密封保藏

首先将果蔬原料上的微生物杀死, 并破坏酶活性;然后密封保存, 以隔绝空气和微生物。辣椒罐头就是这种保藏方法的典型代表。

2.5 速冻保藏

将辣椒叶在-30~-25℃或更低的温度下迅速冷冻, -18~-15℃下贮存, 微生物大部分被冻死, 少量残存者也因温度很低而处于被迫休眠状态, 代谢基本停止。另外, 未冻结部分的渗透压很高, 水分和养分都难以利用, 同时, 酶的活性被抑制, 代谢基本停止, 使产品可以长期保藏。

2.6 化学药剂辅助保藏

在上述加工保藏方法的基础上, 在有些产品中添加防腐剂或抗氧化剂, 可增强保藏性或增进产品的品质。常用的防腐剂有苯甲酸及其盐、山梨酸 (花酸) 及其盐、二氧化碳及亚硫酸盐、双乙酸钠等, 常用的抗氧化剂有抗坏血酸或异VC、二氧化碳和亚硫酸盐、有机酸、食盐等。

3 各类辣椒加工品的加工方法

3.1 泡菜辣椒

以新鲜的青辣椒或红辣椒为原料, 清理杂质后洗净, 整只辣椒或将辣椒剁碎, 加入适量食盐、调味品 (花椒、茴香、胡椒、生姜、香料、白酒、黄酒等) 、氯化钙和适量水, 装入泡菜坛子密封, 进行乳化发酵。在20~25℃温度下, 7d左右即可制成熟食品。其中, 适当浓度的食盐、微生物生产的乳酸和多种具有防腐作用的调味品及香料起保藏作用, 并能增进制品的风味。

工艺要点: (1) 泡菜以脆为贵, 一定要加氯化钙保脆; (2) 坛子要洗净并用开水消毒且要装满, 尽量少留空隙, 保证坛子的密封状态, 以防好气性微生物活动; (3) 忌油, 油漂在上面, 被好气性微生物分解会产生臭味。

3.2 辣椒酱类

辣椒酱类以新鲜的红辣椒为主要原料, 清理杂质后洗净, 剁碎或绞碎, 或再磨浆, 加入适量食盐、调味品 (花椒粉、茴香粉、胡椒粉、生姜、香料、豆瓣酱、芝麻等, 或再加入适量食糖、柠檬酸等风味成分) , 入缸、搅拌均匀, 每天搅拌1次, 7~15d即可。

工艺要点: (1) 配料要合适, 保证适口性, 可以参考他人的经验或自行试验; (2) 缸和原料要洗净, 腌制过程中应注意遮盖, 以免污染; (3) 保证腌制时间, 各种风味的汇合、协调需要一定时间, 也需要一定程度的乳化发酵来增进风味。另外, 还可以用辣椒粉为原料制作辣椒酱。上述腌辣椒、泡菜辣椒、辣椒酱还可以做成罐头。

3.3 辣椒脯类

辣椒脯类以新鲜辣椒为原料, 去籽后渗入适量的糖, 再经过烘烤而成。利用高浓度糖产生的渗透压起保藏作用, 色泽红亮鲜艳, 半透明, 口味甜香微辣, 还可以将辣椒用碱液去皮后再糖制 (琥珀辣椒) , 由于去掉了角质层, 因此口感好。

工艺要点: (1) 原料一定要用亚硫酸盐护色并用氯化钙硬化, 以保证色泽鲜艳和质地有韧劲; (2) 渗糖量要足, 烘烤后制品含糖量在60%以上, 以保证外观饱满并使产品有保藏性; (3) 烘烤温度不超过65℃, 以防糖分焦化而影响色泽和风味。

3.4 辣椒精

辣椒精以干辣椒粉为原料, 利用辣椒色素和辣椒碱溶于有机溶剂的性质, 用高浓度酒精为浸体剂将其提出, 并将纤维、蛋白质、碳水化合物、无机盐等成分分离, 再把提取液中的酒精蒸馏出去 (回收循环利用) , 使得调色、调味成分被浓缩。产品呈暗红色浓稠液体, 可作为调味品食用。

工艺要点: (1) 酒精要达到食品级以上和95%以上纯度, 以保证产品质量安全和浸提效果; (2) 浸提时间在48h以上, 以保证提取率; (3) 浸提液要精细过滤, 以减少杂质; (4) 浓缩后期要控制温度, 以免焦化。

3.5 辣椒油

辣椒油以干辣椒皮为原料, 适当粉碎, 浸入加热的食用油中一定时间, 使辣椒中的色素和辣椒碱溶入油内, 得到色红、味辣的油。可作为调味品或烹调油。

工艺要点: (1) 辣椒要去掉蒂把和籽, 以免不必要的沾油; (2) 油温不可太高, 以免破坏色素和辣味。

3.6 辣椒脆片

以新鲜红辣椒为原料, 渗入适量的糖和食盐 (或再适量柠檬酸) , 再经过低温真空油炸脱水。产品酥脆可口, 香甜微辣。

工艺要点: (1) 食盐用量不宜太大, 以免影响风味。糖、盐溶液中含糖15%、食盐2.5%; (2) 真空油炸时真空度不能低于0.08MPa, 油温控制在80℃; (3) 脱油要尽量彻底, 以免影响风味和口感, 尽量在未破除真空状态下趁热离心脱油; (4) 产品要密封包装, 以免吸湿返潮而影响口感。

3.7 辣椒籽油

辣椒籽油从干辣椒籽中提取辣椒油可采用压榨法、有机溶剂萃取法和超临界CO2萃取法。 (1) 压榨法用普通榨油机榨取。辣椒籽中粗纤维含量高达26%, 压榨法出油率低。 (2) 有机溶剂萃取法。在用有机溶剂提取时, 辣椒碱混在油中, 降低了油品的质量。一般可采取碱溶法除辣, 辣素溶于Na OH的水溶液, 而油脂不溶, 除辣效果明显。但必须控制好温度及Na OH的浓度;否则, 油脂将部分皂化而降低出油率。 (3) 超临界CO2流体萃取法。超临界流体萃取法是一种新型的分离技术, 其工艺简单, 能耗低, 萃取溶剂无毒, 易回收, 所得产品具有极高的纯度。由于超临界流体CO2具有不可燃性、无毒、化学安定性好、廉价易得等优点, 因此选用CO2作为超临界流体萃取溶液最理想。

电火花加工原理 第5篇

学院:机械与汽车工

程学院

专业:材控10-2班 姓名:徐鹏

学号:201001021047

电火花加工技术

电火花是一种加工工艺,主要是利用具有特定几何形状的放电电极(EDM 电极)在金属(导电)部件上烧灼出电极的几何形状。电火花加工工艺常用于冲裁模和铸模的生产。

利用火花放电时产生的腐蚀现象对材料进行尺寸加工的方法,叫电火花加工。电火花加工是在较低的电压范围内,在液体介质中的火花放电。电火花加工主要由机械厂完成。电火花是一种自激放电,其特点如下: 火花放电的两个电极间在放电前具较高的电压,当两电极接近时,其间介质被击穿后,随即发生火花放电。伴随击穿过程,两电极间的电阻急剧变小,两极之间的电压也随之急剧变低。火花通道必须在维持暂短的时间(通常为10-7-10-3s)后及时熄灭,才可保持火花放电的“冷极”特性(即通道能量转换的热能来不及传至电极纵深),使通道能量作用于极小范围。通道能量的作用,可使电极局部被腐蚀。

工具电极和工件之间并不直接接触,而是有一个火花放电间隙0.1—0.01mm,间隙中充满工作液。

加工过程中没有宏观切削力 火花放电时,局部、瞬时爆炸力的平均值很小,不足以引起工件的变形和位移。可以“以柔克刚”由于电火花加工直接利用电能和热能来去除金属材料,与工件材料的强度和硬度等关系不大,因此町以用软的工具电极加工硬的工件,实现“以柔克刚”。可以加工任何难加工的金属材料和导电材料

由于加工中材料的去除是靠放电时的电、热作用实现的,材料的可加工性主要取决于材料的导电性及热学特性,如熔点、沸点、比热容、导热系数、电阻率等,而几乎与其力学性能(硬度、强度等)无关。这样可以突破传统切削加工对刀具的限制,可以实现用软的工具加工硬、韧的工件甚至可以加工聚晶金刚行、立方氮化硼一类的超硬材料。目前电极材料多采用紫铜或石墨,因此工具电极较容易加工。可以加工形状复杂的表面

由于可以简单地将工具电极的形状复制到工件上,因此特别适用于复杂表面形状工件的加工,如复杂型腔模具加工等。特别是数控技术的采用,使得用简单的电极加工复杂形状零件成为现实。可以加工特殊要求的零件

可以加工薄壁、弹性、低刚度、微细小孔、异形小孔、深小孔等有特殊要求的零件。由于加工中工具电极和工件不直接接触,没有机械加工的切削力,因此适宜加工低刚度工件及微细加工。

电火花加工原理

电火花加工时,脉冲电源的一极接工具电极,另一极接工件电极,两极均浸入具有一定绝缘度的液体介质(常用煤油或矿物油或去离子水)中。工具电极由自动进给调节装置控制,以保证工具与工件在正常加工时维持一很小的放电间隙(0.01~0.05mm)。当脉冲电压加到两极之间,便将当时条件下极间最近点的液体介质击穿,形成放电通道。由于通道的截面积很小,放电时间极短,致使能量高度集中(10~107W/mm),放电区域产生的瞬时高温足以使材料熔化甚至蒸发,以致形成一个小凹坑。第一次脉冲放电结束之后,经过很短的间隔时间,第二个脉冲又在另一极间最近点击穿放电。如此周而复始高频率地循环下去,工具电极不断地向工件进给,它的形状最终就复制在工件上,形成所需要的加工表面。与此同时,总能量的一小部分也释放到工具电极上,从而造成工具损耗。

从上看出,进行电火花加工必须具备三个条件:必须采用脉冲电源;必须采用自动进给调节装置,以保持工具电极与工件电极间微小的放电间隙;火花放电必须在具有一定绝缘强度(10~107Ω ·m)的液体介质中进行。

电火花加工具有如下特点:可以加工任何高强度、高硬度、高韧性、高脆性以及高纯度的导电材料;加工时无明显机械力,适用于低刚度工件和微细结构的加工:脉冲参数可依据需要调节,可在同一台机床上进行粗加工、半精加工和精加工;电火花加工后的表面呈现的凹坑,有利于贮油和降低噪声;生产效率低于切削加工;放电过程有部分能量消耗在工具电极上,导致电极损耗,影响成形精度。

电火花加工是利用浸在工作液中的两极间脉冲放电时产生的电蚀作用蚀除导电材料的特种加工方法,又称放电加工或电蚀加工,英文简称EDM。

发明与发展

1943年,苏联学者拉扎连科夫妇研究发明电火花加工,之后随着脉冲电源和控制系统的改进,而迅速发展起来。最初使用的脉冲电源是简单的电阻-电容回路。50年代初,改进为电阻-电感-电容等回路。同时,还采用脉冲发电机之类的所谓长脉冲电源,使蚀除效率提高,工具电极相对损耗降低。随后又出现了大功率电子管,闸流管等高频脉冲电源,使在同样表面粗糙度条件下的生产率得以提高。60年代中期,出现了晶体管和可控硅脉冲电源,提高了能源效率和降低了工具电极损耗,并扩大了粗精加工的可调范围。到70年代,出现了高低压复合脉冲、多回路脉冲、等幅脉冲和可调波形脉冲等电源,在加工表面粗糙度、加工精度和降低工具电极损耗等方面又有了新的进展。在控制系统方面,从最初简单地保持放电间隙,控制工具电极的进退,逐步发展到利用微型计算机,对电参数和非电参数等各种因素进行适时控制。进行电火花加工时,工具电极和工件分别接脉冲电源的两极,并浸入工作液中,或将工作液充入放电间隙。通过间隙自动控制系统控制工具电极向工件进给,当两电极间的间隙达到一定距离时,两电极上施加的脉冲电压将工作液击穿,产生火花放电。在放电的微细通道中瞬时集中大量的热能,温度可高达一万摄氏度以上,压力也有急剧变化,从而使这一点工作表面局部微量的金属材料立刻熔化、气化,并爆炸式地飞溅到工作液中,迅速冷凝,形成固体的金属微粒,被工作液带走。这时在工件表面上便留下一个微小的凹坑痕迹,放电短暂停歇,两电极间工作液恢复绝缘状态。紧接着,下一个脉冲电压又在两电极相对接近的另一点处击穿,产生火花放电,重复上述过程。这样,虽然每个脉冲放电蚀除的金属量极少,但因每秒有成千上万次脉冲放电作用,就能蚀除较多的金属,具有一定的生产率。在保持工具电极与工件之间恒定放电间隙的条件下,一边蚀除工件金属,一边使工具电极不断地向工件进给,最后便加工出与工具电极形状相对应的形状来。因此,只要改变工具电极的形状和工具电极与工件之间的相对运动方式,就能加工出各种复杂的型面。工具电极常用导电性良好、熔点较高、易加工的耐电蚀材料,如铜、石墨、铜钨合金和钼等。在加工过程中,工具电极也有损耗,但小于工件金属的蚀除量,甚至接近于无损耗。工作液作为放电介质,在加工过程中还起着冷却、排屑等作用。常用的工作液是粘度较低、闪点较高、性能稳定的介质,如煤油、去离子水和乳化液等

分类及使用说明

按照工具电极的形式及其与工件之间相对运动的特征,可将电火花加工方式分为五类:利用成型工具电极,相对工件作简单进给运动的电火花成形加工;利用轴向移动的金属丝作工具电极,工件按所需形状和尺寸作轨迹运动,以切割导电材料的电火花线切割加工;利用金属丝或成形导电磨轮作工具电极,进行小孔磨削或成形磨削的电火花磨削;用于加工螺纹环规、螺纹塞规、齿轮等的电火花共轭回转加工;小孔加工、刻印、表面合金化、表面强化等其他种类的加工。电火花加工能加工普通切削加工方法难以切削的材料和复杂形状工件;加工时无切削力;不产生毛刺和刀痕沟纹等缺陷;工具电极材料无须比工件材料硬;直接使用电能加工,便于实现自动化;加工后表面产生变质层,在某些应用中须进一步去除;工作液的净化和加工中产生的烟雾污染处理比较麻烦。电火花加工的主要用于加工具有复杂形状的型孔和型腔的模具和零件;加工各种硬、脆材料,如硬质合金和淬火钢等;加工深细孔、异形孔、深槽、窄缝和切割薄片等;加工各种成形刀具、样本和螺纹环规等工具和量具。

电火花加工特点 1:电火花加工速度与表面质量

模具在电火花机加工一般会采用粗、中、精分档加工方式。粗加工采用大功率、低损耗的实现,而中、精加工电极相对损耗大,但一般情况下中、精加工余量较少,因此电极损耗也极小,可以通过加工尺寸控制进行补偿,或在不影响精度要求时予以忽略。

2:电火花碳渣与排渣

电火花机加工在产生碳渣和排除碳渣平衡的条件下才能顺利进行。实际中往往以牺牲加工速度去排除碳渣,例如在中、精加工时采用高电压,大休止脉波等等。另一个影响排除碳渣的原因是加工面形状复杂,使排屑路径不畅通。唯有积极开创良好排除的条件,对症的采取一些方法来积极处理。

3:电火花工件与电极相互损耗

电火花机放电脉波时间长,有利于降低电极损耗。电火花机粗加工一般采用长放电脉波和大电流放电,加工速度快电极损耗小。在精加工时,小电流放电必须减小放电脉波时间,这样不仅加大了电极损耗,也大幅度降低了加工速度。

电火花加工是与机械加工完全不同的一种新工艺。随着工业生产的发展和科学技术的进步,具有高熔点、高硬度、高强度、高脆性,高粘性和高纯度等性能的新材料不断出现。具有各种复杂结构与特殊工艺要求的工件越来越多,这就使得传统的机械加工方法不能加工或难于加工。因此,人们除了进一步发展和完善机械加工法之外,还努力寻求新的加工方法。电火花加工法能够适应生产发展的需要,并在应用中显示出很多优异性能,因此,得到了迅速发展和日益广泛的应用。

电火花加工的应用

电火花加工主要用于模具生产中的型孔、型腔加工,已成为模具制造业的主导加工方法,推动了模具行业的技术进步。电火花加工零件的数量在3000件以下时,比模具冲压零件在经济上更加合理。按工艺过程中工具与工件相对运动的特点和用途不同,电火花加工可大体分为:电火花成形加工、电火花线切割加工、电火花磨削加工、电火花展成加工、非金属电火花加工和电火花表面强化等。

(1)电火花成形加工 该方法是通过工具电极相对于工件作进给运动,将工件电极的形状和尺寸复制在工件上,从而加工出所需要的零件。它包括电火花型腔加工和穿孔加工两种。电火花型腔加工主要用于加工各类热锻模、压铸模、挤压模、塑料模和胶木膜的型腔。电火花穿孔加工主要用于型孔(圆孔、方孔、多边形孔、异形孔)、曲线孔(弯孔、螺旋孔)、小孔和微孔的加工。近年来,为了解决小孔加工中电极截面小、易变形、孔的深径比大、排屑困难等问题,在电火花穿孔加工中发展了高速小孔加工,取得良好的社会经济效益。(2)电火花线切割加工 该方法是利用移动的细金属丝作工具电极,按预定的轨迹进行脉冲放电切割。按金属丝电极移动的速度大小分为高速走丝和低速走丝线切割。我国普通采用高速走丝线切割,近年来正在发展低速走丝线切割,高速走丝时,金属丝电极是直径为φ0.02~φ0.3mm的高强度钼丝,往复运动速度为8~10m/s。低速走丝时,多采用铜丝,线电极以小于0.2m/s的速度作单方向低速运动。线切割时,电极丝不断移动,其损耗很小,因而加工精度较高。其平均加工精度可达 0.0lmm,大大高于电火花成形加工。表面粗糙度Ra值可达1.6 或更小。

上一篇:鲁中南地区下一篇:大型电力系统