监测工作方案范文

2023-05-29

监测工作方案范文第1篇

一、成立整改领导小组

组长:吴天明

副组长:杨芝强教导主任

李伟德育主任

成员:其他学校班子成员、各班主任、体育、数学教师

二、整改措施

(一)关于学生数学表现存在较大差异的问题整改措施

1.加强政策宣传,推进本校教育质量快速发展。我校严格按照上级划分的学区、认真落实《宁强县义务教育阶段学区划分的规定》和《宁强县进城务工等随迁子女入学的规定》有关要求,严格执行义务教育阶段学生“免试就近”入学的规定,不以任何形式组织考试或变相考试招生、选拔生源,尽量控制家长学生盲目“跟风热”“择校热”,为缓解“乡村弱”“县城挤”的局面努力。

2.加强学校信息化建设,不断优化教育设施设备,努力提高本校办学水平。

3.加强教师培训,鼓励教师参加各级各类在职在岗培训,提高专业技能,通过各种渠道不断充实本校数学教师队伍,让学生在家门口也能享受优质教育。

4.大力做好数学教师专业培训工作,进一步提升教育教学能力。

(二)关于学生身体形态正常比例有所下降、肥胖率有所上升的问题整改措施

1.扎实上好体育课和体育活动课。严格按照体育课程标准开足每周4课时体育课,并将体育课、体育活动课(大课间活动)、课间操和眼保健操列入课表。认真上好体育课,切实保证学生每天一小时的体育活动时间,在无体育课的当天落实好1节体育活动课。进一步完善充实大课间活动,大力开展跳绳、踢毽子、掷沙包、呼拉圈、武术、球类、健身操等自主活动,积极探索并开展体现本校特色的运动项目,不断增强活动的实效性。

2.深入开展“阳光体育运动”。积极响应上级号召,鼓励学生到户外去、到阳光底下去、到大自然中去,广泛开展人人参与、个个争先的群众体育活动。广泛宣传“每天锻炼一小时,每天跑步1000米,健康工作五十年,幸福生活一辈子”新时代健康生活理念,深入持久地开展学生阳光体育活动。

3.积极开展“体育艺术2+1项目”活动,使每位学生都能掌握两项日常锻炼的体育技能;在活动中培养体育运动兴趣,养成锻炼身体的良好习惯,在活动中强身健体,提高综合素养;激励学生自觉参加体育锻炼,形成生动活泼、生机勃勃、生龙活虎的校园体育文化氛围。

4.全面实施《学生体质健康标准》。坚持把落实《学生体质健康标准》作为学校体育的重点工作,建立健全《学生体质健康标准》工作管理运行机制,建立岗位责任制,认真执行《学生体质健康监测评级办法》,加强监测培训,熟练、正确地掌握操作方法,做好学生体质健康数据监测与分析,逐步实现贯彻实施《学生体质健康标准》工作的规范化、制度化、科学化。

5.多渠道争取资金,进一步改善学校体育活动场地设施,按要求配齐配足体育器材;加强学校公用经费管理,确保每学期有一定的经费用于体育器材的添置和补充,保证学校体育设施满足正常教学、体育活动和学生日常锻炼的需要。

6.坚持开展学校春秋季学生运动会,组织学生广泛参县级体育竞赛活动,不断提高学生体育竞赛活动水平,促进学生体育锻炼习惯的养成,有效提高学生运动技能和体质健康水平。

7.加强家校互动,引导家长关注学生身心健康。学校通过家长会、微信群和qq群,加强对家长的宣传教育,引导家长关注孩子身心发展,科学安排孩子膳食,提倡健康饮食与生活方式,注重带领孩子开展户外运动和活动,以及力所能及的劳动实践,不断增强孩子体质。

(三)关于学生视力不良率较高、睡眠时间不足的问题整改措施

1.切实减轻学生课业负担,不随意增减课时、改变难度、调整进度。加强对家庭作业内容的设计和研究,提高作业内容质量,强化实践性作业,减少机械、重复训练,严禁变学生作业为家长作业。严格执行小学一、二年级不布置书面作业、三至六年级书面作业量确保完成时间不得超过60分钟的规定。合理制定学生作息时间,缩短学生晚上学习时间,保障小学生每天睡眠时间不少于10小时。

2.指导学生科学规范使用电子产品,要求儿童青少年眼睛发育期不使用电子产品。严禁学生将手机、平板电脑等电子产品带入课堂。学校教学和布置作业不依赖电子产品,使用电子产品开展教学时长原则上不超过教学总时长的30%,家庭作业采用纸质完成。

3.加强视力健康管理。落实《关于推进健康学校示范建设的实施意见》,建立健全视力健康管理队伍,明确和细化职责。将近视防控知识融入课堂教学、校园文化、学校管理和学生日常行为规范。加强医务室力量,按标准配备校医和必要的药械设备及相关监测检查设备,加强学生视力监测。

4.严格按照普通中小学校建设标准安装配备利于视力健康的照明设备,落实教室、宿舍等采光和照明要求,为学生提供符合用眼卫生要求的学习环境,坚持学生座位一周调换一次,每学期对学生课桌椅高度根据学生身高进行个性化调整,使其适应学生生长发育变化。

5.认真执行眼保健操流程,严格组织全体学生每天上下午各做1次眼保健操。教师要教会学生正确掌握执笔姿势,督促学生读写时坐姿端正,监督并随时纠正学生不良的读写姿势。教师发现学生出现看不清黑板等迹象时,要及时了解其视力情况。

6.强化户外体育锻炼,确保在校时每天有1小时以上体育活动时间。严禁以讲代练和挤占课外活动,认真执行每天30分钟大课间体育活动。依托健康教育课,按照《中小学健康教育指导纲要》,开足开齐开好健康课,向学生讲授近视形成的原因、危害,保护视力的意义和方法,树立学生爱眼、护眼意识,养成良好的用眼卫生习惯,增强其主动保护视力的意识和能力。

7.加强学生视力健康档案管理,确保一人一档并随学籍变化实时转移。严格落实每学年1次的学生健康体检制度,积极联系医疗卫生机构每学期组织开展至少1次视力监测,及时把视力监测和筛查结果记入学生视力健康电子档案,并向家长反馈检测结果,对于发生问题的学生要督促其到眼科医疗机构检查治疗。

(四)关于体育教师教学行为不够规范、数学教师教科研水平不高专业能力不强的问题整改措施

1.强化体育教师队伍建设,积极聘任有体育特长的人员和社会体育指导员为学校兼职体育教师。

2.充分利用培训机遇,对本校体育教师进行学科教学技能提升培训,积极整合学校现有资源,立足岗位实际,加强岗位专业培训。

监测工作方案范文第2篇

方案

为了加强医院消毒灭菌效果监测工作,提高消毒灭菌质量,预防和控制医院感染的发生,按照卫生部颁布的《消毒技术规范》定期对医院各临床科室的空气、医护人员的手、物体表面、使用中的消毒液、压力蒸气灭菌等进行现场采样监测。具体监测工作方案如下:

一、成立消毒灭菌效果、环境卫生学监测小组: 组 长:黄林青 副组长:刘锋

成 员:杨幸秀、万辉连、乐丽芬、李碧珍、黄育红、王四莲、杨丽春、刘志惠、钟瑞芬。

二、消毒灭菌效果监测

1、供应室应按照消毒与灭菌效果监测的要求与方法做好各项监测并记录备查,灭菌合格率必须达到100%,不合格物品不得进入临床使用。

(1)压力蒸汽灭菌器必须进行每锅物理监测,每包内、外化学监测,预真空(脉动真空)压力蒸汽灭菌器每天灭菌前进行B-D试验,生物监测每周监测一次,每月需送市或区CDC监测一次。

(2)灭菌器新安装、移位和大修后应进行物理监测、化学监测和生物监测。物理监测、化学监测通过后,生物监测应连续监测三次,合格后灭菌器方可使用。预真空(脉动真空)压力蒸汽灭菌器应进行B-D测试并重复三次,连续监测合格后,灭菌器方可使用。

2、使用科室对使用中消毒剂进行浓度监测,根据消毒、灭菌剂的性能定期监测,如含氯消毒剂每日监测一次,戊二醛每周监测二次(胃镜室每天使用前监测一次),使用中灭菌剂、消毒剂细菌污染监测每月一次。

3、紫外线消毒进行日常监测(灯管应用时间,累计照射时间,做好记录和签名)紫外线灯管每周擦拭一次,每半年监测照射强度一次。

三、环境卫生学监测

1、环境卫生学监测包括对空气、物体表面和医护人员的监测。

2、对手术室、供应室、产房、新生儿病房、母婴室、口腔科、内窥镜室、治疗室、换药室、检验科等重点部门每月进行环境卫生学监测一次。

四、二级监测

1、科室医院感染监控护士每月应协助检验科做好消毒灭菌效果、环境卫生学监测工作,对不合格项目及时查找原因,进行整改后复查,监测资料记录完整备查。医院感染专职人员和兼职检验人员每月对重点部门进行消毒灭菌效果、环境卫生学监测,发现医院感染流行趋势时及时进行监测,并将结果反馈到科室。每月对监测资料进行汇总、统计、分析、总结,对存在问题提出整改建议,督查改进。

监测工作方案范文第3篇

【摘要】 汾河水库及其上游地表水体作为重要的城市集中供水水源,对省会太原社会经济的可持续发展具有重要的支撑和保障作用。而要长久维系其水环境功能,对各类污染源进行综合治理是首要任务,其中又以面源污染的控制和管理难度较大,因此对汾河水库上游流域面源污染的特性和负荷进行研究具有重要的实践意义和应用价值。本论文采用流域试验研究方法,通过对汾河水库上游流域出口监测断面洪水期间的水量水质进行同步监测,在水质分析和污染物评价的基础上,分析了主要污染物随洪水场次的变化特征,计算了流域汛期和非汛期面源污染物负荷,针对汾河上游流域主要面源污染物的类型、成因、负荷特性,提出了控制面源污染综合措施。本文的主要研究内容如下:(1)分析研究汾河水库上游流域水污染现状,发现其存在的问题,提出研究目标。从三个方面收集和整理相关国内外研究动态,包括面污染理论、面污染试验和面污染计算模型研究进展三个方面。提出合理的方案并提出切实可行的研究技术路线。(2)在收集和整理流域概况的基础上,设计出合理的监测方案与内容,进而在分析流域水质监测数据的基础上,研究流域汛期和非汛期面污染负荷变化特征,并对其面污染进行定量计算。(3)针对分析结果总... 更多还原

【Abstract】 As the important citys’centralized water supply source, Fenhe reservoir and its upstream surface water possess a significant supporting and guaranting function to the sustainable development of society and the provincial capital of Taiyuan. Moreover,in order to hold up the water environment function longly,the primary assignment is to proceed the comprehensive treatment on pollution sources. The control and management to non-point pollution sources are difficult especially.Therefore,it is provid... 更多还原

【关键词】 汾河水库; 面污染; 面污染负荷; 水质监测; 【Key words】 Fenhe reservior; non-point pollution; non-point pollution loads; water quality monitoring; 摘要 3-5 ABSTRACT 5-7 第一章 引言 10-22

1.1 研究背景与意义 10-13

1.1.1 汾河水库上游流域水污染现状 10-11

1.1.2 水污染问题 11-12

1.1.3 研究的意义 12-13

1.2 国内外研究动态 13-19

1.2.1 面污染理论研究进展 13-15

1.2.2 面污染试验研究进展 15-16

1.2.3 面污染计算模型研究进展 16-19

1.3 研究内容与技术路线 19-22

1.3.1 研究内容 19

1.3.2 技术路线 19-22 第二章 汾河水库上游流域概况 22-36

2.1 自然概况 22-31

2.1.1 研究区地理位置 22-23

2.1.2 河流水系 23-26

2.1.3 流域植被 26-29

2.1.4 流域水文 29-31

2.2 流域社会经济概况 31-36

2.2.1 土地与人口资源 31-32

2.2.2 农业产业与水平 32-33

2.2.3 工业产业与水平 33-36 第三章 流域面源监测试验 36-40

3.1 监测试验概况 36

3.1.2 监测时间 36

3.1.3 监测项目 36

3.2 分析方法 36-37

3.4 评价标准及评价方法 37-40

第四章 流域汛期面源污染物监测结果分析 40-66

4.1 监测结果分析 40-58

4.1.1 第一场洪水携带面污染负荷的变化特征分析 40-44

4.1.2 第二场洪水携带面污染负荷的变化特征分析 44-49

4.1.3 第三场洪水携带面污染负荷的变化特征分析 49-54

4.1.4 第四场洪水携带面污染负荷的变化特征分析 54-58

4.2 年内各场次洪水携带污染物分析比较 58-65

4.2.1 四场洪水污染物浓度变化规律 58-61

4.2.2 污染物浓度计算模型 61-65

4.3 小结 65-66

第五章 汾河上游流域面源污染物负荷计算 66-82

5.1 汾河水库流域不同水文年入库水量表 66-70

5.2 流域汛期面源污染负荷计算 70-71

5.3 流域非汛期面源污染物负荷计算 71-72

5.4 流域年面污染负荷计算 72

5.5 流域不同水文年面污染负荷 72-75

5.6 面源污染负荷的类型与成因分析 75-76

5.6.1 面污染类型 75

5.6.2 面污染原因 75-76

5.7 面源污染控制措施 76-82

5.7.1 根本措施 76-77

5.7.2 政策措施 77-78

5.7.3 技术措施 78-79

5.7.4 管理措施 79-82 第六章 结论与展望 82-84

6.1 主要结论 82

监测工作方案范文第4篇

Application Status and Development Trends of Environmental

Monitoring Technology Abstract:Today, environmental problems are increasingly serious and environmental protection workis deepening, and environmental monitoring technology has become an important factor affecting the environmental work to carry out. Using modern environmental monitoring technology to monitor and analyze the pollutants accurately and timely has important practical significanceto prevent and control the environmental pollution.By analyzing the results of existing studies, this paper summarizes the application status of the environmental monitoring technology. 3S technology, biotechnology, information technology, physical and chemical science and technology are widely used in the monitoring of contaminants in water, air, soil and other environmental media.At the same time, this paper discusses the development trends of environmental monitoring technology, it will be toward to regard the organic pollutants as the main monitoring targets, expand the scope of monitoring media, analyze to achieve mark quantization, analyze fast, and use the laboratory management system widely in the direction of development. Key words: Environmental monitoring;Environmental protection;Technology;Pollution

1 引言

近年来,随着经济的快速发展,环境问题日益严峻,环境问题和人民生产生活息息相关,保护环境刻不容缓。环境监测不仅是加强环境监督与管理的重要手段,也是保护环境的前提和基础。随着环境问题的不断凸显,政府及社会各界不断地提高环境保护意识,从而对环境监测技术提出了更高的要求。因此,分析总

1 结当前环境监测技术的应用现状并在此基础上探讨其未来的发展趋势是十分必要的,具有很强的现实意义和重大的战略意义。

本文简要介绍了环境监测的内涵、作用及发展历史,总结分析了环境监测技术的应用现状并对其发展趋势进行了探讨,为今后环境监测工作的开展提供了更多的分析资料,促进环境监测技术的开发与完善,对实现人类的可持续发展具有重要的意义。

2 环境监测概述

2.1 环境监测的内涵及作用

环境监测(Environmental Monitoring)是环境科学和环境工程的重要组成部分,是在环境分析的基础上发展起来的一门学科。它是指运用各种分析、测试手段,对影响环境质量因素的代表值进行测定,确定环境质量(或污染程度)及其变化趋势,从而为开展环境工作提供服务的活动。

环境监测的目的是运用现代科学方法,对人类赖以生存的环境质量进行定量描述,用监测数据来表示环境质量受损程度,准确、及时、全面地反映环境质量现状及发展趋势,为环境管理、污染源控制、环境规划提供科学依据,进而保护人类正常生存与发展。具体有以下几个方面[1]:对污染物及其浓度(强度)作时间和空间方面的追踪,掌握污染物的来源、扩散、迁移、反应、转化,了解污染物对环境质量的影响程度,并在此基础上对环境污染作出预测、预报和预防;了解和评价环境质量的过去、现在和将来,掌握其变化规律;收集环境背景数据、积累长期监测资料,为制订和修订各类环境标准、实施总量控制、目标管理提供依据;实施准确可靠的污染监测,为环境执法部门提供执法依据;在深入广泛开展环境监测的同时,结合环境状况的改变和监测理论及技术的发展,不断改革和更新监测方法与手段,为实现环境保护和可持续发展提供可靠的技术保障。

环境监测在人类防治环境污染,解决现存的或潜在的环境问题,改善生活环境和生态环境,协调人类和环境的关系,最终实现人类的可持续发展的活动中,起着举足轻重的作用。

环境监测的对象大致分为以下两种:一种是自然环境,包括水源、大气、土

2 壤等;另一种是人文环境,包括固体废弃物、环境生物、噪音、放射性物质等。环境监测通常包括背景调查、确定方案、优化布点、现场采样、样品运送、实验分析、数据收集、分析综合等过程。

2.2 环境监测的发展历史

20世纪50年代,针对发达国家不断发生的化学毒物造成的严重环境污染事故,对环境样品进行化学分析以确定其组成和含量的环境分析便成为这个阶段环境监测的主要特征。自20世纪60年代末开始,环境监测逐渐引入物理的、生物的手段,这一时期的监测工作以对污染源的监督性监测为主要特征。自20世纪70年代中期以来,发达国家把环境监测焦点从对污染源监控转移到环境质量监控上来,使环境监测范围发展到面源污染及区域性环境质量方面。20世纪80年代初,发达国家相继建立了自动连续监测系统和宏观生态监测系统,并借助地理信息系统技术、遥感技术和全球卫星定位系统技术,连续观察空气、水体污染状况变化及生态环境变化,预测预报未来环境质量,扩大了环境监测范围,提高了监测数据的获取、处理、传输、应用的能力,为环境监测动态监控区域环境质量乃至全球生态环境质量提供了强有力的技术保障,极大促进了环境监测的现代化发展,实现了监测的实时性、连续性和完整性。

我国环境监测起步较晚,经过30多年的发展,现已发展到物理监测、生物监测、生态监测、遥感、卫星监测,从间断性监测逐步过渡到自动连续监测。监测范围从一个断面发展到一个城市、一个区域乃至全国。一个以环境分析为基础,以物理测定为主导,以生物监测、生态监测为补充的环境监测技术体系已初步形成[2]。

3 环境监测技术的应用现状

3S技术、生物技术、信息技术、物理化学科学等现代化监测技术已被广泛应用于大气环境监测、水资源调查评价等监测工作。

3 3.1 3S技术在环境监测中的应用

3S技术是以遥感技术(RS)、地理信息系统(GIS)和全球定位系统(GPS)为基础,将这三种独立技术与其他高新技术有机地构成一个整体而形成的一项新的综合技术,它集信息的获取、处理和应用于一身,凸显信息获取与处理的高速、实时与应用中的高精产度、可定量化等方面的优点[3]。 3.1.1 3S技术在水资源管理中的应用

当前国内外3S的技术在水资源的调查与评价上的应用是非常广泛的。其主要应用在流域水文模拟、水资源评价、生态环境变迁分析、生态耗水变迁分析、监测水体沼泽、监测水体富营养化等等[4]。在水质遥感监测方面,近几年来,对构成水的质量的一些要素进行定量监测的研究有了一定的进步,这些要素包括浑浊度、总悬移质泥沙含量、pH值、总含氮量等等。

卫星遥感监测技术已经广泛应用于海洋环境监测,并取得良好成效。一般陆地卫星的多光谱扫描仪是用于沿海悬浮泥沙含量和其扩散状态的监测;用于工业排污与生活污水的监测。在1972—1977年间出现了3次大范围海上溢油问题,采用海洋水色成像仪与沿岸带水色扫描仪用于悬浮物浓度或者海域叶绿素的分析,实现全天24小时的海洋油污实时监测,具体监测溢油的分布范围、油膜厚度、移动扩散状况和溢油量等。 3.1.2 3S技术在湿地研究中的应用

(1)3S技术在湿地资源动态变化监测中的应用。

运用多时相、多平台的遥感动态变化监测技术及时获取湿地的动态信息,通过地理信息系统技术的空间分析功能和数据管理功能对遥感技术获取的湿地信息进行实时更新,可以获得湿地的动态变化情况[5]。

(2)3S技术在湿地制图中的应用。

迄今,中国、加拿大和爱沙尼亚等国已经出版了国家沼泽湿地图。中国运用3S技术还编制了不同比例尺的湿地景观生态图[6];完成了黄河三角洲1:5万和1:10万地图的编制[7]等。

4 3.1.3 3S技术在土壤环境监测中的应用

过土壤波谱分析,应用高光谱遥感数据能较好地探测土壤表层或浅表层的性状,并且结合相应的野外采样测量或实地观察建立起各种不同类型的分析模型,对土壤机械组成、酸碱度、水、养分含量、矿物质等参量、土肥状况等实现定量观测[8]。自2003年起,中国科学院在高光谱遥感技术的支持下对青藏高原地区2003—2010年表层土壤水分进行了成功反演[9],从而为脆弱生态区土壤环境的监测奠定了基础。

为了保护土壤,防止土壤侵蚀面积不断扩大,美国农业部自然资源保护局运用3S技术开展全国土壤资源调查,并且进行小流域调查与制图。在此基础上,美国国家土壤侵蚀研究实验室建立了诸如土壤侵蚀方程、评价土壤侵蚀模型、水蚀预报模型、风蚀预报系统等[10],从而为各种情况下土壤侵蚀预测和评价提供技术和方法支持。

此外,在草地、森林等生态系统相关领域的环境监测中,3S技术都在发挥着重要的作用。

3.2 生物技术在环境监测中的应用

随着生物技术的迅猛发展,以现代生物技术为代表的高新技术在环境科学中得到了越来越广泛的应用。现代生物技术是以DNA重组技术的建立为标志的多学科交叉的新兴综合性技术体系,它以分子生物学、细胞生物学、微生物学、遗传学等学科为支撑,与化学、化工、计算机、微电子和环境工程等学科紧密结合和相互渗透,极大地丰富了各学科的内涵,推动了科学理论和应用技术的发展。

现代生物技术正被利用或嫁接到环境监测领域,构成了现代生物监测技术。目前,在环境监测领域,应用比较广泛的有生物大分子标记物检测技术和PCR(多聚酶链式反应)技术,此外,当今研究和应用比较广泛的生物技术还有单细胞凝胶电泳、生物传感器、酶联免疫技术等。

5 3.2.1 生物大分子标记物检测技术

生物大分子标记物监测技术可以在分子水平阐述分子适应等生态问题的机制,具有预警性和广泛实用性的特点,有助于更好地揭示生物与环境之间的相互作用机制,为污染环境的生物修复提供理论依据。主要的生物大分子标记物及其检测技术有核酸分子损伤检测技术、报告基因标记技术、DNA芯片技术、酶分子标记物检测、金属硫蛋白的检测、抗氧化剂防御系统的检测等。 3.2.2 PCR技术

多聚酶链式反应(简称PCR)技术是在体外合成特异性DNA片段的方法,其原理类似于生物体内DNA的复制。通过选择生物的一段特异性基因进行体外扩增,再由凝胶电泳等DNA分析技术确定其种类及含量。近年来,依据PCR分析突变的相关技术进展很快,主要有[3]:寡核苷酸探针杂交;DNA直接测序;限制性内切酶图谱;变性梯度凝胶电泳等。

作为最现代的生物技术之一的PCR技术,具有快速、灵敏、准确、简便、特异性强的特点,可以针对某种或某几种致病微生物作出检测判断,因此在水环境微生物检测中应用越来越广泛。

Tay等[11]利用特异性16S rDNA 引物扩增两种甲苯降解菌。荧光定量PCR 结果显示:自养黄色杆菌和分枝杆菌在甲苯污染地区的数量比非污染地区的高,这与先前调查结果一致。但自养黄色杆菌只在污染地区夏季有相对短暂的繁盛,而分枝杆菌超过5个月时数量仍很高,表明了分枝杆菌在甲苯降解方面比想象的更为重要[12]。

Cummings等[13]通过荧光定量 PCR 技术监测了沿湖泊重金属污染浓度梯度中还原铁离子泥土杆菌家族的丰度与分布。结果表明其分布相对均匀,泥土杆菌家族的分布不受重金属离子浓度的影响。

何闪英等[14]为建立快速、准确鉴定和定量检测赤潮生物的方法,以圆海链藻为例,以其中18S rDNA序列为寻找种特异性引物的靶区域,通过分析 18S rDNA 序列,设计出适合用于荧光定量PCR的引物与探针,并通过常规PCR验证确定其特异性,进而以圆海链藻荧光定量PCR的引物和探针,建立了定量检测圆海链藻的实时荧光定量PCR检测方法。与传统的显微镜计数方法比较,两

6 者所获结果无显著性差异,证明了本方法的可行性,从而为我国沿海水域赤潮问题的研究提供了良好的技术检测途径。

变性梯度凝胶电泳(DGGE)技术在微生物群落多样性和种群动态监测中得到广泛使用[15]。赵兴青[16]等从玄武湖、莫愁湖和太湖沉积物中直接提取微生物总 DNA,然后通过 DGGE技术指纹图谱来分析湖泊表层沉积物中微生物群落结构的差异性,结合条带回收、扩增、序列测定,从而了解不同湖泊和相同湖泊不同位点的微生物群落结构的多样性。 3.2.3 其他生物技术

单细胞凝胶电泳( SCGE) ,即彗星试验是一种通过检测DNA链损伤来判别遗传毒性的技术。环境中的遗传毒物浓度一般很低,而彗星试验检测低浓度遗传毒物具有高度灵敏性,所研究的细胞不需要处于有丝分裂期。同时,这种技术只需要少量细胞[17]。Mirjana Pavlica等[18]用暴露在五氯苯酚(PCP)中的淡水蚌类血细胞进行彗星试验,观察血细胞中DNA损伤程度。在进行实验室实验和原位实验后,发现高浓度的 PCP(80g/L)会引起血细胞中DNA断裂,表明用彗星试验检测DNA损伤能够监测水体中的PCP污染。

生物传感器[19]是将生物学、化学和物理学融为一体的一种新装置,可以根据生物的酶、亚细胞器以及细胞或组织对污染的反应,将其转换为电信号,通过放大系统显示,再用计算机系统处理检测信号,实现自动化监测。目前,这种生物传感器技术可以对水质的BOD进行快速监测。

3.3 信息技术在环境监测中的应用

随着计算机、网络等现代信息技术在各领域应用的不断深入,信息技术已经被广泛应用于环境监测中。 3.3.1 无线传感器网络技术

环境监测应用中无线传感器网络属于层次型的异构网络结构,最底层为部署在实际监测环境中的传感器节点。向上层依次为传输网络、基站,最终连接到网络。通过该技术能够将监测的数据传送到数据处理中心,监护人员(或用户)可以

7 通过任意一台连入网络的终端访问数据中心,或者向基站发出命令。

许妍等[20]研究的基于无线传感器网络技术的农田灌溉系统可实现对农田土壤的湿度、温度等参数的在线监测和实时控制,从而提高了农业生产效率。 3.3.2 PLC技术

可编程逻辑控制器(PLC)是集自动化技术、计算机技术和通信技术于一体的新一代工业控制装置,在结构上对耐热、防尘、防潮、抗震等都有精确考虑,在硬件上采用隔离、屏蔽、滤波、接地等抗干扰措施,非常适用于条件恶劣的户外及工业现场[21]。此外,可以用于雨水的远程监测,对于农业生产及防洪抗旱有着积极的意义,还可以对河水水位、流速、水质的测量实现远程监视。

3.4 物理化学科学在环境监测中的应用

近年来,由于高分子化学、分析化学、物理科学等科学的不断发展与完善,物理化学科学在环境监测中有了较为广泛的应用。 3.4.1 动态膜压法监测技术

动态膜压法的理论基础是Gibss用热力学的方法推导出的吸附公式,该方法不需要对水样进行预处理,不同性质、不同浓度的有机成膜分子可以得到不同的动态膜压图谱,有效地将成膜分子的状态、结构及分子间的相互作用等反应出来。并且不需要添加任何化学试剂,无二次污染,外界干扰因素小,测定速度快,灵敏度高。用此法可对受污染水体以及其他未知天然水系的微表层进行研究[22]。 3.4.2 DOAS技术

差分光学吸收光谱技术(DOAS)的工作原理是利用分子的窄带吸收光谱来辨别气体的成分,通过其吸收谱的强度推导被测气体的浓度,其理论基础是朗伯比尔定律。DOAS系统通过一系列优化的数据处理流程和环节,可以成功地监测大气中多种气体成分的浓度。

8 此外,物理化学方法如电感耦合等离子体质谱(ICP—MS)法、激光熔蚀法(LA)、氢化物发生法(HG)、偏振能量色散X射线荧光光谱法等在土壤样品分析,尤其是痕量元素的测定及分析中得到较广泛的应用[23]。

4 环境监测技术的发展趋势

环境监测技术经过几十年的发展,在实践中发挥着重要的作用。随着社会的发展,环境监测技术也在进一步的发展,从目前环境监测技术的发展来看,未来的发展趋势主要表现在以下几方面。

4.1 以有机污染物作为在线监测的主要目标

通过对大量的研究数据和结果的分析可以了解到,目前有机污染物的污染十分严峻,而且这些有机污染物都有毒有害。因此,对有机污染物进行监测已经成了当前的一项重要任务。所以,今后需要适时的、全面的、系统的开展有机污染物的监测工作,及时有效地将环境中的有机污染物监测出来。

4.2 扩展监控介质范围,对有毒有害物质进行全面监控

多环芳烃类、多氯联苯类以及某些重金属有毒污染物会在一定的外界条件影响下,在不同的环境介质如大气、水、沉积物中迁移、转化和积累,因此,需要对多种环境介质进行监控,实现对有毒有害物质的全面监测,保证人类健康和环境安全。

4.3 运用痕量分析,提高监测分析精度

环境中的许多有毒有害物质,尽管其浓度很低,但是会对人体造成巨大的伤害。因此,有必要发展和使用痕量和超痕量分析技术,进一步提高监测的精度,全面掌握受污染的状况,以便采取有效措施,预防和控制污染物对人体和环境的危害。

9 4.4 监测分析器小型化,现场快速分析技术得到普及

在环境管理的实践中,往往需要对一些污染事故的现场进行监测,包括污染物排放源和现场污染情况等,这就需要对污染进行定性和分析,及时分析出某种污染物的类别、构成或浓度,因此,有必要发展和使用现场快速分析技术,以便能够更加有效的对现场污染进行监测,而监测仪器的小型化也为其提供了物质保障。

4.5 实验室管理系统将得到广泛应用

使用实验室管理系统(LIMS),能够进一步提高实验室的管理水平,提高实验室采集数据和分析数据的自动化程度,减少人为因素的干预,进一步确保数据的原始性和准确性。从而达到降低成本,规范数据分析的目的,促进数据分析工作的流程化。还可以加深管理人员对实验室基本情况的认识和了解,及时发现不符合规定的管理行为,并积极采取措施加以改进,从而规范实验流程,提高数据的可靠性,降低实验室的运行成本,提高工作效率。

5 小结

环境监测技术能够为环境保护提供科学合理的依据,对防治环境污染,加强环境保护有着重要的现实意义。环境监测技术的发展不是一朝一夕的事情,需要一代人甚至几代人的不断努力。只有了解环境监测技术的现状,坚持不懈地完善环境监测技术,才能保证环境监测的可靠性。在今后的工作实践中,我们需要重视环境监测技术的运用,加大资金投入,进一步规范环境监测的各项工作,提升监测技术、更新监测设备、提高监测人员的综合素质,建立健全完善的环境监测体系,推动环境监测工作的进一步发展,从而实现人类的可持续发展。

10 参考文献

[1] 杨婉平.探讨环境监测技术的现状及发展[J].民营科技,2011(6):26. [2] 徐丽. 浅谈环境监测技术的现状和发展[J]. 环境科学导刊,2010,29(S1):115—118. [3] 乌云娜,冉春秋,高杰. 环境监测技术的应用现状及发展趋势[J]. 生态经济,2009(12):89—91. [4] 石媛,陈宪伟. 环境监测技术的应用现状及发展趋势研究[J]. 科技与企业,2012(24):62. [5] 黄慧萍. 遥感技术在广东省湿地类型调查中的应用[J]. 国土资源遥感,1996,30(4):9—15. [6] 李蓬莱. 1:100万东北区沼泽图编制的研究[J]. 地理科学,1984,4(4):350—356. [7] 翟俊辉,杨瑞馥. 生物芯片、生物传感器和生物信息学[J]. 生物技术通报,2002,13(3):209—213. [8] 周萍.高光谱土壤成分信息的量化反演[D].北京:中国地质大学(北京),2006. [9] 赵振亮.基于高光谱数据的盐渍化土壤光谱特征研究及信息提取[D].乌鲁木齐:新疆大学,2013.

[10]中国科学技术协会.土壤学学科发展报告[ M].北京:科学技术出版社,2011. [11] Tay S T,Hemond F H,Krumholz L R,et al. Population dynamics of two toluene degrading bacterial species in a contaminated stream[J]. Microbial Ecology,2001,41(2):124—131. [12] 赵晓祥,庞晓倩,庄惠生 . 荧光定量 PCR技术在环境监测中的应用研究[J]. 环境科学与技术,2009,32(12):125—128. [13] Cummings D E,Snoeyenbos West O L,Newby D T,et al. Diversity of Geobacteraceae species inhabiting metal-polluted freshwater lake sediments ascertained by 16S rDNA analyses[J]. Microbial Ecology,2003,46:257—269. [14] 何闪英,吴小刚. 赤潮研究中圆海链藻实时荧光定量PCR检测方法的建立[J]. 水产学报,2007,31(2) :193—198. [15] 毛海英,徐章法. 利用分子生物学技术监测环境污染的研究进展[J]. 江苏环境科技,2007,20(S1) :66—68. [16] 赵兴青,杨柳燕 . PCR—DGGE技术用于湖泊沉积物中微生物群落结构多样性研究[J]. 生态学报,2006,26(11):3610—3616. [17] Woods J A,O'Leary K A,McCarthy R P,et al.Preservation of comet assay slides:

11 comparison with fresh slides.Mutation Research / Fundamental and Molecular Mechanisms of Mutagenesis,1999,429( 2) : 181—187.

[18] Mirjana Pavlica,Gran I V Klobu,Nina Moja,et al.Detection of DNA damage in gametocytes of zebra mussel using comet assay[J].Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2001,490(2) :209—214.

[19] 戴舒雅,余俭,丁波,等. 生物监测在水环境监测中的应用及发展趋势[J]. 污染防治技术,2013,26(5):62—65. [20] 许妍,吴克宁.欧盟土壤环境评价监测项目及其对我国农用地质量监测的启示[J].生态环境学报,2011(11):1777—1782.

[21] 谢克明. 可编程控制器原理和程序设计[M]. 北京:电子工业出版社,2003. [22] 杨建标,秦菲,陈邦林. 动态膜压法测定江、污混合水体中有机物含量的探讨[J]. 上海环境科学,2002(4):230—232. [23] 谢寅凯. 我国土壤环境监测技术的现状及发展趋势[J]. 资源节约与环保,2014(3):80.

监测工作方案范文第5篇

项目方案

目录

第一章 项目概述 .................................................................................................. 3 1.1 项目背景 ...................................................................................................................... 3 1.2 建设目标 ...................................................................................................................... 4 1.3 建设原则 ...................................................................................................................... 5

第二章 需求描述及分析 ...................................................................................... 6 2.1 概述 .............................................................................................................................. 6 2.2 需求描述 ...................................................................................................................... 6 2.2.1. 业务需求 ............................................................................................................. 6 接口需求 ......................................................................................................................... 12 性能需求 ......................................................................................................................... 13 安全需求 ......................................................................................................................... 13 2.3 需求分析 .................................................................................................................... 13 2.4 系统涉众分析 ............................................................................................................ 13 2.5 功能需求分析 ............................................................................................................ 15 2.6 水雨情监测系统 ........................................................................................................ 15 第三章 总体设计 ................................................................................................ 28 3.1 总体设计目标 ............................................................................................................ 28 3.2 总体设计原则 ............................................................................................................ 29 3.3 总体逻辑架构设计 .................................................................................................... 29 3.4 网络系统设计 ............................................................................................................ 31 3.5 平台选择 .................................................................................................................... 32 3.6 标准规范设计 ............................................................................................................ 33 第四章 详细设计 ................................................................................................ 34 4.1 技术架构设计 ............................................................................................................ 34 4.1.1设计思路 .............................................................................................................. 34 4.1.2设计原则 .............................................................................................................. 36 4.2 设计安全 .................................................................................................................... 38 4.3 用户界面设计 ............................................................................................................ 38 第五章 技术支持和服务 .................................................................................... 40 5.1 技术支持 .................................................................................................................... 40 5.2 售后服务 .................................................................................................................... 41

第一章 项目概述

1.1 项目背景

山洪灾害是山丘区在一定强度或持续的降雨下,因特殊的地形地质条件而发生的自然灾害,它具有突发、破坏性大、防治困难的鲜明特点,山洪及其诱发的泥石流和滑坡,往往对局部地区造成毁灭性灾害。山洪灾害具有突发性强、点多面广、破坏力大等特点,往往导致人员伤亡,房屋、田地、道路、桥梁等被毁,甚至导致水库、塘坝、堤防溃决,给国民经济和人民生命财产造成严重危害。

我国是一个多山的国家,山丘区面积约占国土面积的三分之二。据调查,全国2100多个县级行政区中,有1500多个在山区,聚集了全国56%的人口。由于山丘区居住的人口数量多、密度大、分布广,以及典型的季风气候导致的降雨时空分布不均和复杂的地形地质因素等,每年汛期,居住在山丘区的广大群众的生命财产安全都面临山洪、泥石流和滑坡的严重威胁,其中7400万人直接受到影响。

山洪灾害的防御策略是“以防为主,防重于抢”,防御防治的方法是既要采取工程措施,提高工程防洪标准,也要采取非工程措施,建立综合防洪减灾体系,提高防灾抗风险能力。

综上所述,建立山洪灾害监测预警系统,是防治山洪灾害的一项重要的非工程性措施。

1.2 建设目标

山洪灾害监测预警系统主要包括水雨情监测系统和预警系统(系统结构见图1.2-1)。为更好地发挥系统的防灾减灾作用,还需建立群测群防的组织体系,加强宣传培训。

水雨情监测系统主要包括水雨情监测站网布设、信息采集、信息传输通信组网、设备设施配置等。乡(镇)、村自身预警的监测设施,一般以简易的为主;县级以上可根据经济状况和山洪灾害特点,布置有一定技术含量、实用、先进、自动化程度较高的设施。汇入山洪灾害防治信息汇集及预警平台的水雨情监测信息以县级以上的自动遥测信息为主,群测群防水雨情监测信息以乡(镇)、村简易观测信息为主。根据我国山洪灾害范围广、成因复杂的特点,要加密现有水文气象部门的监测站网,以控制水雨情,及时发布预警信息。

预警系统包括基于平台的山洪灾害防御预警系统和群测群防预警系统。基于平台的山洪灾害防御预警系统主要由信息汇集子系统、信息查询子系统、预报决策子系统和预警子系统组成,在县级以上防汛指挥部门建立,山洪灾害严重的区域应建立该系统,以获取实时水雨情信息,及时制作、发布山洪灾害预报警报;系统一般要求具有水雨情报汛、气象及水雨情信息查询、预报决策、预警、政务文档制作和发布、综合材料生成、值班管理等功能,并预留泥石流、滑坡灾害防治信息接口。群测群防预警系统包括预警发布及程序、预警方式、警报传输和信息反馈通信网、警报器设置等;预警信息、预警方式、预警信号等应根据各地的具体条件,因地制宜地确定,预警方式、预警信号应简便,且易于被老百姓接受。

图 1.2- 1 山洪灾害监测预警系统结构图

1.3 建设原则

(1)坚持以人为本,以保障人民群众生命安全为首要目标。山丘区暴雨的发生常具突发性,因山高坡陡,洪水汇流快,流速大,加之人口和财产分布在有限的低平地上,往往在洪水过境的短时间内即可造成人员伤亡和财产损失。建设山洪灾害监测预警系统,及时发布预报、警报,保障人民群众生命安全,减少灾害损失。

(2)坚持因地制宜、突出重点的原则。各省(自治区、直辖市)自然条件、经济社会状况不同,山洪灾害的成因及特点、防灾设施、工作基础等也有差别,应根据各地山洪灾害的特点,针对目前防御山洪灾害监测预警工作中存在的问题,总结成功的经验,切合实际地设计和建设监测预警系统。要突出重点,兼顾一般,按轻重缓急要求,逐步完善监测预警系统。

(3)坚持经济实用、稳定可靠、容易实施、便于操作和推广的原则。考虑本地区的暴雨特点、地形地质条件、经济状况、人员分布、交通及通信条件等实际状况,制定监测预警系统设计方案并组织实施。既要利用遥测、通讯、网络和地理信息系统等先进技术,又要充分考虑山丘区的实际条件,可以采用人工观测简易雨量筒、手摇报警器、无线广播、敲锣打鼓等适合当地条件的监测预警方式方法,扩大系统覆盖面,达到既能有效解决监测、通信及预警问题,又能节约投资的目的。同时要保证系统稳定可靠、经久耐用,尽可能地降低使用运行成本。

(4)遵循相关规程、规范。系统设计要以现行的相关水文监测、通信系统组网、软件开发、数据库构建等方面的规程、规范为依据;各种构件优选符合国家标准的型材和通用件,以利于施工的质量控制和系统运行的维护管理。

(5)充分利用现有气象、水文及地质灾害监测预警网,系统建设要与相关行业的规划、建设相协调。目前气象预报站网已基本布设到县级,水情预报站网按流域设置,地质灾害监测站在重点地区也设到县级。应充分利用现有的气象、水文、地质灾害监测预警站网,雨量站网建设要与气象发展规划协调,山洪监测预警要与地质灾害的监测预警相结合。

(6)充分利用已有资料和成果,并与国家防汛指挥系统相衔接。分析确定山洪灾害预警指标、制定监测预警方案等,要充分利用已有资料、成果及积累的经验;山洪灾害监测预警系统是国家防汛抗旱指挥系统的补充,山洪灾害监测预警系统的数据库结构要与国家防汛抗旱指挥系统的数据库结构相统一,技术标准要与国家防汛抗旱指挥系统的标准相衔接。

第二章 需求描述及分析

2.1 概述

山洪灾害监测预警系统就是由水雨情监测系统实时监视水雨情状况,查询统计出雨水情信息,之后由数据汇集系统提供实时天气预报、实时雨量信息、实时/历史台风路径、实时卫星云图等气象信息,滑坡、泥石流等隐患点基本信息及监测信息,并结合群测群防监测到的水雨情信息进行汇集统计,预报给决策子系统,决策子系统经过判断后将危险信息传于预警系统,最后预警系统将信息发给防汛人员,之后在传给社会公众,这样山洪灾害的预警就启动了。

2.2 需求描述 2.2.1. 业务需求

2.2.1.1. 水雨情监测系统

通过建设实用、可靠的水雨情监测系统,扩大山洪灾害易发区水雨情收集的信息量,提高水雨情信息的收集时效,为山洪灾害的预报预警、做好防灾减灾工作提供准确的基本信息。

水雨情监测系统以雨量监测为主,必要时辅以水位监测和流量监测,设计内容主要包含水雨情监测站网布设、信息采集、信息传输通信组网、设备设施配置等。

水雨情监测系统监测项目主要包括降雨量、水位。站类主要包括雨量站、水位站。雨量站监测雨量信息,水位站监测的信息主要包括雨量和水位。根据山洪灾害预警的需要和各地的建站条件,考虑山洪灾害易发区地形复杂、降雨分布不均、群众居住分散、地方经济发展不均衡等实际情况,水雨情监测站可建成简易监测站、人工监测站和自动监测站。

(1)简易监测站

为扩大水雨情信息的监测覆盖面,在山洪灾害防治区内的村、组设立简易监测站。因地制宜地配置简易的雨量、水位观测设施,采用直观、可行的观测方法进行水雨情信息的监测。利用本地区适用的传播方式进行信息的传输,达到群测群防的目的。

简易雨量站采用有雨观测、下大雨加强观测的工作体制,有条件时及时上报;简易水位站在有雨时或接到通知时观测,水位接近成灾水位时加强观测,有条件时及时上报。

(2)人工监测站

对于无条件建设自动监测站,但拥有公用通信资源(程控电话、移动通信网)的地区,按照人工观测站的技术要求建立相应的水雨情人工监测站。采用人工观测和管理的模式,通过语音或通话报汛进行雨量、水位信息的采集和传输。

人工监测站采用定时观测,定时报汛的工作体制,在暴雨天气状态下则加密观测、增加报汛段次。

(3)自动监测站

根据本地区的通信、经济条件,设立雨量、水位自动监测点。采用有人看管,无人值守的管理模式,配置相应的雨量、水位传感器,以及遥测终端及通信终端设备,实现水雨情信息的自动采集、传输。

自动监测站采用定时自报、事件加报和召测兼容的工作体制;对超短波组网的自动监测站,则采用增量随机自报与定时自报兼容的工作体制;人工置数信息应有反馈确认的功能。

2.2.1.2. 信息汇集与预警平台

根据各地山洪灾害防御工作的特点和山洪灾害预警决策的需求,利用通信、计算机网络、数据库应用等技术手段,建设省级或市级或县级防汛指挥部门山洪灾害防治信息汇集与预警平台,为收集山洪灾害防治区水雨情数据信息以及其它部门的相关信息、信息查询、山洪预报决策、预警等服务。

山洪灾害防治信息汇集与预警平台是山洪灾害监测预警系统数据信息处理和服务的核心,主要由计算机网络系统和数据库系统组成。基于平台的山洪灾害预警系统结构见图(2.2-1)。

图2.2-1 基于平台的山洪灾害预警系统结构图

计算机网络系统主要为系统数据接收、处理、加工与信息查询、预报决策、预警与信息发布、信息交换等服务提供硬软件平台。

数据库系统主要为系统维护管理、信息查询与服务、预报决策与预警提供数据信息。 在设计信息汇集与预警平台时,各地应结合本地现有的网络结构、通信信道、网管系统、网络设备状况,按照各自的山洪灾害监测预警系统对网络和通信的实际要求,充分利用现有资源,合理制定设计方案。

2.2.1.3. 信息汇集、信息查询子系统

信息汇集子系统与信息查询子系统主要包括监测站的实时数据接收处理和其它相关部门的共享与交换信息的处理以及各类信息的查询服务。

信息汇集子系统主要完成平台所辖各监测站的水雨情信息的实时接收、处理和入库。对其它相关部门的共享与交换信息经处理后按规定的数据库表结构存入数据库中。

信息查询子系统主要为防汛决策部门、系统维护管理等部门提供基于WEB方式的各类数据信息的查询服务。

信息汇集子系统主要由数据接收处理单元(硬件设备)和实时数据接收处理软件构成。 数据接收处理单元主要由数据接收通信设备、数据接收处理计算机、电源以及设备安装设施和避雷系统组成。

各自动监测站点的水雨情信息通过数据传输信道传输到平台后,进入数据接收处理计算

机,通过数据接收软件实时完成监测站水雨情数据的实时接收处理,并存入数据库中。人工观测的水雨情信息通过语音电话报汛方式自动存入数据库中,或通过其它的人工报汛方式收集后采用人工录入的方式存入数据库中。

对于简易监测站的信息可采用事后整理的形式存入数据库。

对于上级部门转发的相关信息经处理后,按照统一的数据格式存入数据库中。 预留气象、国土等部门信息接口,通过信息汇集与预警平台与气象、国土等部门进行信息交换,经处理后存入数据库。

2.2.1.4. 预报决策子系统. 山洪灾害预报决策子系统是基于平台的山洪灾害预警系统的重要组成部分,为各省级、市级或县级山洪灾害防御指挥部门进行山洪灾害预警提供依据。预报决策子系统包括水雨情分析预报、预警信息生成、子系统维护及管理等3个模块。

山洪灾害预报决策子系统具有水雨情分析预报、预警信息生成、系统维护和管理以及信息输出等功能。将现代信息技术和传统技术融入山洪预报预警工作中,增强山洪灾害预测预警能力,提高防灾、减灾决策的科学性。

预报决策子系统建设内容具体为: (1)水雨情分析预报模块

结合实时水雨情、气象预报信息,根据水雨情分析预报模型,对小流域、中小水库水位、流量进行预测,并输出预测结果(文字、表格或图形)。

(2)预警信息生成模块

根据预报成果及预警指标实时编制预警信息,并及时将预警信息发送至预警平台。 (3)系统维护和管理模块

该模块可以对整个系统的内容进行添加和删除,具有控制系统权限的功能。本模块为系统维护管理提供工具。

2.2.1.5. 预警子系统

预警子系统建设是在监测信息采集及预报分析决策的基础上,根据预警信息危急程度及山洪可能危害范围的不同,通过适宜的预警程序和方式,将预警信息及时、准确地传送到山洪可能危及区域,使接收预警区域人员根据山洪灾害防御预案,及时采取预防措施,最大限度地减少人员伤亡。

预警子系统主要包括预警信息的获取和预警信息的发布。根据预警信息的获取渠道不同,预警信息的获取分为从各级建立的基于平台的山洪灾害防御预警系统获取信息和群测群

防获取信息两种途径。预警信息的发布主要由各级山洪灾害防御指挥部门或者群测群防监测点上的监测人员通过预警信息传输网络和其它方式完成。预警子系统的组成见图2.2-2。

图2.2-2预警子系统组成图

预警流程

(1)基于平台的山洪灾害防御预警流程

在建立了基于平台的山洪灾害防御预警系统的地区,预警信息由该系统的预报决策子系统制作。根据平台设立的防汛指挥部门的级别不同,分为平台设立在县级、市级防汛部门两种情况。县级防汛指挥部门获取发布的预警信息,各乡(镇)政府接收县级防汛部门发布或下发的预警信息,传输给村、组、户。紧急情况下县级防汛部门可直接对村、组发布的预警信息。基于平台的预警流程见图(2.2-3) 。

图2.2-3基于平台的预警流程图

(2)群测群防预警流程

群测群防预警信息的获取来自县、乡(镇)、村或监测点。由监测人员根据山洪灾害防御培训宣传掌握的经验、技术和监测设施观测信息,发布预警信息。县级防汛指挥部门接收群测群防监测点、乡(镇)、村的预警信息,逐级发布。各乡(镇)政府除接收县防汛部门发布或下发的预警信息,还接受群测群防监测点、村和水库、山塘监测点的预警信息。村、组接受上级部门和群测群防监测点、水库、山塘监测点的预警信息。

图2.2-4 群测群防的预警流程图

2.2.1.6. 群测群防的组织体系

由于山洪灾害突发性强,从降雨到发生灾害之间的时间短,且往往在灾害发生时断电、断路、断信号,因此群测群防尤为重要。群测群防组织体系为建立县、乡(镇)、村、组、户五级山洪灾害防御责任制体系,群测群防组织指挥机构主要在县、乡(镇)、村一级建立。

1、县级组织指挥机构的构成

在县级设立指挥部,指挥部与县防汛抗旱指挥部合署办公,由县防汛抗旱指挥部统一指挥。

指挥部设政委、指挥长、副指挥长。成员由发改委、水利、国土、民政、气象、财政、建设、交通、公安、卫生等相关职能部门的负责人组成。

指挥部下设办公室、5个工作组(监测组、信息组、转移组、调度组、保障组)及应急抢险队。

2、乡(镇)组织指挥机构的构成

在乡(镇)设立山洪灾害防御指挥机构,指挥机构设指挥长、副指挥长,成员由水利、国土、民政、气象、建设、交通、公安、卫生等相关职能部门负责人组成。指挥机构下设监测、信息、转移、调度、保障等5个工作组和应急抢险队。

3、村组织指挥机构的构成

各行政村设立以村主任为负责人的山洪灾害防御指挥机构,各村应成立以基干民兵为主体的应急抢险队,确定监测预警员,并造花名册报送乡(镇)、县指挥机构备查。

接口需求

图形库中基础电子地图、水利要素分布图以及公用数据专题图等GIS数据,是由大量空间对象组成,这些空间数据的存储和管理主要有两种方式,即电子地图文件和关系数据库表。

文件形式

将不同的电子地图数据以计算机文件的方式存放于计算机中,采用文件目录的方式管理电子地图。在图形数据根目录下分别建立各自的子目录用于存放基础电子地图、水利要素分布图以及公用数据专题图,在各自的子目录下再建立子目录用于存放不同类别的电子地图文件。

由于是以文件的方式管理电子地图,其安全性只依赖于计算机操作系统。 关系数据库表形式

近年来,一些GIS应用系统开始采用大型数据库系统进行空间数据的管理,这样可以充分利用RDBMS已有的数据管理功能实现海量空间数据存贮与管理、事务处理(Transaction)、记录锁定、并发控制和数据仓库等功能,利用扩展的SQL语言对空间与非空间数据进行操作,同时可以方便地实现长事务和版本管理。尤其使空间数据与非空间数据得以集成在统一的数据平台,从而促使GIS应用与一般应用的无缝集成。同时 利用关系数据库管理空间数据的

关键在于面向对象的空间数据模型的采用。面向对象的空间数据模型的采用改变了原有GIS中图形与属性分离的概念,反映空间对象的几何图形数据只是作为一个属性字段(如BLOB字段)与其它非空间属性存贮于关系数据表的一行中。这种数据模型可以方便地定义空间对象之间、空间对象与非空间对象之间的关联关系和规则,能更好地对现实世界建模。

目前使用此技术的有ESRI ArcSDE和Oracle Spatial,MapInfo SpatialWare、SuperMap SDX+等。

性能需求

1、对软件系统的各类人机交互操作、信息查询、图形操作等应实时响应;信息查询、操作、输入界面用图形、文字和数据三种方式在计算机上展现,数据表格应具有报表打印功能;系统的操作要求简单易用。

2、采用WebGIS方式执行GIS的分析任务。通过标准的浏览器(如 IE)来访问地图服务,对于水雨情监测、预警响应的相关处理,均要求能在GIS上进行可视化处理查询,并能实现无级缩放,具备等雨量线、等雨量面等绘制功能。推荐采用1:50000的电子地图,如果没有条件,也可采用1:250000的电子地图;

3、速度要求:

WEBGIS响应速度:<5秒; 复杂报表响应速度:<5秒; 一般查询响应速度:<3秒;

安全需求

安全性要求:用户认证、授权和访问控制,支持数据库存储加密,数据交换的信息包加密,数据传输通道加密,可采用64位DES加密算法,发生安全事件时,能以事件触发的方式通知系统管理员处理;

可靠性要求:应能够连续7×24小时不间断工作,平均无故障时间>8760小时,出现故障应能及时报警,软件系统应具备自动或手动恢复措施,自动恢复时间<15分钟,手工恢复时间<12小时,以便在发生错误时能够快速地恢复正常运行,软件系统要防止消耗过多的系统资源而使系统崩溃;

2.3 需求分析 2.4 系统涉众分析

1 简易观测站:需观测员用透明盛水器皿进行雨量观测,河边需有观测员用水尺桩对水位进行观测。

2 人工观测站:观测员根据水位观测尺按照报讯的要求,以语音、短信或通话方式进行报讯。中心站工作人员记录后将信息录入计算机。

3 自动监测站:无人使用,有人看管,系统自动采集数据。

4 根据地势的不同,采用卫星,超短波,短信,gprs,pstn进行数据传输。 5 信息汇集与预警平台:防汛决策部门、系统维护管理部门的工作人员将通过浏览器对信息汇集子系统,信息查询子系统,预报决策子系统,预警子系统进行增加、删除、修改、查询的操作。

6 预报决策子系统:工作人员将得到的信息打印成表格,进行人工报警或自动报警;系统维护模块分三个权限,系统管理员、预报分析用户、信息查询用户。系统管理员掌握预报决策系统的管理权限,并可以对整个系统的内容进行修改、添加和删除,管理员可以通过此模块控制系统的发布权、删除权、表现权等所有事项;预报分析用户可查询、调用相关数据,实现水雨情分析预报,写入预警信息;信息查询用户只能查询其中内容,不能向数据库中更新、删除、写入数据。

7 预警子系统:预警信息的发布主要由各级山洪灾害防御指挥部门或者群测群防监测点上的监测人员通过预警信息传输网络和其它方式完成。根据预警信息获取途径不同,预警发布权限归属不同的防汛负责人(或防汛部门)。建立了基于平台的山洪灾害防御预警系统的地方,预警发布权限归属其对应的防汛负责人(或防汛部门),即:平台建立在县级,预警发布权限归县防汛负责人(或防汛部门)。依靠群测群防进行预警的地区,预警发布权限归属县级、乡(镇)、村的防汛负责人(或防汛部门)和监测员。

8 群防群测组织体系:

(1)在县级设立指挥部,指挥部与县防汛抗旱指挥部合署办公,由县防汛抗旱指挥部统一指挥。

指挥部设政委、指挥长、副指挥长。成员由发改委、水利、国土、民政、气象、财政、建设、交通、公安、卫生等相关职能部门的负责人组成。

指挥部下设办公室、5个工作组(监测组、信息组、转移组、调度组、保障组)及应急抢险队。

(2)在乡(镇)设立山洪灾害防御指挥机构,指挥机构设指挥长、副指挥长,成员由水利、国土、民政、气象、建设、交通、公安、卫生等相关职能部门负责人组成。

指挥机构下设监测、信息、转移、调度、保障等5个工作组和应急抢险队

(3)各行政村设立以村主任为负责人的山洪灾害防御指挥机构,各村应成立以基干民兵为主体的应急抢险队,确定监测预警员,并造花名册报送乡(镇)、县指挥机构备查。

2.5 功能需求分析 2.6 水雨情监测系统

2.3.2.1.1. 简易监测站

为扩大水雨情信息的监测覆盖面,在山洪灾害防治区内的村、组设立简易监测站。因地制宜地配置简易的雨量、水位观测设施,采用直观、可行的观测方法进行水雨情信息的监测。

雨量、水位的观测:

(1)雨量观测 :为便于观测员能直观和方便地观测雨量,承水器皿可设计为透明的装置,并根据区域内雨情的临界值或降雨强度,在承水器皿外进行划分或标注明显的预警标志。

(2)水位观测:在岸边修建简易的水尺桩,水尺桩可设计为木桩式或石柱型;对于无条件建桩的观测站,可选择离河边较近的固定建筑物或岩石上标注水位刻度;水位观测尺的刻度以方便观测员直接读数为设置原则,各地应根据当地的实际情况,以现场标注致灾的临界水位值的方法,作为预警的标准。

通信方式:

简易监测站的设站目的是群测群防。当降雨将可能达到临界雨量值或水位将可能达到临界水位值时,观测员可采用人工传递或采用对讲机报告给乡(镇)、村防灾负责人,有条件的可采用电话或手机逐级报送到县级防御指挥部;紧急情况时,可直接向村、组、户发出预警。有条件的地方可给观测员配置对讲机、移动电话等。

2.3.2.1.2. 人工监测站

对于无条件建设自动监测站,但拥有公用通信资源(程控电话、移动通信网)的地区,按照人工观测站的技术要求建立相应的水雨情人工监测站。采用人工观测和管理的模式,通过语音或通话报汛进行雨量、水位信息的采集和传输。

人工监测站采用定时观测,定时报汛的工作体制,在暴雨天气状态下则加密观测、增加报汛段次。

雨量、水位观测:

(1)雨量观测:应配置虹吸式雨量观测设备;确定设备的安装方式,设计必要的安装设施;观测员按照报汛的要求,以语音或通话方式进行数据传输。

(2)水位观测:对于新建的水位站需修建水位观测尺和观测道路;观测员按照报汛的要求,以语音、短信或通话方式进行报汛。

通信方式:

人工监测站通常采用语音报汛进行数据传输,测站需要配备电话线路和电话机,中心站配置语音卡和计算机,实现报汛信息的自动接收、处理和入库;对不具备电话通信条件但已

被移动通信所覆盖的地区,测站可配置手机采用移动电话报汛,中心站人工记录校核后录入到计算机。

对于没有公共通信可利用的地区,可根据测站距中心站的距离、地形条件,采用短波通信或超短波通信方式报汛。采用短波通信,测站和中心站均需配置短波电台、天馈线及电源。采用超短波通信测站和中心站均需配置超短波电台、天馈线及电源,距离较远或有阻挡时,需建设中继站进行接力。

2.3.2.1.3. 自动监测站

根据本地区的通信、经济条件,设立雨量、水位自动监测点。采用有人看管,无人值守的管理模式,配置相应的雨量、水位传感器,以及遥测终端及通信终端设备,实现水雨情信息的自动采集、传输。

自动监测站采用定时自报、事件加报和召测兼容的工作体制;对超短波组网的自动监测站,则采用增量随机自报与定时自报兼容的工作体制;人工置数信息应有反馈确认的功能。

雨量、水量观测:

(1)雨量观测: A雨量观测场地

①雨量监测站原则上不新建雨量观测场,已建有雨量观测场的站,将雨量传感器放置在雨量观测场内;

②未建雨量观测场的站,则利用屋顶平台予以观测,但安装时应注意与建筑物、树木等障碍物的水平距离为障碍物高度的两倍。

B雨量传感器 ① 承雨口口径:Φ200

+0.6

mm;

② 分辨力:当测站为基本雨量站时,年平均降雨量≥800mm的测站采用0.5mm的雨量传感器,年平均降雨量<800mm的测站采用0.2mm的雨量传感器;对于非基本雨量站,南方湿润地区可选用1.0mm的雨量传感器,北方干旱或半干旱地区可选用0.5mm的雨量传感器;

③ 测量误差(准确度):较大降雨量的误差采用实测降雨量与其自身排水量相比较的相对误差检验;较小降雨量采用绝对误差检验。不同分辨力的雨量传感器量测精度详见表2.4-1 ④环境条件:工作温度0℃~+50℃,工作湿度≤95%(40℃); ⑤可靠性指标:在满足仪器正常维护条件下,MTBF≥25000小时。 (2)水位观测: A水位传感器选用

各省(自治区、直辖市)可根据实际情况选用浮子水位计、压力水位计和超声水位计进行水位观测。对已建有水位自记井且可利用的监测站选用浮子式水位传感器;未建井或不能建井的测站,视河流及水情特点配备压力式(压阻式、气泡式)或超声式水位传感器,主要技术指标应满足:

①分辨率:水位传感器的分辨率为1cm。

②测量误差:95%测点的允许误差±2cm,99%测点的允许误差±3cm。 ③环境条件:工作温度-30℃~+50℃,工作湿度 <95%(40℃)。 ④可靠性指标:在满足仪器正常维护条件下,MTBF≥25000小时。 B水位自记观测井建设要求

适宜新建水位自记观测井的测站,应以建设简易水位自记井为原则。井筒可采用直立式或斜井式,一般可选用水泥管、钢管、铸铁管或PE管;井口直径应根据所采用的浮子式水位计及有关水位观测技术标准进行设计,同时需考虑防淤积的措施。

C气泡压力式水位计安装要求

①气泡压力式水位计应放置在位于基本水尺断面处的仪器房内,其传感器感应探头需设置在水面以下。

②管道敷设时应沿河岸护坡顺坡而下,不能出现负坡,以免感压管内结露,形成水栓。 ③为解决大变幅水位观测问题,可结合各站实际情况,分多级敷设压力感压气管或至中水处敷设感应探头。

通信方式:

自动监测站的数据传输通信,各省(自治区、直辖市)应根据当地的通信资源及地形条件因地制宜地选用超短波、GSM短信、GPRS、北斗卫星、PSTN通信方式组网。

(1)北斗卫星通信系统

北斗卫星通信系统由卫星及网管中心、监测站、中心站组成,其通信网络结构示意见图2.3-1。在北斗卫星通信网络中,监测站和中心站需配置北斗卫星通信终端及天馈线等主要通信设备。

图2.3-1北斗卫星通信系统网络结构示意图 (2)GPRS通信系统

GPRS通信数据传输网络结构示意见图2.3-2。GPRS接入方式主要有Internet接入、专线接入,可根据需求选用。采用GPRS通信组网,监测站需配置GSM/GPRS通信终端,中心站则根据接入方式不同,需配置接入Internet的固定IP或专线。

图2.3-2 GPRS通信组网结构示意图 (3)程控电话(PSTN)通信

在程控电话(PSTN)通信网中,监测站和中心站均需申请一门程控电话,并配置有线MODEM和电话避雷器等主要通信及避雷设备。PSTN通信网设备配置见图2.3-3。

图2.3-3程控电话(PSTN)通信设备配置示意图

(4)超短波通信

在超短波通信网中,测站、中继站、中心站所必需的主要通信设备为超短波电台及天馈线、同轴避雷器,其典型的设备配置示意见图2.3-4。

图2.3-4超短波通信设备配置示意图

(5)短信通信

利用短信通信实现数据传输,各地可根据需求采用点对点通信或申请特服号专线连接。 用短信通信方式组成数据传输网,在测站需配置短信通信终端及天线、 SIM卡,中心站则根据选用的组网方式不同配置短信通信终端及天线、SIM卡或者配置短信专用服务器及专线等,组网结构见图2.3-5。

图2.3-5 GSM通信组网结构示意图

对于有公网覆盖的地区,一般应选用公网进行组网;对于公网未能覆盖的丘陵和低山地区,一般宜选用超短波通信方式进行组网;对于既无公网,又无条件建超短波的地区,则选用卫星通信方式;对于重要监测站且有条件的地区尽量选用两种不同通信方式予以组网,实现互为备份,自动切换的功能,确保信息传输信道的畅通。

2.2.3.1. 信息汇集与预警平台

信息汇集与预警平台数据库系统是在选择一个合适的数据库管理平台的基础上建立包括实时水雨情数据库、预报预警成果以及气象数据库、工情数据库、管理数据库和超文本数据库等,以实现数据信息与服务共享的要求。

建立在省或市、县等不同行政区的山洪灾害信息汇集与预警平台对数据库系统的要求不尽相同,因此,可按照各地的具体情况选择合适的数据库操作系统。

数据库操作系统的选型应与当地所建的国家防汛抗旱指挥系统水情分中心的数据库选型相一致。对数据库操作系统的其它要求可根据各省、市、县的实际需求并结合以下几个方面予以考虑:

(1)依照实用的原则和处理的数据量大小以及对分布式应用的支持要求,来选择适当的数据库系统。

(2)为实现数据库数据的实时共享,数据库系统应具有并发控制功能。

(3)在选择专业数据库时必须考虑数据库设计的难易程度。是否便于系统的维护、开发、移植;是否有面向用户的易用的开发工具,先进的数据库开发工具将大大减少系统开发和运行维护的工作量。

(4)数据库系统对数据库管理和维护的支持程度,也是选择数据库系统的一个重要的参考指标。主要是指数据库系统的用户管理、权限管理、数据库备份、数据传递等功能,这些功能将对系统运行的稳定性和安全性有很大的影响。

(5)选择数据库系统是否有比较配套的开发工具支持。 (6)数据库系统的升级能力。 数据库设计要求: (1)数据库设计内容

信息汇集与预警平台数据库从内容上可划分为属性数据库和图层空间数据库。 属性数据库主要包括:水雨情信息数据库、气象信息数据库、工情信息数据库、经济社会信息库、灾情数据库、单位机构信息数据库、图形图像数据库和超文本数据库等。

空间数据库主要包括各省、市或县区域图、行政区划图、流域水系图、水库山塘分布图、报汛站点分布图、防洪工程布置图、交通设施图、安全区和危险区分布图等。

(2)数据库表结构

数据库表结构应按照《国家防汛指挥系统工程》对实时雨水情数据库表结构、防洪工程

数据库表结构等进行设计;其它各类数据库应结合各地的灾害特点、实际需要和资料情况,进行合理设计。

2.2.3.2. 信息汇集、信息查询子系统

1、信息汇集子系统

信息汇集子系统与信息查询子系统主要包括监测站的实时数据接收处理和其它相关部门的共享与交换信息的处理以及各类信息的查询服务。

根据平台接收的数据信息特点,数据接收处理软件总体结构设计应满足如下要求: (1)能实时接收自动监测站的水雨情数据和工况信息; (2)具有对自动监测站进行远程控制功能;

(3)能实时处理接收的数据信息,并分类存入数据库中; (4)具有数据查询与维护功能; (5)具有人工数据的录入功能;

(6) 软件运行环境支持中文Win2000/中文WinXP等操作系统。

2、信息查询子系统

为了实现对山洪灾害监测信息的访问、查询和比较,需要开发与之配套的查询系统。针对山洪灾害防御的实际需求和信息的查询方便,结合现代信息处理技术、网络技术和GIS技术,在水雨情信息、气象信息、工情信息、灾情信息、山洪灾害防治预案、规章制度等多种信息一体化集成基础上,提供对数据库水雨情、气象基础数据、工情、灾情的查询、检索及分析对比功能。

系统开发要求:

(1)以数据库为接口,进行数据查询软件的设计和开发,查询结果应采用表格、图形等方式进行展示。

(2)信息查询软件具有通用性,信息的范围、内容能够实现自定义。

(3)具有强大的信息输出和表现功能。除具备基础信息、水情信息、雨情信息、统计信息和分析信息数据表现外,还具备图形化查询功能,如:过程线、柱状图等多种方式展示,展示方式可由用户选择。

(4)对整编信息能分时段查询,如:可以进行年、月、旬、日等时段的查询和统计值的查询。

(5)丰富的系统页面可以对数据进行分析、比较,具有生成各项统计报表的功能和打印功能。

(6)软件可采用B/S和C/S两种结构相结合的模式开发,为了获得较好的系统运行效率,有条件的建议采用B/S方式来组织软件体系,同时充分利用C/S结构的优点,系统的部分辅助性的功能使用C/S结构实现。没有条件的可采用C/S体系结构。 设计内容和功能要求:

2.2.3.3. 预报决策子系统

2.2.3.3.1. 水雨情分析预测模块

对于有水文资料的流域,可以利用已有水文资料采用常规的方法编制预报方案。但对于大部分小流域而言,水文站点稀少,水文资料缺乏,因此可以采用以下几种预报方法:

(1)降雨径流预报方法

产流根据各地实际情况可采用折减系数(径流系数)、降雨径流关系、初损后损等方法计算。

汇流根据山洪沟的实际情况,可采用单位线(经验单位线、瞬时单位线、综合单位线)、汇流系数(曲线)等方法计算。

有条件时可利用DEM和GIS提取的山洪灾害防治区小流域的特征,建立分布式洪水预报模型。

(2)上下游水位(流量)相关法

对于上、下游有水位(文)站的河流,则可运用历史水位、流量资料,建立上游水位、流量和下游水位、流量相关关系。对于上游有水位(文)站,下游(或灾害点上游)没有水位(文)站的河流,但下游可以调查到较大洪水的洪峰水位,则可利用上游的实测水文资料和下游的调查资料,建立上下游水位相关关系,编制水位相关预报方案。

(3)雨量水位(流量)相关法

对于流域面积小、汇流时间短的山洪沟,根据实测或调查的降雨量和灾害点上游实测或调查的水位(流量)资料建立流域降雨与灾害点上游的水位(流量)相关关系,编制预报方案。

(4)比拟法

对于无水文资料的山洪沟,可借用临近水文气象和地理条件相似流域的预报方案,必要时对相关参数进行适当调整。在收集到水文气象资料以后,修订相关参数或重新编制预报方案。

以上编制的预报方案,在有实测资料或有新的调查资料后应及时进行修编和重新编制。

2.3.2.3.1. 预警信息生成模块

1、预警指标

发的预警指标是指触发山洪灾害的雨、水情临界值。山洪灾害预警条件、预警时间以是否接近、达到、超过临界雨量和成灾水位(流量)为主要的依据。预警指标的确定,需要分析利用现有历史灾害、雨量、水位(流量)资料,通过分析计算得到,缺乏资料的山洪灾害

地区可以采用内插法、比拟法、山洪灾害实例调查法、灾害与降雨频率分析法等方法确定本地区的临界雨量、成灾水位(流量)。

(1)临界雨量分析计算

一般情况下,南方湿润地区年降雨量大的地区,临界雨量较大,北方干旱地区年降雨量小的地区,临界雨量较小。但各灾害点因地质、地形、气候等条件不同临界雨量差异较大,各地区应根据当地降雨特点,利用现有资料分析计算确定各灾害点的临界雨量。随着资料的积累及灾害的发生,临界雨量应不断进行校核与修订。

(2)成灾水位(流量)分析计算

对于已布设水位站或水文站的灾害点,只需要将历史上发生的所有山洪灾害对应的水位(流量)进行统计,其最小值就是成灾水位(流量)初值,根据灾害点的地形资料确定成灾水位(流量)。对于过去未设但拟布设水位或水文站,站址对应灾害点的成灾水位(流量)可由灾害点的成灾水位(流量)换算得到。换算方法一般可采用水面比降法、河道比降法等。设站以后,根据水文观测资料对成灾水位(流量)进行校核与修订。

2、预警信息编制

根据实时水雨情、水文气象预报信息及预警指标,决定是否编制预警信息。山洪灾害预警等级一般分为三级。具体内容如下:

(1)Ⅲ级警报

当预报有强降雨发生,降雨可能接近或达到临界雨量,或者预报水位(流量)可能接近或达到成灾水位(流量),将可能发生山洪灾害时,编制Ⅲ级预警信息。

(2)Ⅱ级警报

当已有强降雨发生,预报降雨可能达到临界雨量,降雨还将持续,或者预报水位(流量)可能达到成灾水位(流量),山洪灾害即将发生时,编制Ⅱ级预警信息。

(3)Ⅰ级警报

当已有强降雨发生,实测降雨接近或达到临界雨量,且前期降雨量接近山洪形成区土壤饱和含水量,预报降雨将持续,实测水位(流量)接近或达到成灾水位(流量),水位(流量)仍在上涨,将发生严重山洪灾害时,编制Ⅰ级预警信息。

3、系统维护和管理

针对现有的水雨情数据、预报方案、灾情数据、预警指标等进行系统维护和管理,对数据进行编辑、录入及各类参数设定等。

(1)水雨情数据维护

山洪灾害防治区实时雨量监测信息,各中小流域、中小型水库水位、流量实时监测信息,

是系统的数据支撑和运行基础,建立水雨情数据的维护模块以对这些信息进行简单的录入、数据的编辑及对数据的检查和分析,能有效的保证数据的正确性和合理性。

(2)预报方案管理

为不同的地区指定相应的预报方案并存入方案库,同时为各预报方案设定初始的模型计算参数,建立预报方案管理维护模块和模型参数维护模块,方便不同地区之间的预报方案管理。

(3)预警指标设置

设置预警指标,对触发山洪灾害的雨、水情临界值进行维护和管理,制定各地区的临界雨量表、成灾水位(流量)表。建立预警指标数据库,随着资料的补充和系列的延长,对预警指标进行补充、更新等。

(4)权限管理

系统对用户名和密码等资料可进行添加、删除和维护,并对不同用户实行分级管理。具有系统管理员身份才能对系统进行维护管理。

预报决策子系统用户分三级进行管理:系统管理员、预报分析用户和信息查询用户。山洪灾害监测预警系统平台所在地(省、市、县)设置系统管理员权限和预报分析用户;其他用户为信息查询用户。

为保证系统运行安全,系统管理员掌握预报决策系统的管理权限,并可以对整个系统的内容进行修改、添加和删除,管理员可以通过此模块控制系统的发布权、删除权、表现权等所有事项;预报分析用户可查询、调用相关数据,实现水雨情分析预报,写入预警信息;信息查询用户只能查询其中内容,不能向数据库中更新、删除、写入数据。

2.2.3.4. 预警子系统

1、预警信息发布 (1)预警发布权限

根据预警信息获取途径不同,预警发布权限归属不同的防汛负责人(或防汛部门)。 建立了基于平台的山洪灾害防御预警系统的地方,预警发布权限归属其对应的防汛负责人(或防汛部门),即:平台建立在县级,预警发布权限归县防汛负责人(或防汛部门)。

依靠群测群防进行预警的地区,预警发布权限归属县级、乡(镇)、村的防汛负责人(或防汛部门)和监测员。

(2)预警发布内容

预警发布内容包括:暴雨洪水预报信息,暴雨洪水监测信息,水库及山塘水位监测信息,降雨、洪水位是否达到临界值,流量监测信息预警信息等级等。

(3)预警信息发布对象

预警信息发布对象为可能受山洪威胁的城镇、乡村、居民点、学校、工矿企业等。根据预警等级确定不同的发布对象。

(4)预警发布方式

预警发布方式分为通信网络畅通下的预警发布方式和无通信网络(或通信网络中断)下的预警发布方式两种情况。建立短信预警发布平台和电话传真预警发布平台,在规定的条件下自动发送山洪灾害预警信息。

通信网络畅通时,预警信息发布单位或责任人利用internet公网、语音电话、手机通话、手机短信、传真、有线电视、广播等及时向下发布预警信息,各级根据接收的预警信息,按照预案采取相应的措施。

在无通信网络(或通信网络中断)时,根据当地预警设备配置情况和山洪灾害危险情况,按照预案中事先确定的报警信号,利用发送信号弹、鸣锣、启动报警器和无线广播、高音喇叭喊话等方式,向灾害可能威胁区域发送警报。

短信预警发布平台提供短信群发功能,能向列表中的各级主管领导、责任人自动发送山洪灾害预警短信。

电话传真预警发布平台能自动向列表中的各个单位传送山洪灾害预警信息或调度指示文件等,克服人工拨号打电话、发传真,费时易出差错的问题。

(5)预警信息发布软件开发

预警信息发布软件主要完成预警信息的处理和发布。为了获得较好的系统运行效率和方便使用,有条件的地区建议采用B/S体系结构、并充分利用C/S结构的优点进行开发,没有条件的地区可采用C/S体系结构开发。

预警信息发布软件开发要求如下:

① 能提供电话、短信、广播通知自动发布功能,可实现预警信息自动传真群发布、短信发送和广播通知等。

② 软件开发应基于省、市、县山洪灾害数据汇集及预警平台,利用山洪灾害预警平台统一设计的数据库结构。

③ 系统要求做到界面清晰,接口标准,操作简单。

2、预警信息通信方式

根据山洪灾害的特点,可用于预警信息传输的通信方式有电视、广播、Internet网络、电话、传真、移动通信、短信、报警器、锣鼓号等,各地可根据当地经济状况、现有通信资源条件以及各种通信方式的适用性,并考虑山洪灾害预警信息传输的时效性和紧急程度,选用适宜的通信方式组建山洪灾害预警信息传输通信网。

为保障预警信息能及时发布到乡(镇)、村、组、户,有条件的县与乡(镇)应尽可能建立双信道的通信网络,以保证一种信道通信中断时预警信息能够顺利传递。

(1)固定时间发布的预警信息,接收的对象主要是公众,应充分考虑通信覆盖面,综合选择多种方式同时发布,可选择电视、广播、短信、自动传真等与群众生活联系紧密的通信平台。

(2)不定时的山洪灾害警报信息,时效性要求比较强,通过电话、移动电话等直通方式进行通信。对于特别紧急的情况,警报传输通信必须各种方式并用。当公共通信(固定电话、移动电话)均遭山洪破坏而失效时,有条件的地区可采用卫星通信方式进行应急通信。

(3)对于公共通信条件较好、且运行维护费用有保障的地区可综合运用固定电话、移动通信通话和短信、传真、internet网络、有线电视和广播警报系统的多种方式。

(4)山高、地形复杂、人口密度低、缺乏电力供应的山丘区,电话、传真、internet网络等发布方式都难以实现,或者山洪灾害造成这些信息发布方式都中断时,可采用短波通信或超短波通信进行预警信息传输。

(5)对于没有公共通信条件,人口居住比较分散的偏僻山村,可以通过广播、喇叭、锣鼓、报警器、烟火、人力等根据已设定的预警信号发布预警信息。

第三章 总体设计

3.1 总体设计目标

山洪灾害监测预警系统主要包括水雨情监测系统和预警系统。为更好地发挥系统的防灾减灾作用,还需建立群测群防的组织体系,加强宣传培训。

水雨情监测系统主要包括水雨情监测站网布设、信息采集、信息传输通信组网、设备设施配置等。乡(镇)、村自身预警的监测设施,一般以简易的为主;县级以上可根据经济状况和山洪灾害特点,布置有一定技术含量、实用、先进、自动化程度较高的设施。汇入山洪灾害防治信息汇集及预警平台的水雨情监测信息以县级以上的自动遥测信息为主,群测群防水雨情监测信息以乡(镇)、村简易观测信息为主。根据我国山洪灾害范围广、成因复杂的特点,要加密现有水文气象部门的监测站网,以控制水雨情,及时发布预警信息。

山洪灾害预警系统由基于平台的山洪灾害防御预警系统和山洪灾害群测群防预警系统组成。基于平台的山洪灾害防御预警系统中的山洪灾害防治信息汇集及预警平台是该预警系统数据信息处理和服务的核心,主要由信息汇集子系统、信息查询子系统、计算机网络子系统和数据库子系统组成;基于平台的山洪灾害防御预警系统主要由信息汇集子系统、信息查询子系统、预报决策子系统和预警子系统组成,在县级以上防汛指挥部门建立,山洪灾害严重的区域应建立该系统,以获取实时水雨情信息,及时制作、发布山洪灾害预报警报;系统一般要求具有水雨情报汛、气象及水雨情信息查询、预报决策、预警、政务文档制作和发布、综合材料生成、值班管理等功能,并预留泥石流、滑坡灾害防治信息接口。群测群防预警系统包括预警发布及程序、预警方式、警报传输和信息反馈通信网、警报器设置等;预警信息、预警方式、预警信号等应根据各地的具体条件,因地制宜地确定,预警方式、预警信号应简便,且易于被老百姓接受。

群测群防的组织体系主要包括建立县、乡(镇)、村、组、户五级山洪灾害防御责任制体系,明确县、乡(镇)、村、组防御山洪灾害的组织机构、人员设置、职责等。通过建立群测群防责任制组织体系,保障县、乡(镇)、村、组、户防灾信息上传下达畅通,监测、预警、避灾措施落实。

宣传培训包括防灾知识的普及,防灾准备,监测、警报设施的维护和操作,预案的宣传、演练等。

3.2 总体设计原则

(1)可靠性:系统应保证长期安全地运行。系统中的硬软件及信息资源应满足可靠性设计要求。

(2)安全性:系统应具有必要的安全保护和保密措施,有很强的应对计算机犯罪和病毒的防范能力。

(3)容错性:系统应具有较高的容错能力,有较强的抗干扰性。对各类用户的误操作应有提示或自动消除的能力。

(4)适应性:系统应对不断发展和完善的统计核算方法、调查方法和指标体系具有广泛的适应性。

(5)可扩充性:系统的硬软件应具有扩充升级的余地,不可因硬软件扩充、升级或改型而使原有系统失去作用。

(6)实用性:注重采用成熟而实用的技术,使系统建设的投入产出比最高,能产生良好的社会效益和经济效益。

(7)先进性:在实用的前提下,应尽可能跟踪国内外最先进的计算机硬软件技术、信息技术及网络通信技术,使系统具有较高的性能指标。

(8)易操作性:贯彻面向最终用户的原则,建立友好的用户界面,使用户操作简单直观,易于学习掌握。

3.3 总体逻辑架构设计

由于山洪预见期短、致灾快,因此为有效防御山洪灾害,需特别加强县级以下行政区的防灾工作。根据我国目前县级以下行政区的经济社会发展状况、技术水平、防灾特点以及各级防汛部门在防灾中的作用,提出以下三种监测预警系统建设基本模式:

模式一:在县级行政区建立基于平台的山洪灾害预警系统,省、市、县、乡(镇)、村等各方面的山洪灾害防治相关信息汇集于平台,县级防汛部门根据系统信息,及时发布预报、警报。同时县、乡(镇)、村、组建立群测群防的组织体系,开展监测、预警工作。

这种模式适宜于山洪灾害严重,县级防汛部门有能力建立山洪灾害防治信息汇集及预警平台,省、市、县信息实现共享,县级防汛部门能制作山洪灾害预报警报的县级行政区。

模式二:县、乡(镇)、村、组建立群测群防的组织体系,依靠县、乡(镇)、村、组的

监测设施,结合省级、市级防汛部门的信息、指令,开展监测预警工作。县、乡(镇)、村根据暴雨、洪水及水库(山塘)等监测信息,发布预报警报。一般按县→乡(镇)→村→组→户的次序进行山洪灾害预警;遇紧急情况(暴雨洪水陡涨、水库山塘溃坝等)村可直接报告县级防汛指挥部和乡(镇)防汛指挥机构,并可直接发布预警。

这种模式适宜于尽管山洪灾害严重,但经济条件差,不具备建立山洪灾害防治信息汇集及预警平台的人、材、物等条件的地区;或者山洪灾害总体不严重的区域。我国部分省级行政区面积大、人口密度较小,市、县经济发展水平较低,山洪灾害防御立足于群测群防,依靠建立县、乡(镇)、村、组防御山洪灾害的组织体系和加强宣传培训,采用简易设施开展山洪灾害的监测预警工作。

模式三:在市级行政区建立基于平台的山洪灾害预警系统,省、市、县收集的山洪灾害防治相关信息汇集于系统,市级防汛部门根据系统信息,及时发布预报、警报;县级防汛部门配置信息接受终端,与市级防汛部门山洪灾害防治信息汇集及预警平台信息实现共享,县级以下部门执行市级防汛部门的指令。同时县、乡(镇)、村、组建立群测群防的组织体系,开展监测、预警工作。

这种模式适宜于市级行政区内局部地区山洪灾害严重,县级行政区经济条件差,防汛部门力量相对较弱,市级防汛部门更有能力建立信息汇集及预警平台,发布预报、警报的区域。

对不同山洪灾害特点、不同经济社会发展水平的区域要因地制宜地制定山洪灾害监测预警系统建设方案。地处东部季风区、山洪灾害严重的区域,若经济发展水平相对较高,宜采用模式一;省级行政区面积大、人口密度小,市级、县级行政区经济发展水平较低的区域,宜主要采用模式二;对市级行政区局部地区山洪灾害严重,县级行政区经济发展水平较低,防汛部门力量相对较弱的区域,可采用模式三。

3.4 网络系统设计

(1)网络体系结构

计算机网络对外互联采用TCP/IP协议,局域网内部应支持TCP/IP等协议。 目前比较流行和成熟的计算机网络系统应用集成的体系结构模式主要有客户/服务器(CLIENT/SERVER,简称C/S)两层体系结构模式以及浏览器/服务器(BROWSER/SERVER,简称B/S)三层体系结构模式。B/S结构具有良好的扩充性,对客户端没有任何特殊要求,对用户数也没有限制,只需支持网络并具有浏览器功能即可。B/S模式只在服务器端安装应用程序,客户端不须安装程序,直接使用IE或其他浏览器即可使用,修改应用程序只与服务器有关,客户端不作任何改动,操作简单,维护方便。C/S结构具有较强的互动性,特别有利于系统的维护和复杂功能的实现,可以对信息进行各种操作,在高速网络环境下可以满足不同用户的需要。

因此,根据上述各自特点,系统信息的查询与发布等应用系统建议采用B/S三层体系结构,信息汇集子系统则可采用C/S体系结构。

(2)网络拓扑结构

山洪灾害信息汇集与预警平台计算机网络结构采用以太网交换技术。千兆位以太网或快速以太网交换技术成熟,组网性价比高,是当前的主流网络交换技术,本平台的计算机网络系统可采用千兆位以太网或快速交换式以太网技术,拓扑结构采用星形结构。

对外数据信息共享与交换可通过路由器与光纤或专线连接的方式实现。在设计时提出各条线路的带宽要求。

注:三种监测站通过传输通信网将信息传入信息汇集系统,根据当地不同的情况选择不同的传输方式。对于有公网覆盖的地区,一般应选用公网进行组网;对于公网未能覆盖的丘陵和低山地区,一般宜选用超短波通信方式进行组网;对于既无公网,又无条件建超短波的地区,则选用卫星通信方式。

3.5 平台选择

服务端操作系统:Microsoft Windows Server 2003 服务端数据库:Microsoft SQL Server 2008 服务端Web服务:IIS 5.0以上 GIS平台:Supermap或Topmap 客户端操作系统:Microsoft Windows XP SP2以上 客户端浏览器

:Internet Explorer 5.5以上

网络版杀毒软件:根据各试点县具体用户量配置客户端;

3.6 标准规范设计

根据贵方项目的要求和国家有关法规的要求,我们经过认真研究、分析设计本系统方案。该系统具有性能先进、质量可靠、经济实用等特点,而且该系统具有方便扩展、与其它信息系统实现无缝连接的能力。为实现安防系统的可视化管理奠定了基础。

依据的相关规范包括:

《工业企业通用设计规范》(GBT42-81) 《中华人民共和国公共行业标准》(GA/T70-94) 《安全防范工程程序与要求》(GA/T75-94)

《电气装置安装工程施工及验收规范》(BGJ232.90.92) 《民用闭路监视电视系统工程技术规范》(GB50198-94) 《民用工业建筑电气设计规范》(GJT16-92)

.

第四章 详细设计

4.1 技术架构设计

4.1.1设计思路 在软件体系架构设计中,分层式结构是最常见,也是最重要的一种结构。微软推荐的分层式结构一般分为三层,从下至上分别为:数据访问层、业务逻辑层(又或成为领域层)、表示层。

三层结构原理:

3个层次中,系统主要功能和业务逻辑都在业务逻辑层进行处理。 所谓三层体系结构,是在客户端与数据库之间加入了一个“中间层”,也叫组件层。这里所说的三层体系,不是指物理上的三层,不是简单地放置三台机器就是三层体系结构,也不仅仅有B/S应用才是三层体系结构,三层是指逻辑上的三层,即使这三个层放置到一台机器上。 三层体系的应用程序将业务规则、数据访问、合法性校验等工作放到了中间层进行处理。通常情况下,客户端不直接与数据库进行交互,而是通过COM/DCOM通讯与中间层建立连接,再经由中间层与数据库进行交互。

1、表示层

位于最外层(最上层),离用户最近。用于显示数据和接收用户输入的数据,为用户提供一种交互式操作的界面。

2、业务逻辑层

业务逻辑层(Business Logic Layer)无疑是系统架构中体现核心价值的部分。它的关注点主要集中在业务规则的制定、业务流程的实现等与业务需求有关的系统设计,也即是说它是与系统所应对的领域(Domain)逻辑有关,很多时候,也将业务逻辑层称为领域层。例如Martin Fowler在《Patterns of Enterprise Application Architecture》一书中,将整个架构分为三个主要的层:表示层、领域层和数据源层。作为领域驱动设计的先驱Eric Evans,对业务逻辑层作了更细致地划分,细分为应用层与领域层,通过分层进一步将领域逻辑与领域逻辑的解决方案分离。 业务逻辑层在体系架构中的位置很关键,它处于数据访问层与表示层中间,起到了数据交换中承上启下的作用。由于层是一种弱耦合结构,层与层之间的依赖是向下的,底层对于上层而言是“无知”的,改变上层的设计

对于其调用的底层而言没有任何影响。如果在分层设计时,遵循了面向接口设计的思想,那么这种向下的依赖也应该是一种弱依赖关系。因而在不改变接口定义的前提下,理想的分层式架构,应该是一个支持可抽取、可替换的“抽屉”式架构。正因为如此,业务逻辑层的设计对于一个支持可扩展的架构尤为关键,因为它扮演了两个不同的角色。对于数据访问层而言,它是调用者;对于表示层而言,它却是被调用者。依赖与被依赖的关系都纠结在业务逻辑层上,如何实现依赖关系的解耦,则是除了实现业务逻辑之外留给设计师的任务。

3、数据层

数据访问层:有时候也称为是持久层,其功能主要是负责数据库的访问,可以访问数据库系统、二进制文件、文本文档或是XML文档。 简单的说法就是实现对数据表的Select,Insert,Update,Delete的操作。如果要加入ORM的元素,那么就会包括对象和数据表之间的mapping,以及对象实体的持久化。 本系统包括水雨情监测站网布设、信息采集、信息传输通信组网、设备设施配置等。用户需要在网站上浏览水雨情信息,固采用服务架构,B/S的三层结构。

4.1.2设计原则

1、要保证软件的高内聚低耦合性,所以我们选择了三层结构。

2、系统要保证长期安全运行,硬软件及信息资源要满足可靠性要求。

3、要做好安全保护,有防范病毒的能力。

4、系统应对不断发展和完善的统计核算方法、调查方法和指标体系具有广泛的适应性。

5、因为系统所需硬件很多,而且随着时间的退役硬件会有更新,所以系统的硬软件应具有扩充升级的余地,不可因硬软件扩充、升级或改型而使原有系统失去作用。

6、使用系统的人群从乡镇,到县城,到地级市,到省里,人员混杂,对电脑的使用能力不一,固要建立友好的用户界面,使用户操作简单直观,易于学习掌握。

架构决策

选择三层结构,是为了软件的高内聚低耦合性。选择B/S模式,是因为主要操作用户是通过浏览器使用软件。 技术架构

系统架构在WebGIS的底层ArcObjects之上,地图显示,相应的地图操作以MapControl为依托。山洪灾害防治规划信息系统采用三层体系结构,以数据库为基础,采用中间件和组件技术,实现数据管理、区划成果分析等应用。并提供良好的人机交互界面。系统采用B/S架构开发,B/S模式的管理系统负责数据的入库、数据的组织维护、图件与报表的组织生成,数据信息输出等功能。运用本系统可以方便的查询各类信息,对查询结果进行统计、输出,提供各种方式的灾害信息统计较好的辅助了规划工作。

功能设计 数据获取

从指定的数据源获取数据,数据获取的方法包括人工数据录入、自动数据获取两种方式; 数据处理

数据处理是指把获取到的数据按照目标数据库进行预处理、校验、分类、入库操作; 配置管理

配置管理模块能够对系统的数据源信息配置、目的数据库配置、运行控制参数等进行配置; 监视统计

对系统的运行状态、数据汇集日志进行监视,对系统运行情况和数据汇集情况进行分析统计。

4.2 设计安全

安全性要求:用户认证、授权和访问控制,支持数据库存储加密,数据交换的信息包加密,数据传输通道加密,可采用64位DES加密算法,发生安全事件时,能以事件触发的方式通知系统管理员处理;

4.3 用户界面设计

考虑操作直观、方便的要求,系统应对所有水雨情、气象、工情、灾情信息数据模块建立公共的查询接口,界面简洁一致,表现方式灵活。主要设计内容和功能要求如下。 (1)系统主界面

用户可通过IE浏览器访问系统,在IE浏览器地址栏输入网站地址,进入系统的登录界面,输入用户名和密码,系统通过验证确定该用户是否合法,如果是授权用户,系统进入主页面,如果是没有授权用户,系统将拒绝其访问本系统。当授权用户登录后,就可以进入主菜单,获取相应功能的模块菜单。 (2)基础信息查询

① 雨量站基本信息

查询雨量站的基本信息,如:雨量站类别(自动、人工、简易等)、水系、河名、站号,站名,站址位置、设立日期、所属部门等。

② 水文(位)站基本信息

查询水文(位)站的基本信息,如:测站类别(自动、人工、简易等)、站号,站名,站址,经度,纬度,高程、设立日期等。

③ 工情基本信息

查询堤防工程、水库、山塘等的基本信息,如:建设地点、所在河流、集水面积、多年平均降雨量(径流量)、设计洪水位(流量)、库容、坝顶高程等。

④ 灾害点基本信息

查询灾害点的基本信息,如:地理、地质、气候特点、人口密度、基础设施、灾害频繁程度等。

(3)水雨情信息查询

通过对系统数据库的访问,可以实现各小流域、中小型水库水位、流量实时监测信息、

历史资料信息查询,为预报决策提供历史资料对比分析。可以实现单站、多站实时或者历史水雨情图形化查询。具体包括:水文(水位)站雨量、水位(流量)实时和历史资料查询(包括日平均水位/流量、月水位/流量等),以及降雨量统计表、降雨量图等形式对雨量资料进行日、时段等综合查询。 (4)气象信息查询

将查询数据库得到的气象信息显示给用户,主要包括:中央气象台、省气象台和临近省气象台、本地市(县)气象台发布的当日天气预报(文字、图、表),卫星云图信息(图片)、多普勒雷达测雨信息、台风警报信息等。 (5)工情信息查询

工情信息主要包括:堤防、水库的各种特征值、工程图、工程指标、工程运行状况等数据;水库运行状况的实时信息,如闸门开度、大坝安全状况,溢洪道、泄洪洞、输水洞流量,水库、山塘水位状况(流量)、水库调度方案等。堤防主要信息有各断面水位、堤防安全状况、出险情况及类型。可以实现单站、多站实时和历史工情信息和运行参数的查询。

(6)经济社会状况及灾情信息查询

山洪灾害监测区域经济社会指标:村镇分布、人口分布、固定资产、重要设施、GDP等。

直接总经济损失:受灾范围,受灾人口,受淹城市,倒塌房屋,死亡人口等。 工业、交通运输业直接经济损失:停产工矿企业(个),铁路、公路中断(条次)、毁坏路基(面)(千米),毁坏输电线路,毁坏通讯线路(千米)等。

水利设施直接经济损失:毁坏水库,水库跨坝,毁坏堤防、护岸、水闸,冲毁塘坝,毁坏灌溉设施,毁坏机电井、水电站、机电泵站,毁坏雨量站、水文测站。

农林牧渔业直接经济损失:农作物受灾面积,农作物成灾面积,农作物绝收面积,减少粮食,死亡大牲畜,水产养殖损失等。 (7)数据的输出保存打印

查询系统具有信息输出和表现功能,除具备基础信息、水雨情信息、工情、灾情统计分析信息的数据输出外,还具备表、文字、图形的输出和保存以及打印功能。

第五章 技术支持和服务

5.1 技术支持

技术培训

服务商负责组织客户进行培训。客户有权对服务商提出的培训方案和培训计划进行选择和调整。培训费用计入总价,同时应提供分项的细项报价。培训方案作为评判整体解决方案优劣的因素之一。

①服务商在应答时应制定详细的人员培训方案,培训方案应包括培训目的、培训时间安排、人数、教材编写(列出培训教材基本内容)、培训师资情况(包括教师简历)、培训组织方式等。服务商必须根据标书采购的设备及采用的相关技术,在标书中提出全面的培训计划和课程内容安排,并在合同签定后征得用户方同意后实施。

②培训费用除包括服务商自身的费用以外(包括教员费、教材费、场地费等),所有学员的费用也应计算在内,学员的食宿费按每人每天300元计算。

③服务商必须提供高水平的培训。培训应包括各应用子系统的安装、操作、配置和维护等,系统软、硬件常见故障现象的诊断和处理,常见的问题及解决办法等。服务商必须为所有被培训人员提供培训环境、文字资料和讲义等相关用品。所有的资料必须是简体中文书写。

④所有的培训教员必须用中文授课,除非有其它的协议规定。 ⑤培训工作必须在系统整体验收之前安排,具体时间由招标方指定。 (3)培训要求

①服务商须选派具有一定资质和实践经验,且受过专门训练的高级专业技术人员负责各分项工程的技术培训工作。

②服务商的培训内容包括数据库厂商认证培训、业务应用及系统管理培训(系统平台培训)等。

③服务商须在培训开始前20天内将培训计划和教材提交客户审核,除上述培训外,服务商还须负责在现场组织对系统的安装、调试和运行进行技术示范和业务指导。

5.2 售后服务

1、系统终验合格后进入系统质量保证期,自双方代表在系统终验合格单上签字之日起计算,有效期为3年。说明免费维修、维护的方式、范围(产品、技术、模块、部件)。说明系统质量保证期满后维修、维护的方式、范围(产品、技术、模块、部件)和收费标准。

2、系统质量保证期内,售后服务应由原设备生产厂家提供,同时不再收取额外费用。系统运行过程中如果发生故障,服务商必须保证用户在3个工作日内得到无故障设备/产品。

3、系统质量保证期内,系统运行过程中如果出现技术故障,服务商应保证在最快的时间内解决问题,恢复正常运行。

4、系统质量保证期满后,服务商需提供与系统质量保证期内同等的服务。

5、服务商须认真理解上述保修要求,详细列出保修方案和系统应急方案(考虑本地化服务等),一经应答将作为合同的一部分。

6、所有硬件产品提供厂家的7*24小时服务,接到用户报障电话以后1小时内答复,保证4小时内到现场服务,8小时不能修复的需提供备用品。

7、质保期后服务商应对产品出现故障提供技术支持及有偿维修服务。并在报价表中列出系统设备主要可更换的硬件价格和服务费用。

上一篇:节能工作方案下一篇:学校意识形态工作方案