三角形四心的向量表示

2023-04-01

第一篇:三角形四心的向量表示

三角形四心的向量表示

从动和静两个角度看三角形中四“心”的向量表示

平面几何中中三角形的四“心”,即三角形的内心、外心、重心、垂心。在引入向量这个工具后,我们可以从动和静两个角度看三角形中的四“心”的向量表示,其一可以使我们对三角形中的四“心”有全新的认识;其二使我们对向量形式的多样性和向量运算的灵活性有更清楚的认识。

一.从静止的角度看向量的四“心”

1.已知点O是三角形ABC所在平面上一点,若OAOBOC0,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析:若OAOBOC0,则OAOBOC,设以OA、OB为邻边的平行四边形为OACB,OC与AB交于点D,则D为AB的中点,由OAOBOC得,OCOC,即C、O、D、C四点共线,故CD为ABC的中线,所以O在边AB的中线上,同理可证, O在边AC的中线上, O在边BC的中线上所以O是三角形ABC的重心.

 2. 已知点O是三角形所在平面上一点,若OAOBOBOCOCOA,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析:由OAOBOBOC得,OB(OAOC)0,即OBCA0,所以OBC,A同理可证:OCAB,OABC,所以O是ABC的垂心.

3. 已知点O是三角形所在平面上一点,若aOAbOBcOC0,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析::若aOAbOBcOC0,又因为OBOAAB,OCOAAC,则(abc)OAbABcAC0.所以AObcABACABAC,因为与分别表示AB和AC方向上的单位向量,设abc|AB||AC||AB||AC|ABAC+,则AP平分BAC.又AO、APAP共线,BO平分BAC,知AO平分BAC。同理可证,|AB||AC|CO平分BAC。从而O是ABC的内心。

2224.已知点O是三角形所在平面上一点,若OAOBOC,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

222222分析:因为OAOBOC,所以OAOBOC,即OAOBOC,所以O是ABC的外心。

二.从运动的角度看三角形的四“心”

1.已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足OPOA(ABAC),R,则动点P一定通过ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心 解:OPOA(ABAC) ,可得AP(ABAC),由于ABAC表示以AB,AC为邻边的平行四边形的对角线,所以点P在边BC的中线所在直线上,,故动点P的轨迹一定通过ABC的重心. 2.已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足ABAC+ OPOA,R,则动点P一定通过ABC的(

) |AB||AC|(A)内心

(B)外心

(C)重心

(D)垂心

ABABACACABAC+ 得,AP+ 。由于+ 表分析:由OPOA|AB||AC||AB||AC||AB||AC|示BAC的平分线所在的方向向量。故当R时,动点则动点P一定通过ABC的内心。

3已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足ABAC+  ,R,则动点P一定通过ABC的(

) OPOA|AB|cosB|AC|coCs(A)内心

(B)外心

(C)重心

(D)垂心

ABACABAC+ 得,AP+ 。分析: 由OPOA|AB|cosB|AC|cosC|AB|cosB|AC|cosCABACABBCACBC+ B CBCB,C0由于所以cosAB|B|coAsC|C|cos|AB|coBsA|C|C。即点P的轨迹是过点A且垂直于BC的直线,故动点P的轨迹一定通过ABC的垂心。 APB0C4. 已知O平面上一个定点,A、B、C是平面内不共线三点,动点P满足OBOCOP2ABAC+ ,R,则动点P一定通过ABC的(

) sA|C|coC|AB|coBs(A)内心

(B)外心

(C)重心

(D)垂心

ABAC+ |AB|cosB|AC|cosCABACABAC+ ,当R时, + 表示垂直于可得DP|AB|cosB|AC|cosC|AB|cosB|AC|cosCOBOCOBOC分析:设BC的中点为为D,则OD,所以由OP22BC的向量,所以DP为线段BC的垂直平分线,故动点P的轨迹一定通过ABC的外心. 上面通过动和静两个角度看三角形的四”心”的向量表示,得出了椒优美的结论,使我们对向量的四心有了新的认识,更好的体会到辩证的和谐的统一.

第二篇:向量与三角形四心的一些结论

【一些结论】:以下皆是向量

1 若P是△ABC的重心 PA+PB+PC=0 2 若P是△ABC的垂心 PA•PB=PB•PC=PA•PC(内积) 3 若P是△ABC的内心 aPA+bPB+cPC=0(abc是三边)

4 若P是△ABC的外心 |PA|²=|PB|²=|PC|²(AP就表示AP向量 |AP|就是它的模)

5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心 7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)或 AP=λ(AB+AC),λ∈[0,+ ∞) 经过重心

8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,C的外角平分线的交点

【以下是一些结论的有关证明】

1.O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量充分性:已知aOA向量+bOB向量+cOC向量=0向量,延长CO交AB于D,根据向量加法得:OA=OD+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB) +cOC=0,因为OD与OC共线,所以可设OD=kOC,上式可化为(ka+kb+c) OC+( aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:ka+kb+c=0,aDA+bDB=0向量,由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。必要性:已知O是三角形内心,设BO与AC相交于E,CO与AB相交于F,∵O是内心∴b/a=AF/BF,c/a=AE/CE过A作CO的平行线,与BO的延长线相交于N,过A作BO的平行线,与CO的延长线相交于M,所以四边形OMAN是平行四边形根据平行四边形法则,得向量OA=向量OM+向量ON=(OM/CO)*向量CO+(ON/BO)*向量BO=(AE/CE)*向量CO+(AF/BF)*向量BO=(c/a)*向量CO+(b/a)*向量BO∴a*向量OA=b*向量BO+c*向量CO∴a*向量OA+b*向量OB+c*向量OC=向量02.已知△ABC 为斜三角形,且O是△ABC所在平面上的一个定点,动点P满足向量OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},求P点轨迹过三角形的垂心OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},OP-OA=入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},AP=入{(AB /|AB|^2*sin2B)+AC /(|AC|^2*sin2C)},AP•BC=入{(AB•BC /|AB|^2*sin2B)+AC•BC /(|AC|^2*sin2C)},AP•BC=入{|AB|•|BC|cos(180° -B) / (|AB|^2*sin2B) +|AC|•|BC| cosC/(|AC|^2*sin2C)},AP•BC=入{-|AB|•|BC| cos B/ (|AB|^2*2sinB cos B) +|AC|•|BC| cosC/(|AC|^2*2sinC cosC)},AP•BC=入{-|BC|/ (|AB|*2sinB ) +|BC|/(|AC|*2sinC )},根据正弦定理得:|AB|/sinC=|AC|/ sinB,所以|AB|*sinB=|AC|*sinC∴-|BC|/ (|AB|*2sinB ) +|BC|/(|AC|*2sinC )=0,即AP•BC=0,P点轨迹过三角形的垂心3.OP=OA+λ

(AB/(|AB|sinB)+AC/(|AC|sinC))

OP-OA=

λλ(AB/(|AB|sinB)+AC/(|AC|sinC))AP=(AB/(|AB|sinB)+AC/(|AC|sinC))AP与AB/|AB|sinB+AC/|AC|sinC共线根据正弦定理:|AB|/sinC=|AC|/sinB,所以|AB|sinB=|AC|sinC,所以AP与AB+AC共线AB+AC过BC中点D,所以P点的轨迹也过中点D,∴点P过

4.OP=OA+

λλ(ABcosC/|AB|+ACcosB/|AC|)OP=OA+(ABcosC/|AB|+ACcosB/|AC|)AP=λ(ABcosC/|AB|+ACcosB/|AC|)AP•BC=λ(AB•BC cosC/|AB|+AC•BC cosB/|AC|)=λ([|AB|•|BC|cos(180° -B)cosC/|AB|+|AC|•|BC| cosC cosB/|AC|]=λ[-|BC|cosBcosC+|BC| cosC cosB]=0,所以向量AP与向量BC垂直,P点的轨迹过垂心。5.OP=OA+λ(AB/|AB|+AC/|AC|) OP=OA+λ(AB/|AB|+AC/|AC|) OP-OA =λ(AB/|AB|+AC/|AC|)AP=λ(AB/|AB|+AC/|AC|)AB/|AB|、AC/|AC|各为AB、AC方向上的单位长度向量,向量AB与AC的单位向量的和向量,因为是单位向量,模长都相等,构成菱形,向量AB与AC的单位向量的和向量为菱形对角线,易知是角平分线,所以P点的轨迹经过内心

第三篇:讲义---平面向量与三角形四心的交汇

一、四心的概念介绍

(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、四心与向量的结合

(1)OAOBOC0O是ABC的重心. 证法1:设O(x,y),A(x1,y1),B(x2,y2),C(x3,y3)

x1x2x3x(x1x)(x2x)(x3x)03 OOAOBOC0yyy23(y1y)(y2y)(y3y)0y13是ABC的重心. 证法2:如图

AOAOBOC OA2OD0

AO2OD

A、O、D三点共线,且O分AD

为2:1

OEO是ABC的重心

(2)OAOBOBOC证明:如图所示O是三角形

BDCOCOAO为ABC的垂心.

ABC的垂心,BE垂直AC,AD垂直BC, D、E是垂足.OAOBOBOCOB(OAOC)OBCA0

AOBAC

E同理OABC,OCAB

BOO为ABC的垂心

(3)设a,b,c是三角形的三条边长,O是ABC的内心

aOAbOBcOC0O为ABC的内心. ABAC、分别为AB、AC方向上的单位向量, cbABAC平分BAC, cbABACbc),令 AO(abccb证明:DCAOABACbc() abccb化简得(abc)OAbABcAC0

aOAbOBcOC0

(4)OAOBOCO为ABC的外心。

三、典型例题:

例1:O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足OPOA(ABAC),0, ,则点P的轨迹一定通过ABC的( )

A.外心 B.内心 C.重心 D.垂心

例2:(03全国理4)O是平面上一定点,

A、B、C是平面上不共线的三个点,动点

P满足OPOA(ABABACAC),0, ,则点P的轨迹一定通过ABC的( )

A.外心 B.内心 C.重心 D.垂心

例3:1)O是平面上一定点,

A、B、C是平面上不共线的三个点,动点

P满足OPOA(ABABcoBsACACcoCs),0, ,则点P的轨迹一定通过ABC的( )

A.外心 B.内心 C.重心 D.垂心

2)已知O是平面上的一定点,A、B、C是平面上不共线的三个点,动点P满足ABACOPOA(),[0,), 则动点P的轨迹一定通过△ABC的( ) |AB|sinB|AC|sinCA. 重心 B. 垂心 C. 外心 D. 内心

3)已知O是平面上的一定点,A、B、C是平面上不共线的三个点,动点P满足OBOCABACOP(), [0,), 则动点P的轨迹一定通过△ABC的( ) 2|AB|cosB|AC|cosCA. 重心 B. 垂心 C. 外心 D. 内心

例

4、已知向量OP12P31,OP2,OP3满足条件OP1OP2OP30,|OP1||OP2||OP3|1,求证:△PP是正三角形.

ABC例

5、的外接圆的圆心为O,两条边上的高的交点为H,则实数m = OHm(OAOBOC),

.

6、点 ). O是三角形ABC

所在平面内的一点,满足OAOBOBOCOCOA,则点

O是ABC的(

A.三个内角的角平分线的交点 C.三条中线的交点

B.三条边的垂直平分线的交点 D.三条高的交点

例7

在△ABC内求一点P,使

AP2BP2CP2最小.

222222例8已知O为△ABC所在平面内一点,满足|OA||BC||OB||CA||OC||AB|,则O为△ABC的 心.

例9..已知O是△ABC所在平面上的一点,若OAOBOBOCOCOA,则O点是△ABC的( ) A. 外心 B. 内心 C. 重心 D. 垂心

222222例10 已知O为△ABC所在平面内一点,满足|OA||BC||OB||CA|=|OC||AB|,则O点是△ABC的( ) A. 垂心 B. 重心 C. 内心 D. 外心

例11已知O是△ABC所在平面上的一点,若(OAOB)AB=(OBOC)BC=(OCOA)CA= 0,则O点是△ABC的( ) A. 外心 B. 内心 C. 重心 D. 垂心

例12:已知O是△ABC所在平面上的一点,若aOAbOBcOC= 0,则O点是△ABC的( ) A. 外心 B. 内心 C. 重心 D. 垂心

aPAbPBcPC例13:已知O是△ABC所在平面上的一点,若PO(其中P是△ABC所在平面内任意一点),

abc则O点是△ABC的( ) A. 外心 B. 内心 C. 重心 D. 垂心

四、配套练习:

1.已知ABC三个顶点A、B、C及平面内一点

P,满足

PAPBPC0,若实数满足:ABACAP,则的值为( )

A.2 B.32 C.3 D.6 3

2.若ABC的外接圆的圆心为O,半径为1,OAOBOCA.

0,则OAOB( ) 12 B.0 C.1 D.1 23.点O在ABC内部且满足OA2OB2OC0,则ABC面积与凹四边形A.0 B.

ABOC面积之比是( )

32 C.

54 D.

43

是ABC的( ) 4.ABC的外接圆的圆心为O,若OHOAOBOC,则HA.外心 B.内心 C.重心 D.垂心

5.O是平面上一定点,A、B、C是平面上不共线的三个点,若OABCOB222

CAOCAB222,则O是ABC的( )

A.外心 B.内心 C.重心 D.垂心 6.ABC的外接圆的圆心为O,两条边上的高的交点为H,OH则实数m =

17.(06陕西)已知非零向量与满足(+)〃=0且〃= , 则△ABC为( )

2A.三边均不相等的三角形 B.直角三角形 C.等腰非等边三角形 D.等边三角形 8.已知ABC三个顶点

m(OAOBOC),

A、B、C,若ABABACABCBBCCA,则ABC为( )

2A.等腰三角形 B.等腰直角三角形

C.直角三角形 D.既非等腰又非直角三角形

9.已知O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足OPOA(ABAC), [0,). 则P点的轨迹一定通过△ABC的( ) A. 外心 B. 内心 C. 重心 D. 垂心

10.已知O是△ABC所在平面上的一点,若OAOBOC= 0, 则O点是△ABC的( ) A. 外心 B. 内心 C. 重心 D. 垂心

111.已知O是△ABC所在平面上的一点,若PO(PAPBPC)(其中P为平面上任意一点), 则O点是△ABC

3的( ) A. 外心 B. 内心 C. 重心 D. 垂心

第四篇:三角形“五心”的充要条件的向量表示

江苏省姜堰中学

张圣官(225500)

让我们先来赏析一道颇有趣的向量题:

命题1:在ΔABC内任取一点O,证明:SAOASBOBSCOC0 „①(其中SA、SB、SC分别表示ΔBOC、ΔCOA、ΔAOB的面积)。

解:记OA,OB,OC方向上的单位向量依次为e1,e2,e3,并记∠BOC、∠COA、∠AOB依次为α

1、α

2、α3,则

SA SB SC121212|OB||OC|sin1 ,

|OC||OA|sin2 , (图1) |OA||OB|sin3 。

所以,①式等价于e1sin1e2sin2e3sin30 „②

如图1,在OA上取点D,使ODe1sin1,过D作DE∥OB交CO延长线于E,则 在ΔODE中,DEsin2,OEsin3,∴DEe2sin2,EOe3sin3,于是,e1sin

1、e2sin

2、e3sin3恰好构成一个三角形,它们的和为零向量。故命题得证。

评注:如果把②式放到力学背景中,将e1,e2,e3看作是大小为1个单位的力,那么②式正好等价于三个共点力e1sin

1、e2sin

2、e3sin3平衡,我们还可以从物理学的角度给出其证明。根据图2可知,e1sin

1、e2sin2在e3sin3 反方向上的分量分别为sin1cos(1802)sin1cos2和

(图2)

0sin2cos(18001)sin2cos1;在垂直于e3sin3方向上的分量分别为

由于1232,故ssin1sin2和sin2sin1 。in1cos2sin2cos1

sin(12)sin3,而sin1sin2=sin2sin1显然成立,因此三个共点的力确实平衡,这样从物理学的角度知命题获证。

这真是一道向量题横跨数理天地!然而且慢,该题另有玄机!联系到不少刊物上纷纷将三角形“五心”用各种形式的向量来表示,其实由以上结论出发倒可以很简便地得到三角形“五心”的一种向量表示。真是“踏破铁鞋无觅处,得来全不费功夫”啊! 命题1中的点O是ΔABC所在平面内一点,并且在ΔABC内部,其实,若O在ΔABC的周界上时结论也成立。当点O在ΔABC形外时,类似地还可以得到:

命题2:若点O是ΔABC的形外一点且与点A位于直线BC的两侧,则有结论SAOASBOBSCOC0 „②(其中SA、SB、SC分别表示ΔBOC、ΔCOA、ΔAOB的面积)。(证明略)

只要将以上两个结论中的点O逐一看作为ΔABC的“五心”,就可以得到三角形“五心”充要条件的向量表示。

命题3:设O是ΔABC所在平面内一点,则

(Ⅰ)O是ΔABC的重心OAOBOC0 ;

(Ⅱ)O是ΔABC的外心sin2AOAsin2BOBsin2COC0 ; (Ⅲ)O是ΔABC的内心sinAOAsinBOBsinCOC0 ; (Ⅳ)O是斜ΔABC的垂心tanAOAtanBOBtanCOC0 ; (Ⅴ)O是ΔABC的旁心sinAOAsinBOBsiCnOC0或sinAOAsinBOBsinCOC0或sinAOAsinBOBsinCOC0 。

利用三角形面积公式和等式①、②,容易证明上面五个结论成立。由于ΔABC的外心可以在三角形内部,也可以在外部或一边上,情形较多,以下就选结论(Ⅱ)给出其证明,其余几个结论请读者自证。

证明:设O是ΔABC的外心,先证必要性,对ΔABC分两类情形讨论。

(1)若ΔABC是锐角三角形或直角三角形,则外心O在形内或周界上,此时,222,SB1,SC1,根据命题1中的等式①易得结SA12Rsin2A2Rsin2B2Rsin2C论sin2AOAsin2BOBsin2COC0成立;

(2)若ΔABC是钝角三角形,不妨设A>900,则外心O在ΔABC形外且与A位于

2221直线BC的两侧,此时,SA1,SB1,2Rsin2(A)2Rsin2A2Rsin2B2,代入命题2中的②得sin2AOAsin2BOBsin2COC0成立。 SC12Rsin2C现在再来证明充分性。若ΔABC

所在平面内一点O满足si2nAOAsi2nBOBsi2nCOC0,则由以上证明知,ΔABC的外心O一定满足等式si2AnOAsi2BnOBsi2CnOC0,

。两式相减,Δ

ABC

得,(sin2Asin2Bsin2C)OO0s2Aisn2Bisn2Ci2snAsiBsniCni0,故nOO0,即点O与外心O重合,也就是说,点O即为ΔABC的外心。从而,O是ΔABC的外心的充要条件是sin2AOAsin2BOBsin2COC0。

第五篇:三角形的三线、四心及口诀

内心是三条角平分线的交点,它到三边的距离相等。

外心是三条边垂直平分线的交点,它到三个顶点的距离相等。 (是充要条件) 重心是三条中线的交点,它到顶点的距离是它到对边中点距离的2倍。 垂心是三条高的交点,它能构成很多直角三角形相似。

旁心是一个内角平分线与其不相邻的两个外角平分线的交点,它到三边的距离相等。 重 心

三条中线定相交,交点位置真奇巧, 重心分割中线段,数段之比听分晓, 垂 心

三角形上作三高,三高必于垂心交, 直角三角形有十二,构成六对相似形, 内 心

三角对应三顶点,角角都有平分线,

三线相交定共点,叫做内心有根源, 高线分割三角形,出现直角三对整, 四点共圆图中有,细心分析可找清。 交点命名为重心,重心性质要明了, 长短之比二比一,灵活运用掌握好。

点至三边均等距,可作三角形内切圆, 此圆圆心称内心,如此定义理当然。 外 心

三角形有六元素,三个内角有三边, 此点定义为外心,用它可作外接圆,

分别化出锐角、直角、钝角三角形的三线、四心

重心...中线交点... 3个定点的坐标为(x1,y1) (x2,y2) (x3,y3) 重心坐标就是(x1+x2+x3/3,y1+y2+y3/3)

第五个心:旁心

三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心叫做旁心。旁心是一个三角形内角平分线与其不相邻的两个外角平分线的交点,它到三角形三边的距离相等。一个三角形有三个旁心,而且一定在三角形外。

作三边的中垂线,三线相交共一点,

内心、外心莫记混,内切、外接是关键。

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:数控冲床设备操作规程下一篇:三角形五心的向量表示

热门文章

三角形教案