通信原理实验报告

2022-08-02

根据工作的内容与性质,报告划分为不同的写作格式,加上报告的内容较多,很多人不知道怎么写报告。以下是小编整理的关于《通信原理实验报告》,仅供参考,希望能够帮助到大家。

第一篇:通信原理实验报告

通信原理实验报告

1, 必做题目

1.1 无线信道特性分析 1.1.1 实验目的

1) 了解无线信道各种衰落特性;

2) 掌握各种描述无线信道特性参数的物理意义;

3) 利用MATLAB中的仿真工具模拟无线信道的衰落特性。

1.1.2 实验内容

1) 基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰落信道,观察信号经过衰落前后的星座图,观察信道特性。仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0 -3 -6 -9]dB,最大多普勒频移为200Hz。例如信道设置如下图所示:

移动通信系统

1.1.3 实验作业

1) 根据信道参数,计算信道相干带宽和相干时间。

fm=200; t=[0 4e-06 8e-06 1.2e-05]; p=[10^0 10^-0.3 10^-0.6 10^-0.9]; t2=t.^2; E1=sum(p.*t2)/sum(p); E2=sum(p.*t)/sum(p); rms=sqrt(E1-E2.^2); B=1/(2*pi*rms) T=1/fm

2) 设置较长的仿真时间(例如10秒),运行链路,在运行过程中,观察并分析瑞利信道输出的信道特征图(观察Impulse Response(IR)、Frequency Response(FR)、IR Waterfall、Doppler Spectrum、Scattering Function)。(配合截图来分析) Impulse Response(IR)

移动通信系统

从冲击响应可以看出,该信道有四条不同时延的路径。多径信道产生随机衰落,信道冲击响应幅值随机起伏变化。可以看出,该信道的冲激响应是多路冲激响应函数的叠加,产生严重的码间干扰。 Frequency Response(FR)

频率响应特性图不再是平坦的,体现出了多径信道的频率选择性衰落。

移动通信系统

IR Waterfall

频率展宽后,信号的冲激响应不再平坦,是由于多径信道中不同信道的叠加影响

Doppler Spectrum

由于多普勒效应,接受信号的功率谱展宽扩展到fc-fm至fc+fm范围。

移动通信系统

3) 观察并分析信号在经过瑞利衰落信道前后的星座图变化(截图并解释)。

标准的QPSK星座图,4个相位 后

移动通信系统

信号经过多径信道后,相位和幅值均发生了随机变化,信号不再分布在四个点附近,可以看出信号质量很差。说明多径信道对信号产生了巨大的干扰。PSK/QPSK通信链路搭建与误码性能分析

1.2BPSK/QPSK通信链路搭建与误码性能分析 1.2.1实验目的

掌握基于simulink的BPSK、QPSK典型通信系统的链路实现,仿真BPSK/QPSK信号在AWGN信道、单径瑞利衰落信道下的误码性能。

1.2.2实验作业

1) 基于simulink搭建BPSK/QPSK通信链路,经过AWGN信道,接收端相干解调,仿真并绘出BPSK和QPSK信号在EbN0为0~10dB时(间隔:

移动通信系统

1dB)误码性能曲线。 仿真参数:

a) 仿真点数:106

b) 信源比特速率:1Mbps。

Bpsk通信链路

QPSK通信链路

BPSK AWGN参数

移动通信系统

QPSK AWGN参数

用bertool画出BPSK信号的误码率曲线(0~10dB)

移动通信系统

由此可见BPSK和QPSK的在同一Eb/No时误比特率基本一样,这与理论分析一致

2) 在1的基础上,信号先经过平坦(单径)瑞利衰落,再经过AWGN信道,假设接收端通过理想信道估计获得了信道衰落值(勾选衰落信道模块的“Complex path gain port”)。仿真并绘出BPSK和QPSK信号在EbN0为0~40dB时(间隔:5dB)误码性能曲线。 信道仿真参数:最大多普勒频移为100Hz。

BPSK通信链路

移动通信系统

QPSK通信链路

瑞利单径信道参数

移动通信系统

QPSK AWGN参数

移动通信系统

BPSK AWGN参数

BPSK/QPSK 0-40db误码率曲线

BPSK和QPSK在同一Eb/No的误比特率基本一致,这和理论基本一致

移动通信系统

2、分组题目

2.1SIMO系统性能仿真分析 2.1.1实验目的

1.掌握基于simulink的单发多收(SIMO)16QAM仿真通信链路;

2.仿真SIMO 16QAM信号在单径瑞利衰落信道下,不同接收分集数、不同合并方式下的误比特率性能。

2.1.2实验内容

1.掌握单发多收的原理,利用分集技术,搭建单发多收通信系统框图。 2.利用MATLAB中simulink所包含的通信系统模块搭建基于各种分集技术类型的单发多收通信链路。

3. 比较分析不同接收分集数、不同合并方式下的误比特率性能。

2.1.3实验原理

移动信道的多径传播引起的瑞利衰落、时延扩展以及伴随接收机移动过程产生的多普勒频移使接收信号受到严重的衰落;阴影效应会使接收的信号过弱而造成信号的中断;信道存在噪声和干扰,也会使接收信号失真而造成误码。因此,在移动通信系统中需要采取一些数字信号处理技术来改善接收信号的质量。其中,多天线分集接收技术就是一个非常重要且常见的方法。

分集接收的基本思想就是把接收到的多个衰落独立的信号加以处理,合理地利用这些信号的能量来改善接收信号的质量。

分集技术总体来说分为两类,针对阴影衰落的宏观分集和针对微观衰落的微观分集。本实验主要注重微观分集。分集技术对信号的处理包含两个过程,首 先是要获得M个相互独立的多径信号分量,然后对它们进行处理以获得信噪比 的改善,这就是合并技术。合并方式共分为三种,选择合并、等增益合并和最大 比值合并。

选择合并是最简单的一种,在所接收的多路信号中,合并器选择信噪比最高的一路输出。最大比值合并会将所有路信号的能量和信息都利用上,会明显改善

移动通信系统

合并器输出的信噪比。基于这样的考虑,最大比值合并把各支路信号加权后合并。各路信号权值用数学方法得出。等增益合并性能上不及最大比值合并,但是却容易实现得多,其主要思想是将各路信号赋予相同权值相加。 2.1.4 实验仿真 2.1.4.1实验框图

系统整体框图

移动通信系统

接收分集

二分集等增益合并

移动通信系统

三分集等增益合并

二分集选择合并

三分集选择合并

移动通信系统

二分集最大比值合并

三分集最大比值合并

2.1.4.2 仿真结果

从图中可以看到,通过等增益合并方式能够显著的减小误码率,并且随着Eb/N0 的增加而更好的显示出性能优越;相对比不同的分集数可看出,分集数的增加能 有效地减小误码率。

移动通信系统

由图可看到,三种合并方式都能显著地减小误码率,在分集数为二的情况下,效果最好的是最大比值合并,等增益次之,都优于选择合并;

2.1.5 实验结论

移动信道的多径传播引起的瑞利衰落、时延扩展以及伴随接收机移动过程产生的多普勒频移使接收信道受到严重的衰落,所以必须采取相应的抗衰落的措施来提高系统性能。在本次课程设计中,我们小组学习研究了对三种不同分集合并技术在改善系统性能方面的效果的课题实验。通过仿真实验得出的不同分集的误码率,分集技术能有效地减小误码率从而提高系统性能;而通过对误码率曲线的分析,可以看出:对于三种分集合并技术,等分集前提下,最大比值合并优于等增益合并优于选择合并;而对于同一合并技术,增加分集数能优化其性能。

2.2直接序列扩频系统性能分析

2.2.1实验目的

1)了解直接序列扩频系统的原理

2)基于simulink搭建直接序列扩频仿真通信链路,仿真分析在不同信道条件下的误比特率性能。

3)观察体会直接序列扩频对误码率的改善程度 2.2.2 实验内容

1) 搭建基于simulink搭建直接序列扩频仿真通信链路,观察频谱和波形 2)仿真分析在不同信道条件下的误比特率性能。

移动通信系统

2.2.3实验原理

所谓直接序列扩频,就是直接用具有高码率的扩频码序列在发送端去扩展信号的频谱。而在接收端,用相同的扩频码序列去进行解扩,把展宽的扩频信号还原成原始的信息。

直扩系统的抗干扰能力是由接收机对干扰的抑制产生的,如果干扰信号的带宽与信息带宽相同(即窄带),此干扰信号经过发送机伪噪声码调制后将展宽为与发送信号相同的带宽,而其谱密度却降低了若干倍。相反,直扩信号经伪噪声码解扩后变成了窄带信息,从而使增益提高了若干倍。

实验原理框图

伯努利信源b(t)x(t)s(t)信道r(t)e(t)Tby(Tb)dt判决0y(t)c(t)cos(wct)c(t)cos(wct)

直接序列扩频通信系统

2.2.4实验仿真

直接序列扩频simulink仿真通信链路

a.伯努利序列参数和PN序列参数: 伯努利信源100bps

移动通信系统

PN序列2kbps

移动通信系统

b.扩频前后频谱变化: 扩频前频谱:

类似sinc函数的频谱

扩频后频谱:

频谱明显展宽 功率谱密度降低

移动通信系统

扩频调制后波形:

移动通信系统

解扩解调波形:

c.误比特率

AWGN信道(仿真点数1e6)

移动通信系统

BPSK理论误码率(-7到10dB的误比特率曲线)

通过两者对比,我们可以发现直接序列扩频通信系统对Eb/No的改善近似为13dB,这和理论分析出的值接近。

第二篇:通信报告通信原理实验心得体会

通信原理实验心得体会

091180024代岳 通信工程

众所周知,《通信原理》是电子、通信、计算机、自控和信息处理等专业的重要基础课,所以我们通信工程专业的同学在本学期除了平时要上每周2次,每次2节的通信原理理论课程外,还要上每周1次持续3个小时的实验课来帮助我们理解通信原理课的知识,使同学们掌握和熟悉通信系统的基本理论和分析方法,为后续的学习打下良好的基础。

在做本学期的实验前,我以为跟以往的电子类实验差不多,以验证为主,不会很难做,就像以前做物理实验一样,课上按照要求做完实验,然后课后两下子就将实验报告写完,下次课上一交,就OK了。直到做完本学期所有的通信原理实验时,我才知道其实并不容易做,因为自主设计占了很大一部分,需要查找资料和跟不断跟同学讨论问题来解决难点,但学到的知识与难度成正比,使我获益良多. 首先,在做实验前,一定要将课本上的知识吃透,因为这是做实验的基础,否则,在老师讲解时就很可能会听不懂,这将使我们在做实验时的难度加大,浪费课上完成实验的宝贵时间。比如做BPSK自行设计的实验,你要清楚BPSK系统的传输特性以及输入输出序列的原理,如果我们不清楚,在做实验时才去探索讨论,这将使你极大地浪费时间,使你事倍功半。同时,做实验时,一定要亲力亲为,不要钻空子,务必要将每个步骤,每个细节弄清楚,最好能理解明白。在完成实验后,还要进行一定的复习和思考。只有这样,你的才会印象深刻,记得牢固。否则,过后不久,也许是半个学期,就会忘得一干二净,这是很糟糕的一种情况。在做实验时,老师还会根据自己的经验,将一些课本上没有的知识教给我们,拓宽我们的眼界,使我们认识到通信原理实验的应用是那么的广泛,可以大大增强我们的探索的兴趣。

通过完成本学期的通信原理实验,使我学到了不少实用的通信知识,加深了对通信系统的理解,加强了动手的能力,与理论课完成了很好的互补。更重要的是,在做实验的过程,我们收获了思考问题和解决问题的各种角度以及方法, 提高了在实践中研究问题,分析问题和解决问题的能力,这与做其他的实验是通用的,让我受益匪浅,对以后的学习更加有信心。

第三篇:通信原理实验报告综合实验FSK和PSK调制解调

实 验 报 告

课程名称: 通信原理综合设计实验 学生姓名: 学 号: 专业班级:

2016年 06月21日

实验一 7位伪随机码1110010设计

一、实验目的

1、了解数字信号的波形特点

2、掌握D触发器延时设计数字电路的原理及方;

3、熟悉Multisim 13.0软件的使用

二、设计要求

设计7位伪随机码1110010,要求输出波形没有毛刺和抖动,波形稳定效果较好,可用于后续的综合设计实验。

三、实验原理与仿真电路及结果

要求产生7位伪随机码,根据M=2-1=7,所以n=3,需要3个D触发器,在32KHz正弦波或方波的时钟信号触发下,第三个D触发器输出端产生1110010的7位伪随机绝对码。仿真电路及波形结果如下:

n

一、7位伪随机码1110010产生电路

二、7位伪随机码1110010波形

观察结果波形发现,伪随机码波形频率较之信号源波形(32KHz)减小了,但幅值不变

2 仍为5v.

四、实验心得与体会

本实验原理较为简单,通过本次设计实验,我重新复习了数字电路逻辑设计中的D触发器产生特定数字序列的知识,老师也给出了提示,基本上是直接改动电路图就能实现,只要电路图搭建正确,原理符合逻辑,基本上都能仿真出来。伪随机码在后续实验中经常用到,模拟随机信号,但不是真正的随机信号,在通信中应用研究中很有意义,也为我们后续综合设计实验提供基本的信号。

实验二

一、实验目的

调制、解调电路综合设计

2FSK

1、掌握2FSK调制和解调的工作原理及电路组成

2、学会低通滤波器和放大器的设计

3、掌握LM311设计抽样判决器的方法、判决门限的合理设定

4、进一步熟悉Multisim13.0的使用

二、设计要求

设计2FSK调制解调电路,载波f1=32KHz,f2=64KHz,基带信号位7位伪随机绝对码(1110010)要求调制的信号波形失真小,不会被解调电路影响,并且解调出来的基带信号尽量延时小、判决准确。

三、实验电路与结果

3.1实验总电路图

一、FSK调制、解调总电路

3.2调制电路

1)实验所用的32KHz和64KHz载波正弦信号由对应频率的方波通过高低通滤波得到,子电路如下:

二、32KHz正弦载波信号生成电路

三、64KHz正弦载波信号生成电路

2)实验基带信号7位伪随机码子电路(同实验一)如下:

四、基带信号1110010生成子电路

3)32KHz、64KHz载波信号、基带信号、已调信号波形:

五、载波、基带及已调信号波形

3.3解调电路 1)解调部分电路如下:

六、FSK解调电路

以上电路中,解调运用的仍是4066芯片的开关特性来实现:将已调信号接入4066中并分别用32KHz、64KHz的信号源方波“识别”出已调信号中的32KHz和64KHz频率的正弦信号,然后经过两个相同的32KHz(生成伪随机码的信号源频率)的低通滤波器,滤出含有基带信号的“混合”波形,最后将这两路信号接入LM311比较器,根据课本知识,这

7 一步实现的是两路信号的比较,谁大输出谁,最终输出解调信号。

电路中,LM311比较器处接了两个上拉电阻和下拉电阻,作用分别是使解调信号可正常输出和矫正美观解调波形。另32KHz的低通滤波器电路及最终所得的解调信号波形见下图:

七、32KHz低通滤波器

八、FSK解调信号与基带信号波形对比

以上蓝色是解调出来的波形,黄色为伪随机码输出,观察波形结果发现,开始仿真时会有一两个判决错误,可能是滤波电路没有达到稳定的原因,后面稳定之后,波形就很好了,信号得到了较好的解调,基本恢复了基带信号(上方为基带信号,下方为解调信号)。不过

8 解调信号与基带信号存在一定的相位差,这可能是由电路中的某些器件引起的,如:电路中406

6、LM311芯片的触发可能导致信号延时;滤波电路中,电阻和电容也可能对相位产生影响,使信号延时。总体来说,FSK对基带信号的调制和解调结果是比较合理的,实验具有一定的准确性。

四、实验心得体会:

本实验是FSK调制与解调的综合性设计实验,首先载波信号调用实验一中的方波高低通生成正弦波方法得到,基带信号调用实验四中的伪随机码方法生成。另外实验增加的难度在于,运用4066和LM311芯片实现已调信号的解调。首先充分利用了4066芯片的开关特性,“识别”出已调信号中两个载波频率的波形并进行低通滤波得到两路初解调信号,然后利用LM311芯片完成两路信号的比较,同课本介绍的包络检波一样,输出较大的一路,完成信号的解调。实验过程中出现不少问题,我碰到的问题比较奇葩,用子电路组成大电路仿真总是达不到理想效果,所以直接简单粗暴在一个电路图里将调制解调全做完。自己做仿真一定要将原理想清楚,遇到问题冷静分析和查找问题出处,总的来说这个实验还是比较容易实现的,基本都在调滤波器的参数,其他部分都是现成的电路。

实验完成后,我思考的问题是,为什么要通过比较器来得到解调信号。4066开关电路不像实验五中的科斯塔斯环一样锁定频率精准,锁住了频率即输出1,否则输出0。对于32kHz的信号,利用64KHz的方波控制开关也同样会有部分信号流过,且这部分信号低通滤波较难滤除干净,所以采用比较信号大小的方法来决定信号的输出,剔除掉这部分干扰信号完成解调。在实验一2KHz低通滤波器设计的基础上,将其修改成所需截至频率的滤波器较容易实现,一般经验性的操作是将电容调小一个数量级,然后再观察波形调整电阻来实现。总之实验下来让我更加熟练了multisim仿真操作、不同截至频率滤波器的调节技巧以及FSK调制与解调理论知识的理解。实践结合起理论知识,使得我们更清晰的理解理论并提高了动手操作能力,受益略多。

9

实验三 PSK、2DPSK调制、解调电路综合设计

一、实验目的

1、掌握2DPSK调制和解调的工作原理及电路组成

2、了解实现信号0相和π相波形间转换的电路

3、掌握低通滤波器的参数设置和LM311抽样判决器的判决电压设置

4、熟练运用Multisim13.0,学会用软件实现简单的电路调试

二、设计要求

1. 设计2DPSK调制解调电路,载波f=512KHz,基带信号位7位伪随机相对码。要求调制的信号波形失真小,不会被解调电路影响,并且解调出的基带信号尽量延时小,判决准确。

2. 采用子电路设计方法。 3. 用4066芯片实现解调信号。

三、实验电路与结果

3.1实验总电路图

一、PSK调制、解调总电路

3.2调制电路

1)实验所用1024KHz的载波正弦信号由对应频率的方波通过高低通滤波得到,子电路如下图所示:

二、1024KHz正弦载波信号生成电路

2)实验基带信号7位伪随机码子电路(同实验一)如下:

三、基带信号1110010生成子电路

3)实验中同、反相子电路图:

四、同相放大电路

五、反相子电路

4)1024KHz载波信号、同、反相信号、基带信号:

六、1024KHz载波、同、反相信号、基带信号波形图

其中,图一为1024KHz载波波形,中间红色波形分别为同相和反相信号波形。 5)已调信号波形:

七、已调信号波形

3.3解调电路 1)解调部分电路如下:

八、PSK解调电路

以上电路中,解调运用的仍是4066芯片的开关特性来实现:将已调信号接入4066中并用512KHz的信号源方波“识别”出已调信号中的同反相1024KHz频率的正弦信号,然后经过两个相同截至频率的低通滤波器(理论值为32KHz,即与生成伪随机码的信号源频率一致),滤出含有基带信号的“混合”波形。参考“混合”波形的幅值设置一个合理的判决门限电压值(本实验中给的是1v),与所得的“混合”信号一起接入LM311比较器中比较,最后得到解调信号。

电路中,LM311比较器处接了下拉电阻,作用是使解调信号可正常输出解调波形。另解调低通滤波器电路及最终所得的解调信号波形见下图:

九、解调低通滤波器电路

十、判决前后波形对比

图十

一、PSK解调信号与基带信号波形对比

观察波形结果发现,信号得到了较好的解调,基本恢复了基带信号(上方为基带信号,下方为解调信号)。但解调信号与基带信号间存在一定的相位差,这与FSK实验中一样,可能是由电路中的某些器件引起的,如:电路中406

6、LM311芯片的触发可能导致信号延时;滤波电路中,电阻和电容也可能对相位产生影响,使信号延时。总体来说,PSK对基带信号的调制和解调结果是比较合理的,实验具有一定的准确性。

四、实验心得体会:

本实验是PSK调制与解调的综合性设计实验,相比FSK调制解调设计实验,本实验相对简单一些。实验的重点在于:运用4066和LM311芯片实现已调信号的解调。首先充分利用了4066芯片的开关特性,“识别”出已调信号中同反相的两个载波信号并经过低通滤波得到初解调信号。通过参考初解调信号的幅值给定一个合理的判决门限电压值,然后与初解调信号一起接入LM311芯片进行信号比较,得到解调信号。

15 实验完成后,我思考的问题是,通过给定一个判决门限值与初解调信号比较是怎样实现信号解调的。接入4066解调芯片的信号都是含有1024KHz频率的信号,故开关电路一直都会有信号流过。但是已调信号的相位跳变点正是直接携带基带信号信息的,当这个跳变点遇上1024KHz的方波时,经过开关电路即会产生幅值的前后变化,故我们可以设置一个处于幅值变化之间的某个电压值作为判决门限值,这样即可实现同反相载波的区分,解调出基带信号的,我选择的判决电平是0V,信号刚好在0电平上下变化。

第四篇:南昌大学通信原理综合设计实验FSK PSK调制与解调 实验报告

实 验 报 告

课程名称: 通信原理综合设计实验 指导老师: 学生姓名: 学 号: 专业班级:

2016年 06月 16日

1 实验一 7位伪随机码1110010设计

一、实验目的

1、了解数字信号的波形特点

2、掌握D触发器延时设计数字电路的原理及方;

3、熟悉Multisim 13.0软件的使用

二、设计要求

设计7位伪随机码1110010,要求输出波形没有毛刺和抖动,波形稳定效果较好,可用于后续的综合设计实验。

三、实验原理与仿真电路及结果

要求产生7位伪随机码,根据M=2-1=7,所以n=3,需要3个D触发器,在32KHz正弦波或方波的时钟信号触发下,第三个D触发器输出端产生1110010的7位伪随机绝对码。仿真电路及波形结果如下:

n

一、7位伪随机码1110010产生电路

二、7位伪随机码1110010波形

观察结果波形发现,伪随机码波形频率较之信号源波形(32KHz)减小了,但幅值不变仍为5v.

四、实验心得与体会

本实验原理较为简单,在大二上学期的《数字电路与逻辑设计》课程中已经学习过,且实验前老师也给出了电路,故完成实验只需要简单的搭建仿真电路即可,产生正确的随机码波形也为后两个设计实验做好准备。通过本次设计实验,我重新复习了数字电路逻辑设计中的D触发器产生特定数字序列的知识,同时也熟练了Multisim软件的使用,为后续综合设计实验打下基础。

实验二 2FSK调制、解调电路综合设计

一、实验目的

1、掌握2FSK调制和解调的工作原理及电路组成

2、学会低通滤波器和放大器的设计

3、掌握LM311设计抽样判决器的方法、判决门限的合理设定

4、进一步熟悉Multisim13.0的使用

二、设计要求

设计2FSK调制解调电路,载波f1=128KHz,f2=256KHz,基带信号位7位伪随机绝对码(1110010)要求调制的信号波形失真小,不会被解调电路影响,并且解调出来的基带信号尽量延时小、判决准确。

三、实验电路与结果

 实验总电路图

一、FSK调制、解调总电路

3  调制电路

1)实验所用的128KHz和256KHz载波正弦信号由对应频率的方波通过高低通滤波得到,子电路如下:

二、128KHz正弦载波信号生成电路

三、256KHz正弦载波信号生成电路

2)实验基带信号7位伪随机码子电路(同实验一)如下:

四、基带信号1110010生成子电路

3)128KHz、256KHz载波信号、基带信号、已调信号波形:

五、载波、基带及已调信号波形

5  解调电路

1)解调部分电路如下:

六、FSK解调电路

以上电路中,解调运用的仍是4066芯片的开关特性来实现:将已调信号接入4066中并分别用128KHz、256KHz的信号源方波“识别”出已调信号中的128KHz和256KHz频率的正弦信号,然后经过两个相同的32KHz(生成伪随机码的信号源频率)的低通滤波器,滤出含有基带信号的“混合”波形,最后将这两路信号接入LM311比较器,根据课本知识,这一步实现的是两路信号的比较,谁大输出谁,最终输出解调信号。

电路中,LM311比较器处接了两个上拉电阻(R

9、R10)和下拉电阻(R25),作用分别是使解调信号可正常输出和矫正美观解调波形。另32KHz的低通滤波器电路及最终所得的解调信号波形见下图:

七、32KHz低通滤波器

八、FSK解调信号与基带信号波形对比

观察波形结果发现,信号得到了较好的解调,基本恢复了基带信号(上方为基带信号,下方为解调信号)。不过解调信号与基带信号存在一定的延时,这可能是由电路中的某些器件引起的,如:电路中406

6、LM311芯片的触发可能导致信号延时;滤波电路中,电阻和电容也可能对相位产生影响,使信号延时。总体来说,FSK对基带信号的调制和解调结果是比较合理的,实验具有一定的准确性。

四、实验心得体会:

本实验是FSK调制与解调的综合性设计实验,首先载波信号调用实验一中的方波高低通生成正弦波方法得到,基带信号调用实验四中的伪随机码方法生成。另外实验增加的难度在于,运用4066和LM311芯片实现已调信号的解调。首先充分利用了4066芯片的开关特性,“识别”出已调信号中两个载波频率的波形并进行低通滤波得到两路初解调信号,然后利用LM311芯片完成两路信号的比较,同课本介绍的包络检波一样,谁大输出谁,完成信号的解调。实验完成后,我思考的问题是,为什么要通过比较器来得到解调信号。我的理解是:4066开关电路不像实验五中的科斯塔斯环一样锁定频率精准,锁住了频率即输出1,否则输出0。对于128KHz的信号,利用256KHz的方波控制开关也同样会有部分信号流过,且这部分信号低通滤波较难滤除干净,所以采用比较信号大小的方法来决定信号的输出,剔除掉这部分干扰信号完成解调。本实验的综合和性较强,且电路成分也比较多,宜采用子电路方法简化电路以减少因电路间干扰而出现错误。实验难点在于设计产生载波信号和解调部分的滤波器的设计,这直接影响到最后是否可成功解调出信号。在实验一2KHz低通滤波器设计的基础上,将其修改成所需截至频率的滤波器较容易实现,一般经验性的操作是将电容调小一个数量级,然后再观察波形调整电阻来实现。总之实验下来让我更加熟练了multisim仿真操作、不同截至频率滤波器的调节技巧以及FSK调制与解调理论知识的理解。实践结合起理论知识,使得我们更清晰的理解理论并提高了动手操作能力,受益略多。

7 实验三 2DPSK调制、解调电路综合设计

一、实验目的

1、掌握2DPSK调制和解调的工作原理及电路组成

2、了解实现信号0相和π相波形间转换的电路

3、掌握低通滤波器的参数设置和LM311抽样判决器的判决电压设置

4、熟练运用Multisim13.0,学会用软件实现简单的电路调试

二、设计要求

1. 设计2DPSK调制解调电路,载波f=512KHz,基带信号位7位伪随机相对码。要求调制的信号波形失真小,不会被解调电路影响,并且解调出的基带信号尽量延时小,判决准确。

2. 采用子电路设计方法。 3. 用4066芯片实现解调信号。

三、实验电路与结果

 实验总电路图

一、PSK调制、解调总电路

 调制电路

1)实验所用512KHz的载波正弦信号由对应频率的方波通过高低通滤波得到,子电路如下图所示:

二、512KHz正弦载波信号生成电路

2)实验基带信号7位伪随机码子电路(同实验一)如下:

三、基带信号1110010生成子电路

3)实验中同、反相子电路图:

四、同相子电路

五、反相子电路

4)512KHz载波信号、同、反相信号、基带信号:

六、512KHz载波、同、反相信号、基带信号波形图

其中,图一的最上方为512KHz载波波形,中间为同相信号波形,最下方为反相信号波形。

5)已调信号波形:

七、已调信号波形

10  解调电路

1)解调部分电路如下:

八、PSK解调电路

以上电路中,解调运用的仍是4066芯片的开关特性来实现:将已调信号接入4066中并用512KHz的信号源方波“识别”出已调信号中的同反相512KHz频率的正弦信号,然后经过两个相同截至频率的低通滤波器(理论值为32KHz,即与生成伪随机码的信号源频率一致),滤出含有基带信号的“混合”波形。参考“混合”波形的幅值设置一个合理的判决门限电压值(本实验中给的是1v),与所得的“混合”信号一起接入LM311比较器中比较,最后得到解调信号。

电路中,LM311比较器处接了下拉电阻(R25),作用是使解调信号可正常输出解调波形。另解调低通滤波器电路及最终所得的解调信号波形见下图:

九、解调低通滤波器电路

十、PSK解调信号与基带信号波形对比

观察波形结果发现,信号得到了较好的解调,基本恢复了基带信号(上方为基带信号,下方为解调信号)。但解调信号与基带信号间存在一定的延时,这与FSK实验中一样,可能是由电路中的某些器件引起的,如:电路中406

6、LM311芯片的触发可能导致信号延时;滤波电路中,电阻和电容也可能对相位产生影响,使信号延时。总体来说,PSK对基带信号的调制和解调结果是比较合理的,实验具有一定的准确性。

四、实验心得体会:

本实验是PSK调制与解调的综合性设计实验,在上个FSK调制解调设计实验的基础上,完成本实验相对简单了一些。实验的核心内容在于:运用4066和LM311芯片实现已调信号的解调。首先充分利用了4066芯片的开关特性,“识别”出已调信号中同反相的两个载波信号并经过低通滤波得到初解调信号。通过参考初解调信号的幅值给定一个合理的判决门限电压值,然后与初解调信号一起接入LM311芯片进行信号比较,得到解调信号。实验完成后,我思考的问题是,通过给定一个判决门限值与初解调信号比较是怎样实现信号解调的。我的理解是:接入4066解调芯片的信号都是含有512KHz频率的信号,故开关电路一直都会有信号流过。但是已调信号的相位跳变点正是直接携带基带信号信息的,当这个跳变点遇上512KHz的方波时,经过开关电路即会产生幅值的前后变化,故我们可以设置一个处于幅值变化之间的某个电压值作为判决门限值,这样即可实现同反相载波的区分,解调出基带信号的。本实验的综合和性较强,且电路成分也比较多,宜采用子电路方法简化电路以减少因电路间干扰而出现错误。实验难点同FSK一样,在于设计产生载波信号和解调部分的滤波器的设计,这直接影响到最后是否可成功解调出信号。总之实验下来让我更加熟练了multisim仿真操作、不同截至频率滤波器的调节技巧以及PSK调制与解调理论知识的理解。实践结合起理论知识,使得我们更清晰的理解理论并提高了动手操作能力,受益略多。

第五篇:通信原理实验感想

郝昆 1243064

首先对这学期做的通信原理实验做一个总结。这学期我们做了模拟锁相环实验、CMI码型变换实验、验证抽样定理实验、2ASK系统调制与解调实验、2PSK系统解调实验等,通过实验,我们在理论和实际应用方面都有了一定的提高,我们了解了单极性码、双极性码、归零码等波形特点并掌握AMI、HDB3码的编码规则,我们掌握绝对码、相对码概念及它们之间的变换关系,掌握了相对波形与2PSK信号波形之间的关系、绝对码波形与2DPSK信号波形之间的关系,并对2ASK、2FSK、2DPSK信号有了进一步了解。通过模拟锁相环的实验,我们熟悉了模拟锁相环的基本工作原理,掌握模拟字锁相环的基本参数及设计。

在通信原理实验的学习中,我们也收获了很多。实验之前要做好预习工作,只有在课前充分了解了实验原理,才能在课上更好的学习,收获的更多、掌握的更多。实验培养了我们的动手能力。实验的每个步骤都必须亲自去做,亲自去调试,动手能力得到了很大提高。实验是检验理论正确与否的试金石,通过实验我们懂得了探索出真知,为了要使你的理论被人接受,你必须用实验来证明。虽然我们的通信原理实验基本上都是验证性实验,但是对于我们这些知识能力还不够的学生来说,这些探索也是很有价值的。对于这些实验,我们在探索中学习、在模仿中理解、在实践中掌握。通信原理实验让我在探索、自我学习中获得知识。

当然,经过一学期通信原理实验课的学习,也发现了自身存在的很多不足。自己的理论知识并不是很强,有些实验结果无法得到透彻的解释;我的思维、思考方式还需要提高,一些复杂的实验时我还不能很快很好的完成,每个实验后相关的思考题也不能得到很好的解决。

最后,我觉得我们做的实验都是验证性试验,虽然对知识的理解会有很大帮助,但缺乏自主创新性,希望以后能在通信原理实验课上适当增加一点微创新性实验。总之,通信原理的实验让我收获很多,希望自己在以后的学习中可以灵活使用这些知识,得到更大提升!

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:团委换届工作汇报下一篇:通信基站应急预案