三角形四心的向量专题范文

2023-09-17

三角形四心的向量专题范文第1篇

平面几何中中三角形的四“心”,即三角形的内心、外心、重心、垂心。在引入向量这个工具后,我们可以从动和静两个角度看三角形中的四“心”的向量表示,其一可以使我们对三角形中的四“心”有全新的认识;其二使我们对向量形式的多样性和向量运算的灵活性有更清楚的认识。

一.从静止的角度看向量的四“心”

1.已知点O是三角形ABC所在平面上一点,若OAOBOC0,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析:若OAOBOC0,则OAOBOC,设以OA、OB为邻边的平行四边形为OACB,OC与AB交于点D,则D为AB的中点,由OAOBOC得,OCOC,即C、O、D、C四点共线,故CD为ABC的中线,所以O在边AB的中线上,同理可证, O在边AC的中线上, O在边BC的中线上所以O是三角形ABC的重心.

 2. 已知点O是三角形所在平面上一点,若OAOBOBOCOCOA,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析:由OAOBOBOC得,OB(OAOC)0,即OBCA0,所以OBC,A同理可证:OCAB,OABC,所以O是ABC的垂心.

3. 已知点O是三角形所在平面上一点,若aOAbOBcOC0,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析::若aOAbOBcOC0,又因为OBOAAB,OCOAAC,则(abc)OAbABcAC0.所以AObcABACABAC,因为与分别表示AB和AC方向上的单位向量,设abc|AB||AC||AB||AC|ABAC+,则AP平分BAC.又AO、APAP共线,BO平分BAC,知AO平分BAC。同理可证,|AB||AC|CO平分BAC。从而O是ABC的内心。

2224.已知点O是三角形所在平面上一点,若OAOBOC,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

222222分析:因为OAOBOC,所以OAOBOC,即OAOBOC,所以O是ABC的外心。

二.从运动的角度看三角形的四“心”

1.已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足OPOA(ABAC),R,则动点P一定通过ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心 解:OPOA(ABAC) ,可得AP(ABAC),由于ABAC表示以AB,AC为邻边的平行四边形的对角线,所以点P在边BC的中线所在直线上,,故动点P的轨迹一定通过ABC的重心. 2.已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足ABAC+ OPOA,R,则动点P一定通过ABC的(

) |AB||AC|(A)内心

(B)外心

(C)重心

(D)垂心

ABABACACABAC+ 得,AP+ 。由于+ 表分析:由OPOA|AB||AC||AB||AC||AB||AC|示BAC的平分线所在的方向向量。故当R时,动点则动点P一定通过ABC的内心。

3已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足ABAC+  ,R,则动点P一定通过ABC的(

) OPOA|AB|cosB|AC|coCs(A)内心

(B)外心

(C)重心

(D)垂心

ABACABAC+ 得,AP+ 。分析: 由OPOA|AB|cosB|AC|cosC|AB|cosB|AC|cosCABACABBCACBC+ B CBCB,C0由于所以cosAB|B|coAsC|C|cos|AB|coBsA|C|C。即点P的轨迹是过点A且垂直于BC的直线,故动点P的轨迹一定通过ABC的垂心。 APB0C4. 已知O平面上一个定点,A、B、C是平面内不共线三点,动点P满足OBOCOP2ABAC+ ,R,则动点P一定通过ABC的(

) sA|C|coC|AB|coBs(A)内心

(B)外心

(C)重心

(D)垂心

三角形四心的向量专题范文第2篇

平面几何中中三角形的四“心”,即三角形的内心、外心、重心、垂心。在引入向量这个工具后,我们可以从动和静两个角度看三角形中的四“心”的向量表示,其一可以使我们对三角形中的四“心”有全新的认识;其二使我们对向量形式的多样性和向量运算的灵活性有更清楚的认识。

一.从静止的角度看向量的四“心”

1.已知点O是三角形ABC所在平面上一点,若OAOBOC0,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析:若OAOBOC0,则OAOBOC,设以OA、OB为邻边的平行四边形为OACB,OC与AB交于点D,则D为AB的中点,由OAOBOC得,OCOC,即C、O、D、C四点共线,故CD为ABC的中线,所以O在边AB的中线上,同理可证, O在边AC的中线上, O在边BC的中线上所以O是三角形ABC的重心.

 2. 已知点O是三角形所在平面上一点,若OAOBOBOCOCOA,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析:由OAOBOBOC得,OB(OAOC)0,即OBCA0,所以OBC,A同理可证:OCAB,OABC,所以O是ABC的垂心.

3. 已知点O是三角形所在平面上一点,若aOAbOBcOC0,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析::若aOAbOBcOC0,又因为OBOAAB,OCOAAC,则(abc)OAbABcAC0.所以AObcABACABAC,因为与分别表示AB和AC方向上的单位向量,设abc|AB||AC||AB||AC|ABAC+,则AP平分BAC.又AO、APAP共线,BO平分BAC,知AO平分BAC。同理可证,|AB||AC|CO平分BAC。从而O是ABC的内心。

2224.已知点O是三角形所在平面上一点,若OAOBOC,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

222222分析:因为OAOBOC,所以OAOBOC,即OAOBOC,所以O是ABC的外心。

二.从运动的角度看三角形的四“心”

1.已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足OPOA(ABAC),R,则动点P一定通过ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心 解:OPOA(ABAC) ,可得AP(ABAC),由于ABAC表示以AB,AC为邻边的平行四边形的对角线,所以点P在边BC的中线所在直线上,,故动点P的轨迹一定通过ABC的重心. 2.已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足ABAC+ OPOA,R,则动点P一定通过ABC的(

) |AB||AC|(A)内心

(B)外心

(C)重心

(D)垂心

ABABACACABAC+ 得,AP+ 。由于+ 表分析:由OPOA|AB||AC||AB||AC||AB||AC|示BAC的平分线所在的方向向量。故当R时,动点则动点P一定通过ABC的内心。

3已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足ABAC+  ,R,则动点P一定通过ABC的(

) OPOA|AB|cosB|AC|coCs(A)内心

(B)外心

(C)重心

(D)垂心

ABACABAC+ 得,AP+ 。分析: 由OPOA|AB|cosB|AC|cosC|AB|cosB|AC|cosCABACABBCACBC+ B CBCB,C0由于所以cosAB|B|coAsC|C|cos|AB|coBsA|C|C。即点P的轨迹是过点A且垂直于BC的直线,故动点P的轨迹一定通过ABC的垂心。 APB0C4. 已知O平面上一个定点,A、B、C是平面内不共线三点,动点P满足OBOCOP2ABAC+ ,R,则动点P一定通过ABC的(

) sA|C|coC|AB|coBs(A)内心

(B)外心

(C)重心

(D)垂心

三角形四心的向量专题范文第3篇

1 若P是△ABC的重心 PA+PB+PC=0 2 若P是△ABC的垂心 PA•PB=PB•PC=PA•PC(内积) 3 若P是△ABC的内心 aPA+bPB+cPC=0(abc是三边)

4 若P是△ABC的外心 |PA|²=|PB|²=|PC|²(AP就表示AP向量 |AP|就是它的模)

5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心 7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)或 AP=λ(AB+AC),λ∈[0,+ ∞) 经过重心

8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,C的外角平分线的交点

【以下是一些结论的有关证明】

1.O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量充分性:已知aOA向量+bOB向量+cOC向量=0向量,延长CO交AB于D,根据向量加法得:OA=OD+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB) +cOC=0,因为OD与OC共线,所以可设OD=kOC,上式可化为(ka+kb+c) OC+( aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:ka+kb+c=0,aDA+bDB=0向量,由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。必要性:已知O是三角形内心,设BO与AC相交于E,CO与AB相交于F,∵O是内心∴b/a=AF/BF,c/a=AE/CE过A作CO的平行线,与BO的延长线相交于N,过A作BO的平行线,与CO的延长线相交于M,所以四边形OMAN是平行四边形根据平行四边形法则,得向量OA=向量OM+向量ON=(OM/CO)*向量CO+(ON/BO)*向量BO=(AE/CE)*向量CO+(AF/BF)*向量BO=(c/a)*向量CO+(b/a)*向量BO∴a*向量OA=b*向量BO+c*向量CO∴a*向量OA+b*向量OB+c*向量OC=向量02.已知△ABC 为斜三角形,且O是△ABC所在平面上的一个定点,动点P满足向量OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},求P点轨迹过三角形的垂心OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},OP-OA=入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},AP=入{(AB /|AB|^2*sin2B)+AC /(|AC|^2*sin2C)},AP•BC=入{(AB•BC /|AB|^2*sin2B)+AC•BC /(|AC|^2*sin2C)},AP•BC=入{|AB|•|BC|cos(180° -B) / (|AB|^2*sin2B) +|AC|•|BC| cosC/(|AC|^2*sin2C)},AP•BC=入{-|AB|•|BC| cos B/ (|AB|^2*2sinB cos B) +|AC|•|BC| cosC/(|AC|^2*2sinC cosC)},AP•BC=入{-|BC|/ (|AB|*2sinB ) +|BC|/(|AC|*2sinC )},根据正弦定理得:|AB|/sinC=|AC|/ sinB,所以|AB|*sinB=|AC|*sinC∴-|BC|/ (|AB|*2sinB ) +|BC|/(|AC|*2sinC )=0,即AP•BC=0,P点轨迹过三角形的垂心3.OP=OA+λ

(AB/(|AB|sinB)+AC/(|AC|sinC))

OP-OA=

λλ(AB/(|AB|sinB)+AC/(|AC|sinC))AP=(AB/(|AB|sinB)+AC/(|AC|sinC))AP与AB/|AB|sinB+AC/|AC|sinC共线根据正弦定理:|AB|/sinC=|AC|/sinB,所以|AB|sinB=|AC|sinC,所以AP与AB+AC共线AB+AC过BC中点D,所以P点的轨迹也过中点D,∴点P过

4.OP=OA+

三角形四心的向量专题范文第4篇

平面几何中中三角形的四“心”,即三角形的内心、外心、重心、垂心。在引入向量这个工具后,我们可以从动和静两个角度看三角形中的四“心”的向量表示,其一可以使我们对三角形中的四“心”有全新的认识;其二使我们对向量形式的多样性和向量运算的灵活性有更清楚的认识。

一.从静止的角度看向量的四“心”

1.已知点O是三角形ABC所在平面上一点,若OAOBOC0,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析:若OAOBOC0,则OAOBOC,设以OA、OB为邻边的平行四边形为OACB,OC与AB交于点D,则D为AB的中点,由OAOBOC得,OCOC,即C、O、D、C四点共线,故CD为ABC的中线,所以O在边AB的中线上,同理可证, O在边AC的中线上, O在边BC的中线上所以O是三角形ABC的重心.

 2. 已知点O是三角形所在平面上一点,若OAOBOBOCOCOA,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析:由OAOBOBOC得,OB(OAOC)0,即OBCA0,所以OBC,A同理可证:OCAB,OABC,所以O是ABC的垂心.

3. 已知点O是三角形所在平面上一点,若aOAbOBcOC0,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析::若aOAbOBcOC0,又因为OBOAAB,OCOAAC,则(abc)OAbABcAC0.所以AObcABACABAC,因为与分别表示AB和AC方向上的单位向量,设abc|AB||AC||AB||AC|ABAC+,则AP平分BAC.又AO、APAP共线,BO平分BAC,知AO平分BAC。同理可证,|AB||AC|CO平分BAC。从而O是ABC的内心。

2224.已知点O是三角形所在平面上一点,若OAOBOC,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

222222分析:因为OAOBOC,所以OAOBOC,即OAOBOC,所以O是ABC的外心。

二.从运动的角度看三角形的四“心”

1.已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足OPOA(ABAC),R,则动点P一定通过ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心 解:OPOA(ABAC) ,可得AP(ABAC),由于ABAC表示以AB,AC为邻边的平行四边形的对角线,所以点P在边BC的中线所在直线上,,故动点P的轨迹一定通过ABC的重心. 2.已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足ABAC+ OPOA,R,则动点P一定通过ABC的(

) |AB||AC|(A)内心

(B)外心

(C)重心

(D)垂心

ABABACACABAC+ 得,AP+ 。由于+ 表分析:由OPOA|AB||AC||AB||AC||AB||AC|示BAC的平分线所在的方向向量。故当R时,动点则动点P一定通过ABC的内心。

3已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足ABAC+  ,R,则动点P一定通过ABC的(

) OPOA|AB|cosB|AC|coCs(A)内心

(B)外心

(C)重心

(D)垂心

ABACABAC+ 得,AP+ 。分析: 由OPOA|AB|cosB|AC|cosC|AB|cosB|AC|cosCABACABBCACBC+ B CBCB,C0由于所以cosAB|B|coAsC|C|cos|AB|coBsA|C|C。即点P的轨迹是过点A且垂直于BC的直线,故动点P的轨迹一定通过ABC的垂心。 APB0C4. 已知O平面上一个定点,A、B、C是平面内不共线三点,动点P满足OBOCOP2ABAC+ ,R,则动点P一定通过ABC的(

) sA|C|coC|AB|coBs(A)内心

(B)外心

(C)重心

(D)垂心

三角形四心的向量专题范文第5篇

(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、四心与向量的结合

(1)OAOBOC0O是ABC的重心.证法1:设O(x,y),A(x1,y1),B(x2,y2),C(x3,y3)

(x1x)(x2x)(x3x)0

(y1y)(y2y)(y3y)0

OAOBOC0

x1x

yy1

x2x33y2y3

3O是ABC的重心.

证法2:如图

OAOBOC OA2OD0

AO2OD

A、O、D三点共线,且O分AD

为2:

1O是ABC的重心

BDC

(2)OAOBOBOCOCOAO为ABC的垂心.证明:如图所示O是三角形ABC的垂心,BE垂直AC,AD垂直BC, D、E是垂足.

OAOBOBOCOB(OAOC)OBCA0 OBAC

同理OABC,OCAB

O为ABC的垂心

(3)设a,b,c是三角形的三条边长,O是ABC的内心

aOAbOBcOC0O为ABC的内心.证明:

ABc

AB

ACAC方向上的单位向量, 分别为AB、cb

ACb

平分BAC,

ABcACb

AO(),令

bcabc

AO

bcabc

(

ABc

ACb

)

化简得(abc)OAbABcAC0

aOAbOBcOC0

(

4O为ABC的外心。

典型例题:

例1:O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足

OPOA(ABAC),0, ,则点P的轨迹一定通过ABC的()

A.外心B.内心C.重心D.垂心 分析:如图所示ABC,D、E分别为边BC、AC的中点.ABAC2AD

OPOA2AD OPOAAP AP2AD

BDC

AP//AD

点P的轨迹一定通过ABC的重心,即选C.

例2:(03全国理4)O是平面上一定点,A、B、C是平面上不共线的三个点,动点P

满足OPOA,0, ,则点P的轨迹一定通过ABC的(B)

A.外心B.内心C.重心D.垂心

分析:

AC方向上的单位向量,

分别为AB、

AB

AC平分BAC,

点P的轨迹一定通过ABC的内心,即选B.例3:O是平面上一定点,A、B、C是平面上不共线的三个点,动点P

满足

OPOAAB

AC,0, ,则点P的轨迹一定通过ABC的

()

A.外心B.内心C.重心D.垂心

分析:如图所示AD垂直BC,BE垂直AC, D、E是垂足

. 

BC

=

=0

点P的轨迹一定通过ABC的垂心,即选D.练习:

1.已知ABC三个顶点A、B、C及平面内一点P,满足PAPBPC0,若实数满足:ABACAP,则的值为()

A.2B.

32C.3D.6

2.若ABC的外接圆的圆心为O,半径为1,OAOBOC0,则OAOB() A.

12

B.0C.1D.

12

3.点O在ABC内部且满足OA2OB2OC0,则ABC面积与凹四边形

ABOC

面积之比是() A.0B.

32

C.

54D.

43

4.ABC的外接圆的圆心为O,若OHOAOBOC,则H是ABC的()

A.外心B.内心C.重心D.垂心

5.O是平面上一定点,A、B、C是平面上不共线的三个点,若OA

BCOB

CAOCAB,则O是ABC的()

A.外心B.内心C.重心D.垂心

OHm(OAOBOC),ABC的外接圆的圆心为O,6.两条边上的高的交点为H,

则实数m =

→→→→1ABACABAC→→→

7.(06陕西)已知非零向量AB与AC满足(+ )·BC=0 · = , 则

2→→→→|AB||AC||AB||AC|△ABC为()

A.三边均不相等的三角形B.直角三角形 C.等腰非等边三角形D.等边三角形

8.已知ABC三个顶点A、B、C,若AB

ABC为()

ABACABCBBCCA,则

A.等腰三角形B.等腰直角三角形

C.直角三角形D.既非等腰又非直角三角形 练习答案:C、D、C、D、D、

三角形四心的向量专题范文第6篇

证:G是△ABC的重心.

证明:如图1所示,因为GAGBGC0,所以GA(GBGC).

以GB,GC为邻边作平行四边形BGCD,则有GDGBGC,

所以GDGA.

又因为在平行四边形BGCD中,BC交GD于点E,所以BEEC,

GEED.所以AE是△ABC的边BC的中线,且GA2GE.

故G是△ABC的重心.

点评:①解此题要联系重心的性质和向量加法的意义;②把平面几何知识和向量知识结合起来解决问题是解此类问题的常用方法.

变式引申:已知D,E,F分别为△ABC的边BC,AC,AB的中点.求证: ADBECF0.

证明:如图2的所示,

ADACCD2ADACABCDBD,即2ADACAB. ADABBD

同理2BEBABC,2CFCACB.

2A(DBEC)FAC

0CFADBE. .ABBAB0C CACB

点评:该例考查了三角形法则和向量的加法.

例2 如图3所示,△ABC的重心为G,O为坐标原点,

OAa,OBb,OCc,试用a,b,c表示OG.

解:设AG交BC于点M,则M是BC的中点,

baABACBCcb.则,ca,

111AMABbCa(cb)(cb2a). 22

221AGA(cb2a.

) 3

311故OGOAAGa(cb2a)(abc). 33

点评:重心问题是三角形的一个重要知识点,充分利用重心性质及向量加、减运算的几何意义是解决此类题的关键.

变式引申:如图4,平行四边形ABCD的中心为O,

1P为该平面上任意一点,则PO(PAPBPCPD). 4

POPAAO,POPBBO,POPCCO,证法1:

POPDDO,

PBPC PD4POPA, 1即PO(PAPBPCPD). 4

11证法2:PO(PAPC),PO(PBPD), 22

1PO(PAPBPCPD). 4

点评:(1)证法1运用了向量加法的三角形法则,证法2运用了向量加法的平行四边形法则.

上一篇:审计员职业规划怎么写范文下一篇:十佳先进班级评选标准范文