图像数字化范文

2023-09-21

图像数字化范文第1篇

课程编号:()

课程名称:数字图像处理 参考学时:42 其中实验或上机学时:10 说明部分

1. 课程的地位、性质和任务

数字图像处理是一门迅速发展的新兴学科,发展的历史并不长。由于图像是视觉的基础,而视觉又是人类重要的感知手段,故数字图像成为心理学、生理学、计算机科学等诸多方面学者研究视觉感知的有效工具。随着计算机的发展,以及应用领域的不断加深和扩展,数字图像处理技术已取得长足的进展,出现了许多有关的新理论、新方法、新算法、新手段和新设备,并在军事公安、航空、航天、遥感、医学、通信、自控、天气预报以及教育、娱乐、管理等方面得到广泛的应用。所以,数字图像处理是一门实用的学科,已成为电子信息、计算机科学及其相关专业的一个热门研究课题,相应《图像处理技术》也是一门重要的课程,是一门多学科交叉、理论性和实践性都很强的综合性课程。 本课程是电子信息工程专业的专业课。

本课程着重研究数字图像处理的方法,训练学生运用所学基础知识解决实际问题的能力,同时要求拓宽专业知识面。 2.课程教学的目的及意义

数字图像处理是研究数字图像处理的基本理论、方法及其在智能化检测中应用的学科,本课程侧重于机器视觉中的预处理技术——数字图像基本处理,并对图像分析的基本理论和实际应用进行系统介绍。目的是使学生系统掌握数字图像处理的基本概念、基本原理和实现方法和实用技术,了解数字图像处理基本应用和当前国内外的发展方向。要求学生通过该课程学习,具备解决智能化检测与控制中应用问题的初步能力,为在计算机视觉、模式识别等领域从事研究与开发打下扎实的理论基础。 3.教学内容及教学要求

教学内容:数字图像处理是计算机和电子学科的重要组成部分,是模式识别和人工智能理论的的中心研究内容。主要教学内容包括:(1)数字图像处理的基本概念,包括数字图像格式,数字图像显示,灰度直方图,点运算,代数运算和几何运算等概念。(2)介绍二维富氏变换离散余弦变换,离散图像变换和小波变换的基本原理与方法。(3)重点介绍图像的增强方法,包括空间域方法和变换域方法。(4)图像恢复和重建基本原理与方法。(5)图像压缩编码的基本原理与方法以及一些国际标准。(6)图像的分析和模式识别基本原理。

教学要求:本课程的目的是使学生掌握数字图像处理的基本概念,熟练使用分析数字图像处理编程的基本工具,了解数字图像处理的发展和应用以及当前国际国内研究的热点和重要成果及其工程应用前景。

1、了解图像处理的概念及图像处理系统组成。

2、理解视觉成像原理、视觉特性及彩色模型。

3、深刻理解图像的采样和量化方法。

4、掌握图像变换,包括傅里叶变换、沃尔什变换、哈达码变换、离散余弦变换及霍特林 1 变换等的原理及性质。

5、理解各种图像增加方法,特别是要求掌握空域图像平滑及图像锐化的各种方法。

6、深刻理解图像退化的模型,理解常用的几种图像恢复的方法。

7、深刻理解编码概念及其基本原理,掌握统计编码、预测编码、变换编码的原理及方法,了解部份国际编码标准。

8、了解图像分割的概念,了解串并行边界技术及串并行区域技术。

9、掌握数字图像处理中最基本、最广泛应用的概念、原理、理论和算法以及基本技术和方法;着重培养学生对数字图像处理的分析能力,能熟练用MATLAB编程,实现对图像进行处理。

4. 教学重点、难点 教学重点:

数字图像增强,图像复原和重建,图像分析以及图像编码。 教学难点:

图像处理中涉及到的数学知识以及图像处理的编程实现。 5.教学方法及教学手段

课堂讲课为主,实验课和习题讲解课为辅。 6.教材及主要参考书 教材:

章毓晋编著,图象处理和分析,北京:清华大学出版社,1999 参考书:

1. 阮秋琦编著,数字图像处理学,北京:电子工业出版社,2001.1。 2. 夏良正主编,数字图像处理,南京:东南大学出版社,1999.9

3. K.R.Castleman著, 朱志刚等译,数字图像处理(新版),北京:电子工业出版社,2002.2 4. Kenneth R. Castleman, Digital Image Processing, Prentice Hall International, Inc., 清华大学出版社,1997 5. Rafael C. Gonzalez, Digital Image Processing Using Matlab. Prentice Hall International, Inc.,电子工业出版社, 北京, 2004 7. 其它

考核形式:考试(笔试);教学环境:课堂 总学时数:42 其中实验或上机学时:10

二、正文部分

第一章:数字图像处理基础

一、教学要求

了解:数字图像处理研究对象、目的、发展简史与研究现状;理解图像系统和视觉系统的概念。

掌握:图像的抽样和量化基本理论。

二、教学内容

第一节 数字图像处理的主要方法与内容

知识要点:数字图像处理的主要方法,数字图像处理的内容。 第二节 数字图像处理的应用与发展动向

知识要点:数字图像处理的主要应用领域与发展动向 第三节 图像系统和视觉系统

知识要点:图像,图像信息分类,视觉系统基本构造,亮度和颜色感觉的视觉特征。 第四节 图像处理系统外围设备

知识要点:图像处理系统常用的输入设备,图像处理系统输出设备 第五节 图像的抽样和量化 知识要点:图像取样,图像量化 。

三、本章学时数

2学时

第二章:图像处理中的正交变换

一、教学要求

了解:小波变换及其概念;了解沃尔什变换及其概念;

掌握:傅立叶变换与二维离散傅立叶变换,快速傅立叶变换,离散余弦变换定义及特性。

二、教学内容

第一节 傅立叶变换以及二维傅立叶变换

知识要点:傅立叶变换以及二维离散傅立叶变换,快速傅立叶变换。 第二节 离散余弦变换

知识要点:离散余弦变换定义,离散余弦变换特性,离散余弦变换的计算。 第三节 沃尔什变换 知识要点:沃尔什变换定义 第四节 小波变换

知识要点:小波变换概述,时-频分析,小波包。

三、本章学时数

4学时

第三章:图像增强

一、教学要求

了解:伪色彩增强

掌握:直方图修正技术,图像平滑,图像锐化,频率域增强处理。

二、教学内容

第一节 直方图修正技术

知识要点:直方图修正技术基础,直方图均衡化,直方图规定化,图像对比度处理。 第二节 空间域图像平滑

知识要点:噪声消除法,邻域平均法,梯度倒数加权法,多图像平均。

3 第三节 图像锐化

知识要点: 梯度法,Laplacian算子, 掩模匹配法。 第四节 频域增强

知识要点:低通滤波法,高通滤波法,同态滤波。

三、本章学时数

6学时

第四章:图像恢复

一、教学要求

了解:盲目图像复原和递归图像复原技术;最小二乘滤波原理。

掌握:图像退化模型和恢复的代数方法,逆滤波的基本原理,中值滤波和加权中值滤波

二、教学内容

第一节 退化模型

知识要点:图像恢复的基本概念,连续函数退化模型,离散函数退化模型。 第二节 恢复的代数方法和逆滤波

知识要点:非约束复原,约束复原,逆滤波基本原理。 第三节 最小二乘方滤波

知识要点:最小二乘方滤波原理,用于图像复原的几种最小二乘方滤波器。 第四节 中值滤波

知识要点:中值滤波和,加权中值滤波。 第五节 其他空间复原技术

知识要点:几何畸变校正,盲目图像复原,递归图像复原技术。

三、本章学时数

6学时

第五章:图像重建

一、教学要求

了解:代数方法重建;卷积方法重建; 掌握:图像傅立叶方法重建

二、教学内容

第一节 傅立叶方法重建 知识要点:傅立叶方法重建。 第二节 卷积方法重建 知识要点:卷积方法重建。 第三节 代数方法重建 知识要点:代数方法重建。

三、本章学时数

4学时

4 第六章:图像编码

一、教学要求

了解图像编码的国际标准。 理解利用信息理论编码的基础。

掌握PCM编码,统计编码和预测编码的基本理论。

二、教学内容

第一节 图像编码的分类及保真度准则 知识要点:图像编码的分类,保真度准则。 第二节 图像的编码

知识要点:PCM编码,统计编码,预测编码以及变换编码的基本理论。 第三节图像编码的国际标准

知识要点:H.261编码标准与解码原理。

三、本章学时数

6学时

第七章:图像分析

一、教学要求

了解:图像获取、处理、识别三大主干系统的结构原理和设计理论及方法,图像的描绘。 掌握:图像的分割,图像的特征提取。

二、教学内容

第一节 图像的分割

知识要点:图像分割处理,阈值法分割,基于梯度的图像分割,区域生长,区域聚合。 第二节 图像的描绘

知识要点:区域描绘,关系描绘,Hough变换。 第三节 图像处理与模式识别

知识要点:模式识别概述,特征选择,模式识别的几种应用。

三、本章学时数

4学时

执笔人:

胡学友

教研室:

电子信息教研室

系主任审核签名:

图像数字化范文第2篇

经过这几周的学习,我从一个什么都不了解的小白,变成了一个明白这门课程的意义的初学者,觉得学到了不少有用同时又很有趣的知识,也对数字图象处理有了新的理解。老师从数字图像处理的意义讲起,中间介绍了许多目前仍在应用的相关技术,让我明白了图像处理在我们生活中的重要性,下面我来谈谈我自己的学习成果和感受。

图像处理是指对图像信息进行加工,从而满足人类的心理、视觉或者应用的需求的一种行为。图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理是从20世纪60年代以来随着计算机技术和VLSL的发展而产生、发展和不断成熟起来的一个新兴技术领域。数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。目前,随着计算机技术的不断发展,计算机的运算速度得到了很大程度的提高。在短短的历史中,它却广泛应用于几乎所有与成像有关的领域,在理论上和实际应用上都取得了巨大的成就。

从定义上来说,图像处理是指按照一定的目标,用一系列的操作,来“改造”图像的方法。 我觉得字面上的意思就是,对图像进行处理,得到自己想要的效果。图象处理的内容有很多种:几何处理,算术处理、图像增强、图像复原、图像重建、图像识别、图像压缩。而目前进行图像处理就是指用计算机对图像进行空域法和变换域法。资料上介绍说,数字图象处理起源于20世纪20年代,那时第一次通过海底电缆传输图像;1921年人们用电报打印机采用特殊字符在编码纸带中产生图像;1922年在信号两次穿越大西洋后,从穿孔纸带得到数字图像;1929年从伦敦到纽约用15级色调设备传送照片。到了20世纪60年代早期,计算机发展,有了第一台可执行有意义的图像处理任务的大型计算机,美国利用航天器传送了第一张月球照片。从20世纪60年代末到70年代初,开始用于医学图像、地球遥感、天文学等领域,如CT图像和X射线图像。至今,数字图象处理仍旧广泛应用于工业、医学、地理学、考古学、物理学、天文学等多个领域。比如,太空技术中的航天技术、空间防御、天文学;生物科学的生物学和医学;刑事(物证)上的指纹、人脸分析;国防方面的军事探测,导弹目标识别;工业应用中的产品检测还有日常生活中的照片编辑、影视制作。

从概念上来说,数字图像用f(x,y)表示一幅图像,x,y,f为有限、离散值。图像处理涉及到图像的分析和计算机视觉,其中分为低级处理、中级处理、高级处理。低级处理是指输入输出均为图像(如图像缩放、图像平滑);中级处理是输入图像,然后输出提取的特征(如区域分割、边界检测);高级处理则是理解识别的图像(如无人机驾驶,自动机器人)。 数字图像处理的几个基本目的是:

图像输入->图像处理(增强、复原、编码和压缩)->图像输出。以人为最终的信息接收者,其主要目的是改善图像的质量。

图像输入->图像预处理(增强、复原)->图像分割->特征提取->图像分类->图像输出。另一类图像处理以机器为对象,目的是使机器或计算机能自动识别目标,称为图像识别。

图像输入->图像预处理->图像描述->图像分析和理解->图像解释。利用计算机系统解释图像,实现类似人类视觉系统理解外部知识,被称为图像理解或计算机视觉。其正确的理解要有知识的引导,与人工智能等学科有密切联系。当前理论上有不小进展,但仍是一个有待进一步探索的领域。

数字图像处理主要研究的内容包括:

1)图像变换:如傅里叶变换、沃尔什变换、离散余弦变换(DCT)等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理。目前小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。

2)图像编码压缩

图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少存储器容量。压缩可以在不失真前提下获得,也可以在允许的失真条件下进行。编码是压缩技术最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。

3)图像增强和复原

目的是提高图像的质量,如去除噪声,提高清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强调低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,建立“降质模型”,再采用某种方法,恢复或重建原来的图像。

4)图像分割

图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中物体的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。

数字图像处理的特点主要表现在数字图像处理的信息大多是二维信息,处理信息量很大。因此对计算机的计算速度、存储容量等要求较高;数字图像处理占用的频带较宽。与语言信息相比,占用的频带要大几个数量级。所以在成像、传输、存储、处理、显示等各个环节的实现上技术难度较大,成本亦高。这就对频带压缩技术提出了更高的要求;数字图像中各个像素不是独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。所以,图像处理中信息压缩的潜力很大。数字图像处理后的图像受人的因素影响较大,因为图像一般是给人观察和评价的。

数字图像处理的优点主要表现在再现性好、处理精度高、适用面宽、灵活性高等方面。图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。

数字图像处理的主要应用有:

通讯技术---图像传真,电视电话,威信通讯,数字电视;

宇宙探索---其他星体图片处理;

遥感技术---农林资源调查,作物长势监视,自然灾害(水、火、风、虫等)监测、预报,地势、地貌以及地质构造测绘,找矿,水文、海洋调查,环境污染监测,等等;

生物医学---X射线、超声、显微图片分析,内窥镜图、温谱图分析,断层及核磁共振分析;工业生产---无损探伤,石油勘探,生产过程的自动化(识别零件,装配,质量检查),工业机器人视觉;

计算机科学---文字、图像输入的研究,计算机辅助设计,人工智能研究,多媒体计算机与智能计算机研究;

气象预报---天气云图测绘、传输;

高能物理---核子泡室图片分析;

军事技术---航空及卫星侦察照片的判读,导弹制导,雷达、声纳图像处理,军事仿真;

侦缉破案---指纹识别,印鉴、伪钞识别,手迹分析;考古---恢复珍贵的文物图片,名画,壁画。

由此可见,数字图像在我们日常生活中占有多大的地位。它是我们生活中接触最多的图形类别,它伴随人们的生活、学习、工作,并在军事、医学和工业方面发挥着极大的作用,可谓随处可见,尤其在生活方面作为学生的我们会在外出旅游、生活、工作中拍下许多数字相片,现在已经进入信息化时代,图像作为信息的重要载体在信息传输方面有着声音、文字等信息载体不可替代的作用,并且近年来图像处理领域,数字图象处理技术取得了飞速发展。

通过课程学习,我们虽说还没有完全掌握数字图像处理技术,但也收获不少,对于数字图像方面有了更深入的了解,更加理解了数字图像的本质,即是一些数字矩阵,但灰度图像和彩色图像的矩阵形式是不同的。对于一些耳熟能详的数字图像相关术语有了明确的认识,比如常见的:像素(衡量图像的大小)、分辨率(衡量图像的清晰程度)、位图(放大后会失真)、矢量图(经过放大不会失真)等大家都能叫上口却知识模糊的名词。也了解图像处理技术中一些常见处理技术的实质,比如锐化处理是使模糊的图像变清晰,增强图像的边缘等细节。而平滑处理的目的是消除噪声,模糊图像,在提取大目标之前去除小的细节或弥合目标间的缝隙。对常提的RGB图像和灰度图像有了明确的理解,这对大家以后应用Photoshop等图像处理软件对图像进行处理打下了坚实的基础。

图像数字化范文第3篇

实验一 图象变换实验

实 验

实验名称:图像处理姓名:刘强

班级:电信

学号:

报 告

1102

1404110128

数字图象处理实验指导书

实验一 图象变换实验

实验一 图像变换实验——图像点运算、几何变换及正交变换

一、 实验条件

PC机 数字图像处理实验教学软件

大量样图

二、 实验目的

1、 学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;

2、 熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;

3、 观察图像的灰度直方图,明确直方图的作用和意义;

4、 观察图像点运算和几何变换的结果,比较不同参数条件下的变换效果;

5、 观察图像正交变换的结果,明确图像的空间频率分布情况。

三、 实验原理

1、 图像灰度直方图、点运算和几何变换的基本原理及编程实现步骤

图像灰度直方图是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。

图像点运算是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。点运算可以看作是“从象素到象素”的复制操作,而这种复制操作是通过灰度变换函数实现的。如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:

B(x,y)=f[A(x,y)] 其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值和输出灰度值之间的转换关系。一旦灰度变换函数确定,该点运算就完全确定下来了。另外,点运算处理将改变图像的灰度直方图分布。点运算又被称为对比度增强、对比度拉伸或灰度变换。点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸和均衡等。

图像几何变换是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放和图像旋转等,其理论基础主要是一些矩阵运算,详细原理可以参考有关书籍。

实验系统提供了图像灰度直方图、点运算和几何变换相关内容的文字说明,用户在操作过程中可以参考。下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:

数字图象处理实验指导书

实验一 图象变换实验

2、 图像正交变换的基本原理及编程实现步骤 数字图像的处理方法主要有空域法和频域法,点运算和几何变换属于空域法。频域法是将图像变换到频域后再进行处理,一般采用的变换方式是线性的正交变换(酉变换),主要包括傅立叶变换、离散余弦变换、沃尔什变换、霍特林变换和小波变换等。正交变换被广泛应用于图像特征提取、图像增强、图像复原、图像压缩和图像识别等领域。

正交变换实验的重点是快速傅立叶变换(FFT),其原理过于复杂,可以参考有关书籍,这里不再赘述。至于FFT的编程实现,系统采用的方法是:首先编制一个一维FFT程序模块,然后调用该模块对图像数据的列进行一维FFT,再对行进行一维FFT,最后计算并显示幅度谱。程序流程图如下:

四、 实验内容

图像灰度直方图

点运算:图像反色、灰度线性变换、阈值变换、窗口变换、灰度拉伸和灰度

数字图象处理实验指导书

实验一 图象变换实验

均衡

几何变换:图像镜像变换、图像转置、图像平移、图像缩放和图像旋转 正交变换:傅立叶变换、离散余弦变换、沃尔什变换、霍特林变换和小波正反变换

注意:

1、 所有实验项目均针对8位BMP灰度图像进行处理,其它格式(如JPG)的图像可以利用系统提供的图像格式转换工具进行转换,再进行处理;

2、 本次实验的重点是图像的灰度直方图和点运算,几何变换和正交变换只作一般性了解。

五、 实验步骤

以图像灰度阈值变换为例说明实验的具体步骤,其它实验项目的步骤与此类似。

1、 打开计算机,在系统桌面上双击“数字图像处理实验教学软件系统”的可执行文件“图象处理”的图标,进入实验系统;

2、 执行文件→打开,在OPEN对话框中选择待处理的图像,按【OK】后系统显示出图像;

3、 执行查看→图像基本信息,将显示图像基本信息对话框,如图所示;

数字图象处理实验指导书

实验一 图象变换实验

4、 执行查看→灰度直方图,查看图像的灰度直方图,如图所示;

5、 执行图像变换→正交变换→傅立叶变换,查看图像的频率域分布情况,如图所示;

数字图象处理实验指导书

实验一 图象变换实验

6、 执行图像变换→正交变换→小波变换,查看图像经过小波变换的效果,如图所示;

7、 执行图像变换→点运算→阈值变换,修改阈值变换对话框中的阈值参数,如图所示;

数字图象处理实验指导书

实验一 图象变换实验

8、 设置完阈值参数后按【OK】,系统显示阈值变换后的图像,与原图像进行比较,观察阈值变换的效果,如图所示;

9、 重复步骤4,查看阈值变换后图像的直方图分布情况;

数字图象处理实验指导书

实验一 图象变换实验

10、 重复步骤5,查看阈值变换后图像的频率域分布情况;

11、执行文件→保存或另存为,保存处理后的图像;

12、执行文件→重新加载,重新加载原始图像,但要注意先前对图像的处理将会丢失; 注意:

13、在执行步骤2时可能会出现有些图像文件不能打开的情况,如图所示,此时可以先利用图像格式转换工具将图像文件转换为8位BMP图像,再利用系统进行处理。步骤14和15是使用图像格式转换工具的方法;

14、在桌面上双击图像格式转换工具Jpg2bmp的图标,进入转换工具界面,如图所示;

15、按照界面提示,把JPG格式的图像文件转换成8位BMP图像。

数字图象处理实验指导书

实验一 图象变换实验

步骤13示意图

步骤14示意图

六、 思考题

1、 图像灰度线性变换、阈值变换、窗口变换、灰度拉伸和灰度均衡之间有何区别?

灰度线性变换就是将图像的像素值通过指定的线性函数进行变换,以此增强或者减弱图像的灰度。

灰度的阈值变换可以让一幅图像变成黑白二值图。

灰度的窗口变换也是一种常见的点运算。它的操作和阈值变换类似。从实现方法上可以看作是灰度折线变换的特列。窗口灰度变换处理结合了双固定阈值法,与其不同之处在于窗口内的灰度值保持不变。

灰度拉伸又叫做对比度拉伸,它与线性变换有些类似,不同之处在于灰度拉伸使用的是分段线性变换,所以它最大的优势是变换函数可以由用户任意合成。

灰度均衡是增强图像的有效方法之一。灰度均衡同样属于改进图像的方法,灰度均衡的图像具有较大的信息量。从变换后图像的直方图来看,灰度分布更加均匀。

2、 利用图像镜像和旋转变换可以实现图像转置吗?如果可以,应该怎样实现?

可以。进行一次镜像变换,顺(逆)时针旋转两次,再以与第一次相反的方向镜像变换。

数字图象处理实验指导书

实验一 图象变换实验

实验二 图像增强及复原实验

七、 实验条件

PC机 数字图像处理实验教学软件

大量样图

八、 实验目的

1、 熟练使用“数字图像处理实验教学软件系统”;

2、 熟悉图像增强及复原的基本原理,了解编程实现的具体步骤;

3、 观察图像中值滤波、平滑、锐化和伪彩色编码的结果,比较不同参数条件下的图像增强效果;

4、 观察图像退化和复原的结果,比较不同复原方法的复原效果。

九、 实验原理

1、 图像增强和复原的基本原理

对降质图像的改善处理通常有两类方法:图像增强和图像复原。

图像增强不考虑图像降质的原因,只将图像中感兴趣的特征有选择地进行突出,并衰减图像的次要信息,改善后的图像不一定逼近原始图像,只是增强了图像某些方面的可读性,如突出了目标轮廓,衰减了各种噪声等。图像增强可以用空域法和频域法分别实现,空域法主要是在空间域中对图像象素灰度值直接进行运算处理,一般包括中值滤波、模板平滑和梯度锐化等,空域法可以用下式来描述:

g(x,y)=f(x,y)*h(x,y) 其中f(x,y)是处理前图像,g(x,y)表示处理后图像,h(x,y)为空间运算函数。图像增强的频域法是在图像的频率域中对图像的变换值进行某种运算处理,然后变换回空间域,系统涉及的各种滤波器属于频域法增强,这是一种间接处理方法,可以用下面的过程模型来描述:

其中:F(u,v)=[ f(x,y)],G(u,v)= F(u,v)H(u,v),g(x,y)=1[ G(u,v)],和1分别表示频域正变换和反变换。实验系统提供了图像增强相关内容的文字说明,用户在操作过程中可以参考。

图像复原是针对图像降质的原因,设法去补偿降质因素,使改善后的图像尽可能逼近原始图像,提高了图像质量的逼真度。关于图像复原的详细原理可以参考相关书籍,这里不再赘述。本系统提供了图像的噪声退化、卷积退化和运动模糊退化操作,并提供了相应的逆滤波复原、维纳复原和运动模糊复原操作。本次

数字图象处理实验指导书

实验一 图象变换实验

实验中图像复原只作一般性了解。

2、 编程实现步骤

下面以图像增强中的中值滤波操作为例给出编程实现的程序流程图,如下:

十、 实验内容

图像增强:中值滤波、图像模板平滑、理想低通滤波器平滑、巴特沃斯低通滤波器平滑、梯度锐化、拉普拉斯锐化、理想高通滤波器锐化、巴特沃斯高通滤波器锐化和伪彩色编码

图像复原:图像的噪声退化、卷积退化、卷积加噪声退化、运动模糊退化、逆滤波复原、维纳复原和运动模糊复原

注意:

3、 所有实验项目均针对8位BMP灰度图像进行处理;

4、 本次实验的重点是图像增强中的中值滤波和模板平滑,图像复原只作一般性了解。

十一、 实验步骤

以图像中值滤波操作为例说明实验的具体步骤,其它实验项目的步骤与此类似。

11、 打开计算机,在系统桌面上双击“数字图像处理实验教学软件系统”的可执行文件“图象处理”的图标,进入实验系统;

12、 执行文件→打开,在OPEN对话框中选择待处理的图像,按【OK】后系统显示出图像;

数字图象处理实验指导书

实验一 图象变换实验

13、 执行查看→图像基本信息,将显示图像基本信息对话框,如图所示;

14、 执行查看→灰度直方图,查看图像的灰度直方图,如图所示;

数字图象处理实验指导书

实验一 图象变换实验

15、 执行图像变换→正交变换→傅立叶变换,查看图像的频率域分布情况,如图所示;

16、 执行图像增强→中值滤波,选择或自定义对话框中的滤波器参数,如图所示;

数字图象处理实验指导书

实验一 图象变换实验

17、 设置完滤波器参数后按【OK】,系统显示中值滤波后的图像,与原图像进行比较,观察中值滤波的效果,如图所示;

18、

重复步骤4,查看中值滤波后图像的直方图分布情况;

数字图象处理实验指导书

实验一 图象变换实验

19、 重复步骤5,查看中值滤波后图像的频率域分布情况;

10、执行文件→保存或另存为,保存处理后的图像;

11、执行文件→重新加载,重新加载原始图像,但要注意先前对图像的处理将会丢失。

数字图象处理实验指导书

实验一 图象变换实验

十二、

思考题

1、 图像中值滤波和模板平滑之间有何区别?

图像平滑处理就是用平滑模板对图像进行处理,以减少图像的噪声。而中值滤波是一种非线性的信号处理方法。

2、 图像增强和图像复原之间有何区别?

图像增强:利用一定的技术手段,不用考虑图像是否失真(即原 始图像在变换后可能会失真)而且不用分析图像降质的原因。针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。

图像复原:针对质量降低或者失真的图像,恢复图像原始的内容或者质量。图像复原的过程包含对图像退化模型的分析,再对退化的图像进行复原。图像退化是由于成像系统受各种因素的影响,导致了图像质量的降低,称之为图像退化。这些因素包括传感器噪声、摄像机聚焦不佳、物体与摄像机之间的相对移动、随机大气湍流、光学系统的象差、成像光源和射线的散射等。 图像复原大致可以分为两种方法:

一种方法适用于缺乏图像先验知识的情况,此时可对退化过程建立模型进行描述,进而寻找一种去除或消弱其影响的过程,是一种估计方法;

另一种方法是针对原始图像有足够的先验知识的情况,对原始图像建立一个数学模型并根据它对退化图像进行拟合,能够获得更好的复原效果。

3、 图像维纳复原为什么比逆滤波复原效果好?

维纳滤波复原的原理可表示为

对于维纳滤波,由上式可知,当

时,由于存在 项,所以数字图象处理实验指导书

实验一 图象变换实验

图像数字化范文第4篇

学院 理学院 班级 地信131 学号 姓名

编写日期:1

2015.5

▶▶作业a

1.LS8_C_20140613_022505_000000_118039_GEOTIFF_L4

2. L5118_39_19860531 ProductDescription用记事本打开,读取头文件,并填写相关信息与相应位置即可

2

3. L5118-39-19960103

4. L7118039_20050815 直接打开以_mtl为后缀的文件,该文件中包含了遥感影像的所有波段

3 5. LM212803919761127 直接打开波段,然后波段合成即可

6. s5kj297_289_10m

7. WORLDVIEW-052606622010_01

4

▶▶作业b

在ENVI中将landsat的4景影像和SPOT-5的1景的影像打开,并联动连接查看同一区域

link displays是根据象元位置来连接的,geographic link是通过地理坐标位置来连接的。

5

由上图可知,将遥感影像联动时亦可实现不同影像同一区域的快速检索,但是我们也可以看到,由于受到各方面因素的影像并不能特别精确的指在同一地方。

▶▶作业c

1.WORLDVIEW-2影像保存为jpg和TIF格式的4-3-2波段合成的假彩色图像。可用同样的方法将SPOT-5影像保存为jpg和tif格式的4-3-2波段合成的假彩色图像

6 2.为landsat的5景影像附上波段的波长,并根据波长用landsat 5的7-4-3波段,保存为jpg和tif格式影像

为波长复制后,导入影像文件各波段显示差异前后对比

转换为JPG格式后可以用看图软件直接打开

7

▶▶作业d

需要对影像进行裁剪,裁剪的基本步骤如下:

1.L5118_39_19860531裁剪前后对比

2. L5118-39-19960103裁剪前后对比

3. L7118039_20050815裁剪前后对比

4. LS8_C_20140613_022505_000000_118039_GEOTIFF_L4裁剪前后对比

▶▶

作业e

将剪裁影像,重采样成10m,重采样的操作主要如下

9

1.L5118_39_19860531重采样前后对比

2. L5118-39-19960103重采样前后对比

10

3. L7118039_20050815重采样前后对比

11

4.LS8_C_20140613_022505_000000_118039_GEOTIFF_L4重采样前后对比

图像数字化范文第5篇

通过一学期的课程学习我们虽说还没有完全掌握数字图像处理技术,但也收获了不少,对于数字图像方面的知识有了深入的了解,更加理解了数字图像的本质,即是一些数

字矩阵,但灰度图像和彩色图像的矩阵形式是不同的。对于一些耳熟能详的数字图像相关术语有了明确的认识,比如常见的:像素(衡量图像的大小)、分辨率(衡量图像的清晰程度)、位图(放大后会失真)、矢量图(经过放大不会失真)等大家都能叫上口却知识模糊的名词。也了解图像处理技术中一些常用处理技术的实质,比如锐化处理是使模糊的图像变清晰,增强图像的边缘等细节。而平滑处理是的目的是消除噪声,模糊图像,在提取大目标之前去除小的细节或弥合目标间的缝隙。对常提的RGB图像和灰度图像有了明确的理解,这对大家以后应用PHOTOSHOP等图像处理软件对图像进行处理打下了坚实的基础。更重要的是学习到了数字图像处理的思想。通过学习也是对C++编程应用的很好的实践与复习。

当然通过30学时的课程学习还是远远不够的,也有许多同学收获甚微,我总结了下大家后期的学习态度与前期的学习热情相差很大的原因。刚开始大家是有很高的热情学习这门课的,可是随着课程的逐渐深入学习,大家渐渐发现课程讲授内容与自己起初想学的实用图像处理技术是有很大的差别的,大家更着眼于如何利用一些软件、技术去处理图像而得到满意的效果,或者进行一些图像的创意设计,可是课程的内容更偏重于如何通过编程实现实现如何对图像进行一些类似于锐化、边缘提取、模糊、去除噪声等基础功能的实现,这其中涉及很多算法、函数,需要扎实的数学基础和编程基础,并且需要利用大量时间在课下编写代码,并用

VISUALC++软件实现并进行调试,然而大部分人的C++实践能力以及编程能力还有待提高,尤其是对于矩阵进行操作的编程尤为是个考验,并且后半学期课程任务较重,加上队里的事务也很多,时间不是很充裕,这对于需要大量实践的数字图像处理课程就是个很大的问题。

图像数字化范文第6篇

二、教学内容:

1. 介绍数字化图像的采集工具

2. 学习用photoshop软件工具处理图像。

3. 图像加工的过程

三、教学重点、难点:

图像加工、合成的过程

1.简介photoshop7.0

photoshop7.0是由美国Adobe公司开发功能强大的图像编辑工具,最早产生于苹果公司的Macintosh平台上,后被移植到PC机的Windows平台上。 它将选择工具、绘画和编辑工具、颜色校正工具及特殊效果功能结合起来,使用多种彩色模式对图像进行编辑处理。强大的图形处理功能受到广大用户的欢迎,目前是蓝苹果机和PC机上最流行的专业图像处理工具。

Photoshop的工作界面:

菜单栏、选项栏、工具箱、工作区、调板

选择工具:套索工具、魔术棒工具、

绘画工具:画各种图形工具、

编辑工具:文字工具

2.新建文件

方法:单击“文件”菜单栏中的新建,弹出“新建”对话框。

该对话框中有“名字”、“图像大小”、“模式”、“内容”、“图像分辨率”

3.打开一个图片文件

用“选择”工具把该图片拖入一个新建文件中。

如果图片有点倾斜,我们就可以利用“变换”调正图形的角度

4.变换工具中的菜单的作用(打开方法:“编辑”菜单|“变换”命令)

命令菜单

操作效果

命令菜单

操作效果

自由旋转

选中图片自由旋转

Skew

改变图片的形状

Scale

缩小或放大选中部分的大小

Distort

改变选区形状

Rotate

旋转图片的角度

Perspective

使图形呈对角形变形

4.有时为了调整原始图片的构图,重新组织图像的布局,突出主题,去除不相关的或不重要的内容,可以用“裁切”工具处理。

裁切的内容是选中的部分,当使用“裁切”工具时,圈住需要保留的部分,再按“退格键”,则不需要的图片内容被删除。

使用“魔术棒”工具,一般选择是相近的颜色,选中欲删除的部分后,按“退格键”删除。

5.色彩调校

⑴色彩模式的调整:图像|模式(Mode),①Grayscale:图片变成灰白

②Bitmap、RGB Color、CMYK Color、Lab Color

③Indexed Color:当使用这个命令时,会弹出一个提示对话框,点击“是”按钮,又弹出一个对话框,在“颜色”框里输入数值“20”(3~256)

④Multichannel:颜色呈爆光(单色)

⑵亮度/对比度的调整

方法:图像|调整(Adjustments)|亮度/对比度(Brightness/Contrast)。如右图

⑶色相/饱和度的调整

方法:图像|调整|色相/饱和度(Hue/Staturation)

Hue:

Staturation:调整颜色的变化

Hue:调整黑亮程度

⑷色彩平衡的调整

方法:图像|调整|Channel Mixer

6.滤境调整

使用各种专用滤镜进行特殊效果的制作,如锐化、模糊化、渲染、艺术化、扭曲变形等。

三、数字化图像的简单合成

图像的合成——把原来的多幅图像合成一幅图,突出表达某个主题。

操作过程

(1)打开两幅图片,用椭圆选框在某一幅图上欲需要的位置,然后把它拖至另一幅图片的背景层上,给新图层重新命名。

(2)双击新图层,弹出一个“图层样式”对话框。

样式有投影、内阴影、外发光、内发光、斜面和浮雕、光泽、颜色叠加、渐变叠加等。

现设置“外发光”样式。

(3)双击“背景”图层,将其转换为“图层0”并将“不透明度”调小。

(4)设置特殊效果:滤境|扭曲|球面化。

实践题:

利用搜索引擎查找一些关于地球的图像资料,然后用Photoshop工具处理。

要求:①用套索工具把画面分面两部分,右面做成浮雕效果,使现在的地球与未来的面貌形成鲜明的对比。

②用色彩反转效果突出地还应未来的残酷主题。

③通过“镜头光晕”效果表现阳光的光晕。

上一篇:我们会更好的范文下一篇:电影丑女大翻身范文