合成氨生产工艺流程

2022-09-13

第一篇:合成氨生产工艺流程

干法聚氨酯合成革生产工艺

评论:2 条

查看:532 次 xiangyuan 发表于 2008-04-07 07:14 聚氨酯人造革主要分为干法聚氨酯人造革和湿法聚氨酯人造革。所谓干法聚氨酯人造革,是指将溶剂型聚氨酯树脂中的溶剂挥发掉后,得到的多层薄膜加上底布而构成的多层结构体。而湿法聚氨酯人造革,是将溶剂型聚氨酯,采用水中成膜法而得到的具有透气性和透湿性,又同时具有连续多孔层的多层结构体。

一、干法聚氨酯人造革

(一)生产工艺流程

注:

1、离型纸发送

2、离型纸贮存装置

3、第一涂料台

4、10M左右干燥箱

5、第一组冷却辊

6、第二涂料台

7、15—20M干燥箱

8、第二组冷却箱

9、第三涂料台

10、基布发送台

11、贴合装置

12、20—25M干燥箱

13、第三组冷却辊

14、剥离装置

15、人造革卷取

16、离型纸卷取

离型纸法聚氨酯人造革生产原理是将不同性能的面、底层配合液利用刮刀涂覆在离型纸上,面料经过干燥、冷却工艺后,再涂覆上粘合层底料,利用基布发送贴合装置将基材与底料复合,经过干燥、冷却后,利用剥离装置将成品人造革与离型纸分别成卷。

(二)、主要原料

1、离型纸

A、离型纸分类:

按用途分:①聚氯乙烯人造革用纸 ②聚氨酯人造革用纸 按花纹分:①平面纸 ②压纹纸

按光泽度分:①高光型 ②光亮型 ③半光亮型 ④半消光型 ⑤消光型 ⑥超消光型 按材质分:①硅系纸(表面涂敷有机硅聚合物,耐温≤190℃) ②非硅系纸(表面涂敷丙烯聚合物,耐温≤150℃) ③特殊用纸(PVC用)

B、性能要求:

①强度:由于在涂布后,进入烘箱干燥,温度较高,在多次使用中必须有足够的强度,最重要的撕裂强度。

②表面均匀性:必须保持一定的离型均匀度及光泽,平面纸的平滑度及厚度要保持一致。 ③耐溶剂性:在生产中,常用到多种溶剂,要做到既不溶解也不溶胀。

④合适的剥离强度:离型纸要有适当的剥离强度,如果剥离太困难会影响到纸的重复使用次数,如果剥离太容易,在涂布及复合时易引起预剥离,而影响产品质量。 C、供应商:

目前国内离型纸还没有生产,主要依靠进口,世界上生产离型纸的厂商主要是:美国沃沦公司、英国维金斯公司、意大利宾达公司、日本创研株式会社、旭辊株式会社、大日本印刷株式会社等。各公司的主导产品品种各不相同。

2、树脂

一类是表皮层用树脂,另一类是粘接层用树脂,后者可分为I液型树脂与II液型树脂。一般来说,I液型聚氨酯是由含有活泼氢的高分子量化合物,含有活泼氢的低分子量化合物(又称扩链剂)以及二异氰酸酯化合物制造出来的。其分子结构可分两部分,一是含有活泼氢的高分子量化合物为基础,称为软链部分,二是含有低分子量化合物和二异氰酸酯相连结的称为硬链部分。硬链链节的比例有利于提高其熔点、玻璃化温度、硬度和强度,但相对降低了其弹性和溶解度。

相反,含有活泼氢的高分子量化合物是较柔软的链节,能降低其熔点、玻璃化温度,提高柔软度、弹性和挠曲性。聚氨酯树脂的这种结构对其性能影响很大,其性能取决于分子量的大小,分子间的引力,分子间的链节柔软性;聚氨酯树脂其性能随分子量的增加而提高,如拉伸强度、伸长率、熔点、硬度等,溶解度则相反,随着分子量增加而下降。通常干法人革要求表面处理层光滑耐磨,耐弯曲性好,耐溶剂性好,有良好的重复涂敷性,颜料分散均匀、展色性佳的等等特点。

因此,凝集力高的I液型树脂最为合适。此外,湿式聚氨酯革的多孔层在水中要求有快速凝固性,所以同样用分子内高凝集力的热塑性的I液型树脂。而粘结层要求和基布粘接性好,柔软,耐水解性好,所以最好采用凝集力低的,而且与异氰酸酯等交联剂在交联促进剂存在下并用的热固型的II液型聚氨酯树脂,II液型树脂是由含有活泼氢的高分子量化合物和二异氰酸酯进行加成聚合反应得到的,其末端上具有反应性的羟基,II液型聚氨酯树脂本身不能成膜,即使成膜也是低物性的皮膜,为了提高其物理性能和粘接性,可利用其末端反应的羟基和交联剂通过交联促进剂进行交联反应,形成网状结构才能得到高物性皮膜。

皮膜的物理化学性能是由II液型聚氨酯树脂中的含有活泼氢的高分子量化合物的组成、分子量的大小、交联剂的用量决定的,所以交联剂、交联促进剂等在配合时的添加量、固化条件、熟化条件等对皮膜物性有很大影响。通常选择树脂牌号时主要根据其综合质量数据指标而定,如溶剂组成、抗拉强度、模量、伸长率等等。各品种性能详细参考我公司新版说明书。

3、溶剂

在人造革生产过程中所使用的溶剂有着很重要的作用。第一,它是溶解树脂形成适合于配制一定粘度的可供涂覆、浸渍及表面处理的混合液的液体;第二,一些溶剂又常常用来作为制备聚氨酯树脂的反应介质;第三,一些溶剂又常常用来配制色浆,用于产品的着色、印刷、涂饰等。在选择使用溶剂的时候,除了考虑其溶解度、挥发速度的共性以外,特别是聚氨酯人造革对溶剂的要求较高,主要是考虑涂布液的异氰酸酯基(-NCO)的特点,所以应注意下面两点:

A、溶剂中不能含有与异氰酸酯基反应的物质,如有,将使聚氨酯变质而不能使用,所以醇、醚、醚醇类溶剂不能使用。

B、水的影响。普通工业级溶剂实际上多少都含有水分,因为溶剂与水之间具有一定的溶解度,这样容易使水分与异氰酸酯基发生反应,而消耗不少异氰酸酯,因此不论是在树脂制造过程中,还是稀释配料过程中,都必须用无水的溶剂,所以聚氨酯人造革所选择的溶剂要求不含杂质或杂质极少。一般选用工业一级品溶剂,其纯度在99%以上。使用时现用现配,配成的浆料不能存放时间太长,特别是II液型树脂混合液,以免吸潮,使浆料变质。

常用溶剂性能表(见下图)

溶剂名称 沸点℃ 相对密度(20℃下) 水溶解度(V/V) 溶度参数 二甲基甲酰胺(DMF) 153 0.945 ∞ 12.1 甲苯(TOL) 110.8 0.866 0.05 8.9 甲乙酮(MEK) 79.6 0.806 26.8 9.1 丙酮 56.1 0.790 ∞ 9.41

乙酸乙酯(EA) 77.1 0.900 8.7 9.08 环己酮 155.6 0.951 8.7 10.05

4、基布

目前人造革所使用的的基布大体分为三大类: A、机织布:①平织布 ②斜纹布 ③缎纹布 ④绒毛布 B、针织布:①纯棉 ②维棉 ③涤棉 ④纯化纤针织布

C、非织造布:又称不织布,俗称无纺布。无纺布可分为针刺型与非针刺型两种

目前国内聚氯乙烯人造革和聚乙烯人造革常用的基布是各种棉布、维棉布或纯化纤布;干式聚氨酯人造革常用针织布或平织布及单面起绒布;而湿式聚氨酯人造革常用的是双面起毛布及合成纤维织物;湿式聚氨酯合成革常用合成纤维无纺布。通常起毛布又分为纯棉起毛布和混纺起毛布,根据鞋材、服装、及包用材的不同,而设计厚度、经纬纱织密度及成品所要求的断裂强度、断裂伸长率、及撕裂强度、涨破强度等指标。通常

人造革对基布的要求有以下几点:

A、基布表面必须平整,厚度、起绒密度、长度、色泽等要求均匀一致。 B、基布表面无线头、疙瘩、无孔洞等异常,接头处平整牢固。 C、参照技术质量标准,进行批次抽检测试

D、要能经受住人造革生产时较高的加工温度,基布若是织物需保证经纬方向强度接近,若是无纺布,必须保证纵横方向强度一致。

5、着色剂

着色剂可分为染料和颜料两大类。两者的主要区别是溶解性不同。染料可溶于水、油、各种有机溶剂等。具有强烈的着染能力,色泽鲜艳,但耐热性、耐光性和耐溶剂性差,在人造革的加工温度下易分解,在制品的使用过程中容易渗出,迁移而造成串色和污染。颜料一般不溶于水、溶剂,在人造革中分散成细微颗粒,由其表面的遮盖作用而着色。它和染料相比较,透明性、鲜艳性稍差,但耐热性、耐光性好,不易迁移渗出。颜料可分为有机颜料和无机颜料两类。无机颜料具有优良的耐热性、耐光性和耐溶剂性,而且原料易得,制造简便,价格低廉,但其透明度、鲜明性差,色泽暗淡,相对密度大。有机颜料具有介于无机颜料和染料之间的综合性能,耐热性、耐光性及分散性不及无机颜料,但色泽鲜艳,分散性好。

理想的着色剂在人造革制造中应具备如下条件: A、色泽鲜艳、着色力强、分散性好、不凝集。

B、耐热性好,在树脂的加工温度下和最高使用温度下有良好的热稳定性,不变色、不分解。 C、耐溶剂性好,与溶剂接触后不会因溶剂而迁移、串色。

D、耐迁移性好,要求着色剂在树脂中不会发生色迁移,颜料不会析出。

E、耐化学稳定性好,有良好的耐酸、碱性,与树脂中其他助剂不会发生化学反应。 F、无毒、无臭、着色剂不含有对树脂有影响的杂质。

(三)配方工艺设计

聚氨酯人造革使用的原材料最主要的是聚氨酯树脂,选用时根据用户提供的样品外观、软硬度、颜色、光泽度及物理机械性能要求,先做小样试验,了解表皮层混合液和粘合层混合液的配合,摸索好工艺条件后再投入使用。

聚氨酯人造革生产过程中,树脂浆料经过一系列过程,最后溶剂完全挥发掉,这样便接触到生产合理工艺问题,应根据所加工的纹路大小、深度来控制配合液的综合粘度,粘度过低后容易造成表面花纹不清晰、粘连,成本相对增大。而粘度偏高,涂布量降低时,又容易使混合液不易进入离型纸纹内,涂布间隙小,出现卡刀断纸现象易给操作人员带来不便。

在产品工艺设计方面,应根据产品的用途进行设计。比如鞋用革要求的机械强度高,在选用基布时应选用物理性能较高的起毛布、平纹织物,客户要求鞋革的表面平整、光滑,就应在选择离型纸时,选用小花纹、比较光亮或高光亮型,聚氨酯树脂表皮层应用偏高模量型号,而粘接层应考虑耐水解,基布的颜色和表皮层的颜色协调接近等。

(四)、生产中的异常排除

序号 缺陷 原因 解决方法

1 表面发生针孔 面层粘度过高 溶剂沸点低 涂层过厚

第一个烘箱温度高 面层烘干时间短

面层树脂被溶解 降低面层混合液粘度 加高沸点的溶剂 涂薄些 降低烘箱温度 延长干燥时间

选用耐溶剂的树脂,粘合层少用强溶剂

2 贴合基布后发生针孔 粘合后烘箱温度太低 涂覆量大 贴合间隙小 贴合压力过大 贴合后烘箱温度低 风量小

面层干燥后冷却差

粘合层DMF过多,干燥速度慢 增加粘合层粘度 降低涂覆量 调大贴合辊间隙 降低贴合压力 适当提高二烘箱温度 提高风量 充分使面层冷却

少用DMF,使用甲苯、乙酸乙酯

3 表面处理后发生针孔 熟化不充分 面层太薄不均匀 起毛布不均匀

表面处理剂溶剂性太强、涂布量大 充分熟化 加大面层厚度,涂匀 选用均匀的起毛布

少用强溶剂DMF,减少涂布量

4 表皮产生刮刀线条 刮刀刀刃有缺陷 面层粘度太高 涂刮刀刃半径小 浆料混入异物

离型纸有缺陷 修理或更换刮刀 降低面层粘度 暗大涂刮刀刃半径 涂刮前应过滤 更换好的离型纸

序号 缺陷 原因 解决方法

5 澎润现象 离型纸的离模性 树脂本身易膨润 表皮层涂布量小 涂覆不均匀 粘合层的树脂不同 溶剂不同

粘合层涂布量太大

干燥时间过长 用较重的离型纸 用不膨润的树脂 表皮层涂厚一些 涂均匀

选用不膨润树脂

选用不易膨润的溶剂,如DMF、甲苯 少涂粘合层 提高车速

6 表面凹陷 离型纸的离模性 表皮层用的树脂耐溶剂差

表面处理后凹陷是由于表面处理剂中DMF量过多 贴合后充分干燥,充分熟化 表皮层选用耐溶剂树脂,粘合层少用强溶剂 表面处理剂少用DMF,改用可溶性醇类

7 缩孔现象 离型纸有问题 涂布太薄

浆料粘度太低 选用其他离型纸 涂布加厚 提高浆料粘度

8 手感发硬或有皱纹 树脂是硬牌号 涂刮量太厚 基布发硬

粘合层交联剂多 选用软牌号树脂 涂刮薄些 选用软基布 调整交联剂用量

第二篇:合成氨的工艺流程

工艺流程

1.合成氨的工艺流程

(1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。

(2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。

① 一氧化碳变换过程

在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下:

CO+H2OH→2+CO2 =-41.2kJ/mol 0298HΔ

由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。

② 脱硫脱碳过程

各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。

粗原料气经CO变换以后,变换气中除H2外,还有CO

2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。

一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。 4 ③ 气体精制过程

经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。

目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(<-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm3/m3以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。甲烷化反应如下:

CO+3H2→CH4+H2O =-206.2kJ/mol 0298HΔ

CO2+4H2→CH4+2H2O =-165.1kJ/mol 0298HΔ

(3)氨合成 将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下:

N2+3H2→2NH3(g) =-92.4kJ/mol 2.合成氨的催化机理

热力学计算表明,低温、高压对合成氨反应是有利的,但无催化剂时,反应的活化能很高,反应几乎不发生。当采用铁催化剂时,由于改变了反应历程,降低了反应的活化能,使反应以显著的速率进行。目前认为,合成氨反应的一种可能机理,首先是氮分子在铁催化剂表面上进行化学吸附,使氮原子间的化学键减弱。接着是化学吸附的氢原子不断地跟表面上的氮分子作用,在催化剂表面上逐步生成—NH、—NH2和NH3,最后氨分子在表面上脱吸而生成气态的氨。上述反应途径可简单地表示为:

xFe + N2→FexN FexN +〔H〕吸→FexNH FexNH +〔H〕吸→FexNH2 FexNH2 +〔H〕吸FexNH3xFe+NH3 在无催化剂时,氨的合成反应的活化能很高,大约335 kJ/mol。加入铁催化剂后,反应以生成氮化物和氮氢化物两个阶段进行。第一阶段的反应活化能为126 kJ/mol~167 kJ/mol,第二阶段的反应活化能为13 kJ/mol。由于反应途径的改变(生成不稳定的中间化合物),降低了反应的活化能,因而反应速率加快了。

3.催化剂的中毒

催化剂的催化能力一般称为催化活性。有人认为:由于催化剂在反应前后的化学性质和质量不变,一旦制成一批催化剂之后,便可以永远使用下去。实际上许多催化剂在使用过程中,其活性从小到大,逐渐达到正常水平,这就是催化剂的成熟期。接着,催化剂活性在一段时间里保持稳定,然后再下降,一直到衰老而不能再使用。活性保持稳定的时间即为催化剂的寿命,其长短因催化剂的制备方法和使用条件而异。

催化剂在稳定活性期间,往往因接触少量的杂质而使活性明显下降甚至被破坏,这种现象称为催化剂的中毒。一般认为是由于催化剂表面的活性中心被杂质占据而引起中毒。中毒分为暂时性中毒和永久性中毒两种。例如,对于合成氨反应中的铁催化剂,O

2、CO、CO2和水蒸气等都能使催化剂中毒。但利用纯净的氢、氮混合气体通过中毒的催化剂时,催化剂的活性又能恢复,因此这种中毒是暂时性中毒。相反,含P、S、As的化合物则可使铁催化剂永久性中毒。催化剂中毒后,往往完全失去活性,这时即使再用纯净的氢、氮混合气体处理,活性也很难恢复。催化剂中毒会严重影响生产的正常进行。工业上为了防止催化剂中毒,要把反应物原料加以净化,以除去毒物,这样就要增加设备,提高成本。因此,研制具有较强抗毒能力的新型催化剂,是一个重要的课题。

4.我国合成氨工业的发展情况

解放前我国只有两家规模不大的合成氨厂,解放后合成氨工业有了迅速发展。1949年全国氮肥产量仅0.6万吨,而1982年达到1021.9万吨,成为世界上产量最高的国家之一。

近几年来,我国引进了一批年产30万吨氮肥的大型化肥厂设备。我国自行设计和建造的上海吴泾化工厂也是年产30万吨氮肥的大型化肥厂。这些化肥厂以天然气、石油、炼油气等为原料,生产中能量损耗低、产量高,技术和设备都很先进。

5.化学模拟生物固氮的研究

目前,化学模拟生物固氮的重要研究课题之一,是固氮酶活性中心结构的研究。固氮酶由铁蛋白和钼铁蛋白这两种含过渡金属的蛋白质组合而成。铁蛋白主要起着电子传递输送的作用,而含二个钼原子和二三十个铁和硫原子的钼铁蛋白是络合N2或其他反应物(底物)分子,并进行反应的活性中心所在之处。关于活性中心的结构有多种看法,目前尚无定论。从各种底物结合物活化和还原加氢试验来看,含双钼核的活性中心较为合理。我国有两个研究组于1973—1974年间,不约而同地提出了含钼铁的三核、四核活性中心模型,能较好地解释固氮酶的一系列性能,但其结构细节还有待根据新的实验结果精确化。

国际上有关的研究成果认为,温和条件下的固氮作用一般包含以下三个环节:

①络合过程。它是用某些过渡金属的有机络合物去络合N2,使它的化学键削弱;②还原过程。它是用化学还原剂或其他还原方法输送电子给被络合的N2,来拆开N2中的N—N键;③加氢过程。它是提供H+来和负价的N结合,生成NH3。

目前,化学模拟生物固氮工作的一个主要困难是,N2络合了但基本上没有活化,或络合活化了,但活化得很不够。所以,稳定的双氮基络合物一般在温和条件下通过化学还原剂的作用只能析出N2,从不稳定的双氮络合物还原制出的NH3的量相当微少。因此迫切需要从理论上深入分析,以便找出突破的途径。

固氮酶的生物化学和化学模拟工作已取得一定的进展,这必将有力地推动络合催化的研究,特别是对寻找催化效率高的合成氨催化剂,将是一个有力的促进。[编辑本段]生产方法

生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。

①天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。

②重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。

③煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用,但随着能源格局的变化,现在煤制氨又被重视起来,外国主要是粉煤气化技术发展很快,国内则转向型煤制气技术已非常成熟。

用途 氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液氨常用作制冷剂。

贮运 商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运。

第三篇:煤为原料的合成氨工艺流程简图

以煤为原料的合成氨工艺

煤合成氨工艺的核心问题是制备纯净的氢气,而制备纯净的氢气,就涉及到脱硫脱碳工序!含硫、含碳的气体,都是酸性气体!

C+H2O(水蒸气)=CO+H2(水煤气法) CO+H2O=CO2+H2 拥有氢气与氮气,即可制得氨。

氨与二氧化碳作用生成氨基甲酸铵(简称甲铵),进一步脱水生成尿素! 2NH3+CO2==COONH2NH4(放热),COONH2NH4==CO(NH2)2+H2O(吸热)。 尿素加热分解可以制成三聚氰胺

6CO(NH2)2==C3N3(NH2)3 (三聚氰胺)+3CO2+6NH3。

工艺流程

(1)原料气制备

将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。 (2)净化

对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。

① 一氧化碳变换过程

在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%到40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反是: CO+H2O→H2+CO2 =-41.2kJ/mol 0298HΔ

由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。

② 脱硫脱碳过程

各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。

粗原料气经CO变换以后,变换气中除H2外,还有CO

2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。

一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。

③气体精制过程

经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。

目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(<-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm3/m3以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。甲烷化反应如下:

CO+3H2→CH4+H2O =-206.2kJ/mol 0298HΔ

CO2+4H2→CH4+2H2O =-165.1kJ/mol 0298HΔ

(3)氨合成将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%到20%,故采用未反应氢氮气循环的流程。

氨合成反应式:N2+3H2→2NH3(g) =-92.4kJ/mol

第四篇:合成氨工艺总流程与压缩机

合成氨工艺总流程

本装置以中原油田天然气为原料,采用传统流程的一二段烃类水蒸气转化,高低变,脱碳及甲烷化法。

1、 原料气压缩和脱硫

来自界区,压力2.25巴(绝)、温度30℃,含总硫50p.p.m的天然气,经分离器(01-F001)分离掉所带油水后,进入原料气压缩机(01-K001),经四段压缩至52.5巴(绝)、温度114℃。出原料气压缩机的气体与来自合成压缩机(07-K001)的少量合成气相汇合,控制含2-5%H2,作为予脱硫钴-钼加氢转化用。

一二段烃类水蒸汽转化是在镍催化剂上进行,硫及其化合物对镍催化剂毒害极大,要求进入转化的原料气中含硫量在0.1p.p.m以下,因此转化前必须脱硫。

经压缩和返氢后的原料气,入对流段盘管(03-B002E04)加热至370℃,于钴-钼加氢反应器(01-R001)中反应,将有机硫转化为无机硫。然后在氧化锌脱硫槽(01-R002A/B)里硫被脱除,控制含硫小于0.1p.p.m。

2、 转化

经脱硫的原料气与来自工艺冷凝液汽提塔(05-C003)的水蒸汽和来自冰机的蒸汽透平(09-MT01)或发电机蒸汽透平(85-MT01)的背压蒸汽,按比例调节进行混合,控制水碳比为2.75左右、温度在372℃。此原料-水蒸汽混合气相继进入一段转化炉对流段盘管(03-B002E01A)和(03-B002E01B)换热,在两盘管间还设置喷雾温度调节器(03-B002E08)用它来调节出盘管(03-B002E01B)的混合气加热至580℃。此混合气从转化炉管顶部进入,在镍催化剂作用下进行转化反应。出一段炉的转化气压力43.5巴、温度804℃,含16.3%CH4。

含CH416.3%的一段转化气自二段炉(03-R001)底部进入,经中心管至炉顶,与来自空压机(02-K001),压缩至45巴,途径加热盘管(03-B002E03)加热至500℃的工艺空气相混合,于炉中上部空间进行燃烧反应,反应后气体温升至1250℃左右。此高温气体相继流经炉中催化剂床层,继续进行转化反应。

出二段炉的转化气(工艺气),温度983℃左右,残余甲烷含量0.9%以下。为回收此高温工艺气的热量,入工艺气冷却器(03E001)使之产生328℃、125巴的高压蒸汽。出(03-E001)温度588℃的工艺气继续入高压蒸汽过热器(03-E002),喷雾温度调节器(03-E005),控制其出转化工序的工艺气温度为370℃左右。

经预热后的锅炉给水注入汽包(03-D001),汽包与工艺气冷却器(03-E001)、废热锅炉(04-E001)和辅助锅炉相连通,设计为自然循环。自汽包输出的高压蒸汽,依次流经高压蒸汽过热器(03-E002)(03-B003E01)和(03-B002E02),将蒸汽过热至535℃,再分别送入冰机和发电机的蒸汽透平作动力。

3、 变换

CO变换采取高低变流程。

370℃的转化工艺气,自高温变换炉顶部进入,于铁-铬系催化剂条件下进行反应,温升到444℃,CO含量降至3.87%。高变气由炉底出来,入废热锅炉(04-E001),回收热量产生高压蒸汽,高变气被冷却至375℃,继入锅炉给水预热器(04-E002),降温至204℃,而后入低温变换炉。

低变是在铜-锌-铝系催化剂条件下进行反应,反应后气体温升至236℃,CO含量为0.36%。低变气在锅炉给水预热器(04-E003)中换热,冷却至176℃,此温度下已有水蒸汽冷凝。

为便于低变催化剂的升温还原,还专设置一套氮循环系统。

4、 脱碳

CO2脱除,采用节能型的苯菲尔脱碳流程。

为回收低变气中的热能,含CO217%左右的低变气依次流经气体冷却器(05-E001),再沸器(05-E002)及脱盐水预热器(05-E009)而得以产生低压蒸汽,发生汽提蒸汽和加热了脱盐水。低变气冷却至95℃左右,自吸收塔(05-C001)下部进入,与塔顶喷淋下来的吸收液(贫液)逆流接触。经下塔吸收后的气体中CO2含量降至0.4%,再经上塔吸收,从塔顶逸出的脱碳气,温度70℃,CO2含量却为0.1%。而后经分离器(05-F002)回收随气体带出的溶液。

吸收塔底流出的富液,经水力透平(05-MT01)送至解吸塔(05-C002)顶部,溶液减压闪蒸出部分水蒸气和二氧化碳,然后向下流经解吸塔填料,此时溶液与再沸器(05-E002)及闪蒸槽(05-D002)返回的蒸汽逆流接触,实现汽提,达到再生目的。

解吸塔顶部压力控制为1.52巴(绝)时,塔底溶液温度为118℃左右。

解吸塔底流出的溶液,入闪蒸槽(05-D002),经五级闪蒸压力降至0.89巴(绝),此时溶液温度为100℃左右。闪蒸释放出的蒸汽由蒸汽喷射器(05-A001,05-A002,05-A003,05-A004)和蒸汽压缩机(05-K001)注回解吸塔。为节省蒸汽压缩机功耗,在最后一级闪蒸溶液用锅炉给水做适当加热。

再生好的溶液,经贫液泵(05-P001A/B)送出,分两路送入吸收塔:一路为大致25%的溶液量,经热水加热器(05E010A/B),将溶液冷却至70℃入上塔;另一路则将其与75%的溶液量,不经冷却器直接送入下塔。

且溶液泵(05-P001A/B)与水力透平(05-MT01)是在同一轴上,由此水力透平所回收的能量可以补偿溶液泵轴功率的40%。

脱碳系统中,自分离器(05-F001)分离出来的工艺冷凝液,经冷凝液预热器(05-E008),被冷却至98℃。由冷凝液泵(05-P006A/B)送经冷凝液预热器(05-E011A/B)被加热后入汽提塔(05-C003),与来自冰机蒸汽透平(09-MT01)或发电机蒸汽透平(85-MT01)的背压蒸汽与塔中逆流接触,进行汽提。使用水蒸汽量每小时15吨。塔顶逸出的汽提蒸汽(其中包括转化、变换的付产物甲醇、乙醇、氨等)送往转化工序。

从解吸塔顶(1.52巴、94℃)排出的CO2气,入脱盐水预热器(05-E004A/B)、水冷却器(05-E007A/B)换热,冷却至40℃。此CO2气冷凝液于(05-F003)和(05-F005)分离器中将冷凝液分离下来,用泵(05-P002A/B)将少量冷凝液分别送入解吸塔顶的洗涤塔板、闪蒸槽的洗涤料盘作洗涤水和溶液泵、水力透平的清洗液。而其余冷凝液经(05-E008)预热至120℃,送回(05-E001)作为锅炉给水用。分离器分离出的CO2气,送尿素装置CO2气压缩机的吸入端。

5、 甲烷化

脱碳气中含0.1%CO

2、0.44%CO,是远远超过对合成气中(CO+ CO2)<10p.p.m的要求,为此采用甲烷化法除去少量的CO和CO2。

70℃的脱碳气,在换热器(06-E001)中被加热至300℃,入甲烷化炉(06-R001),反应放热,温升至336℃左右。此热气在换热器(06-E001)中被冷却至100℃。继入水冷器(06-E003)中,冷却至40℃,气中含(CO+ CO2)<10p.p.m,成为合格的N2 . H2混合气,即新鲜气。

6、 合成气的压缩及氨合成

氮与氢在铁催化剂条件下合成氨,当压力98.24巴、440℃时,平衡氨含量为17.92%。因此,大量未参与合成的N2 . H2应循环使用。同时,为降低合成氨能耗,采用了径向合成塔和两级氨冷。

甲烷后的工艺气(新鲜气),在38.3巴、40℃下,经分离器(07-F001)分离水份,入离心式合成气压缩机(07-K001),经一段压缩至65.4巴、112℃,此时少量气体送脱硫,用于钴-钼加氢,大量气体经中间冷却器(07-E002)和分离器(07-F002)冷却分离后,入合成气压缩机高压缸,压缩至101.95巴、100℃。为保证催化剂不受毒害,出高压缸的新鲜气进入第一氨冷器(08-E005),冷却器至5℃此时新鲜气的水蒸汽和CO2气被冷凝,于分离器(07-F003)中分离掉。自(07-F003)逸出的新鲜气与(08-E005)出口的回路气在管路中汇合,由于回路气中部分液氨的汽化,使汇合后的循环气降温至0.9℃,继入第二氨冷器(08-E006),降温至﹣10℃,在该温度下大部分气氨冷凝。随之物流入氨分离器(08-F001),分离下来的液氨入氨闪蒸槽(08-D001),闪蒸后的液氨,用泵(08-P001A/B)送往尿素装置或球罐储存,从(08-F001)分理出的冷气,经冷热交换器(08-E004)回收冷量,而后入(07-K001)循环段进行压缩,以补充回路压降的损失。出循环段的气体(105.8巴、32℃),经热交换器(08-E002),温升至239℃左右,入合成塔(08-R001)。

105巴、239℃、含4.12%NH3的循环气,流经三床层的径向合成塔,在铁催化剂上进行合成反应。出塔气压力为101巴、414℃、含16.36%NH3,入废热锅炉(08-E001)回收热量,产生127巴、329℃的高压蒸汽。合成气被冷却至275℃,继入(08-E002)、(08-E003)、(08-E004)换热器换热,合成气温度分别降至53℃、38℃、23℃,而后入第一氨冷器(08-E005)。出第一氨冷器的回路气与新鲜气相汇合为循环气。这样形成的一个循环过程,称之“合成回路”。

因新鲜气中含惰气(CH4+Ar)1.86%,在不断循环过程中惰气的含量会积累增多,影响氨的生成。为此,出(07-K001)循环段的气体需要放空一部分,以控制循环气中惰气含量。此放空气送往氨回收装置。

7、 冷冻

来自第二氨冷器(08-E006)的气氨(﹣15℃、2.36巴)来自第一氨冷器(08-E005)及气体冷却器(10-E004)的气氨(0.5℃、4.38巴),分别进入氨压缩机又称冰机(09-K001)一段的吸入侧,经一段压缩的出口气氨(86℃、9.34巴),入中间冷却器(09-E005)冷却后与从氨闪蒸槽(09-D001)来的气氨相汇合,于42℃、9.08巴压力下进入(09-K001)的二段吸入侧,压缩至16.6巴、100℃,经水冷器(09-E002A/B)冷却冷凝,气氨液化为液氨,入氨受槽(09-D002)。冰机由蒸汽透平(09-MT01)驱动。

氨受槽(09-D002)中的液氨,温度较高,可称为热氨。此热氨流经换热器(09-E003A/B)、氨闪蒸槽(09-D001)及产品氨加热器(09-E004)与来自闪蒸槽(08-D001)的冷氨进行热交换,使之冷却、减压降温,重新作为冷冻剂送往氨冷器(08-E005)、(08-E006)和气冷器(10-E004)使用。冷氨用泵(08-P001A/B)提压至22.6巴、20℃送往尿素装置。

8、 氨回收

氨合成回路的放空气及氨闪蒸槽(08-D001)的闪蒸汽(驰放气)中氨需要回收。此流程采用水吸收,氨水再蒸馏的方法。

氨合成回路来的放空气,入吸收塔(10-C001)底部,与塔顶喷洒下的净化水作逆流吸收。吸收后,气体中还含氨0.02%,继入气体冷却器(10-E004),用氨冷将气体中残氨冷凝回收,处理过的气体主要去氢回收。但去氢回收的气体量由CO2﹣NH3比来决定,过剩气体送燃气轮机或一段转化炉的燃料系统。

闪蒸槽(08-D001)来的驰放气,入吸收塔(10-C003)底部,用净化水吸收,出吸收塔气体中含氨0.1%送一段炉燃料系统。

吸收塔(10-C001)底流出的氨水,浓度为15%(摩尔),经换热器(10-E001A/B/C)加热后,加入汽提塔(10-C002)的两填料段之间。以此同时,从吸收塔(10-C003)底流出的氨水,用泵(10-P002A/B)也同样加入汽提塔两填料段之间。

汽提塔在加料口的上部为精馏段,下部为提馏段。汽提蒸汽由再沸器(10-E005)提供,再沸器用中压蒸汽加热。

汽提塔顶设有冷凝器(10-E003),从塔顶蒸出的气氨,在冷凝器中冷却冷凝为液氨,部分液氨做回流液,其余液氨送闪蒸槽(08-D001),未冷凝汽送惰气冷却器(09-E001)。

汽提塔底流出的氨水浓度为0.11%(摩尔),经换热器(10-E001A/B/C)和水冷器(10-E002A/B)冷却后,分别返回吸收塔(10-C003)和用泵(10-P001A/B)送回吸收塔(10-C001)作吸收剂,如此循环使用。

9、 氢回收

经氨回收后的气体,按NH3﹣CO2平衡的要求量入吸附器(11-R001A/B),将气中的NH3 、HO2 、CO2彻底清除,而后入冷箱(11-E001),冷却降温使部分N2 及CH4冷凝液化,形成富氢气,于分离器(11-F001)中分离。分离出的富氢气入(07-K001)循环段。分离出的液体经减压阀减压,自由膨胀而降温,冷气返回冷箱与入气相换热,来降低入气温度。

出冷箱尾气,部分去再生气预热器(11-E002),被加热后入吸附器(11-R001A/B)将分子筛再生,再生气送燃料系统;其余部分尾气则直接送燃料系统。

10、 氨贮存

有两个球形氨罐,每个贮氨量2500吨。液氨在4.8巴、3℃条件下贮存。其流程设置正常操作时:

氨合成装置正常运行,产品液氨直接送往尿素装置。这时没有产品氨送入氨罐。只因外界的热传入球罐,使少量的液氨蒸发为气氨。此时将这些少量的气氨经压力控制系统(PIC)送冷冻装置。气氨经氨压缩机压缩,冷凝器(09-E002A/B)冷凝,再返回球罐。

气体压缩

制氨装置对气体的输送、压缩和制冷过程,共设置了四台离心式压缩机。即原料气压缩机(01-K001)、空气压缩机(02-K001)、合成气压缩机(07-K001)和氨气压缩机(09-K001)。这四台离心式压缩机除空压机由燃气轮机驱动外,其他均为汽轮机所驱动。

1.原料气压缩机(01-K001)

对大型化、单系列日产1000吨氨的装置,原料气流量大,压缩比又较低的条件下,宜采用离心式压缩机。加之界区送来天然气气压低,进吸入端压力仅只2.25巴,因此,选用了2MCL528-2BCL358型双缸四段离心式压缩机,它由NK32/36型蒸汽透平所驱动。

正常生产时,入压缩机原料气原料气流量为23261Kg/h,经三段压缩后其中1402Kg/h送燃气轮机,其余21859Kg/h入四段压缩至5206巴后入一段转化炉。

2.空气压缩机(02-K001)

二段转化炉所需工艺空气,燃气轮机所需燃烧空气和全厂的仪表空气等均有空气压缩机供给,因不同用处所需空气的压力、流量等参数的各异,选用了2MCL805+3MCL457型离心式压缩机。该机由MS3002型燃气轮机(02-MT01)驱动,在开工操作和极限操作工况时,为保证燃气轮机工作状态的效率,还配置有由中压蒸汽驱动的背压汽轮机作为辅机。同时为保证燃气轮机所使用空气的质量,配置有全自动的脉冲净化过滤器(02-MT01-FOV)和空气入口消音器(02-K001-D001)。流程图No.1 3.合成气压缩机(07-K001)

为实现氨合成回路的要求及本装置入合成气压缩机的进入压力为38巴,最终排出压力为105.8巴这一压缩比小而段数少的特征,选用了双缸三段的BCL407-2BCL407型离心式压缩机,最后一段为循环段,新鲜气与回路气在缸外混合。该机由汽轮机(07-MT01)驱动。流程图No.5。

经甲烷化冷却器(06-E003)冷却后的合格N

2、H2混合气,即合成气,其中含水分0.19%。在38巴40℃入(07-K001)一段,压缩至65.4巴,温度112℃。出一段合成气约45.4Kmol/h的气量送脱硫钴-钼加氢反应使用,其余气量经中间冷却器(07-E002)和分离器(07-F002)冷却分离水分后入二段压缩。出二段气压力为101.95巴、100℃,气中还存有极少量的水蒸汽及CO2 ,这些含氧化合物不仅是催化剂的毒物,且易产生结晶,堵塞管道,危害设备。为了确保安全生产,必须清除极少量的水汽及CO2 ,因此,出二段的合成气依次经水冷器(07-E003)和氨冷器(08-E005),降温至5℃,此时水蒸汽及CO2几乎全部冷凝,入(07-F003)将其分离。出分离器的合成气与回路气汇合后循环入三段(循环段),经循环段压缩至105.8巴,32℃。

4.氨气压缩机(09-K001)又称冰机

据本装置为两级氨冷的冷冻循环,选用了2MCL528/1单缸两段离心式压缩机,由HG32/20背压冷凝式蒸汽透平(09-MT01)所驱动。

01-K001-P01/P02

润滑/密封油泵 02-MT01-P02

辅助润滑油泵 02-MT01-P04

调节油泵 03-P001A/B

冷凝水泵

05-P001A/B

溶液泵(主泵)增压泵 05-MT01

05-P002A/B

05-P003A/B

05-P005

05-P006A/B

07-K001-P01/P02

07-K001-P03/P04

07-P001A/B

07-U003-P01/P02

09-K001-P01/P02

10-P001A/B

08-P001A/B

82-P001A/B/C

81-P001A/B

水力透平 冷凝水泵 过滤泵 废液泵 冷凝液泵

润滑油泵

密封油泵

冷凝液泵

润滑油泵

润滑/密封油泵

洗涤泵

NH3泵

锅炉给水泵

液氨泵

尿素装置

P-101A/B高压氨泵 P-102A/B高压碳铵泵 P-103A/B中压碳铵液泵 P-105A/B氨升压泵 P-106A/B尿素溶液泵 P-108A/B熔融尿素泵

P-110A/B蒸汽冷凝液冲洗泵P-113A/B蒸汽冷凝液泵 P-114A/B解吸塔给料泵 P-115A/B水解器给料泵 P-117A/B冷凝液抽提泵 P-118A/B润滑油泵

高压冲洗泵

第五篇:合成氨脱碳工艺

合成氨脱碳工艺简介 合成氨生产工艺简述

合成氨是一个传统的化学工业,诞生于二十世纪初。就世界范围来说,氨是最基本的化工产品之一,其主要用于制造硝酸和化学肥料等。合成氨的生产过程一般包括三个主要步骤:

(l)造气,即制造含有氢和氮的合成氨原料气,也称合成气;

(2)净化,对合成气进行净化处理,以除去其中氢和氮之外的杂质;

(3)压缩和合成,将净化后的氢、氮混合气体压缩到高压,并在催化剂和高温条件下反应合成为氨。其生产工艺流程包括:脱硫、转化、变换、脱碳、甲烷化、氨的合成、吸收制冷及输人氨库和氨吸收八个工序[1]。

在合成氨生产过程中,脱除CO2是一个比较重要的工序之一,其能耗约占氨厂总能耗的10%左右。因此,脱除CO2,工艺的能耗高低,对氨厂总能耗的影响很大,国外一些较为先进的合成氨工艺流程,均选用了低能耗脱碳工艺。我国合成氨工艺能耗较高,脱碳工艺技术也显得比较落后,因此,结合具体情况,推广应用低能耗的脱除CO2工艺,非常有必要。

1.1.4脱碳单元在合成氨工业中的作用

在最终产品为尿素的合成氨中,脱碳单元处于承前启后的关键位置,其作用既是净化合成气,又是回收高纯度的尿素原料CO2。以沪天化1000t/d合成氨装置脱碳单元为例,其需要将低变出口的CO2含量经吸收后降到0.1%以下,以避免甲烷化系统超温并产生增加能耗的的合成惰气,同时将吸收的CO2再生为99%纯度的产品CO2。在此过程中吸收塔压降还应维持在合理范围内以降低合成气压缩机的功耗。系统的扩能改造工程中,脱碳单元将为系统瓶颈,脱碳运行的好坏,直接关系到整个装置的安全稳定与否。脱碳系统的能力将影响合成氨装置的能力,必须同步进行扩能改造。

但是不论用什么原料及方法造气,经变换后的合成气中都含有大量的CO2,原料中烃的分子量越大,合成气中CO2就越多。用天然气(甲烷)为原料的烃类蒸汽转化法所得的CO2量较少,合成气中CO2浓度在15-20%,每吨氨副产CO2约1.0-1.6吨。这些CO2如果不在合成工序之前除净,不仅耗费气体压缩功,空占设备体积,而且对后续工序有害。此外,CO2还是重要的化工原料,如合成尿素就需以CO2为主要原料。因此合成氨生产中把脱除工艺气中CO2的过程称为“脱碳”,在合成氨尿素联产的化肥装置中,它兼有净化气体和回收纯净CO2的两个目的。

1.1.5脱碳方法概述

由变换工序来的低变气进脱碳系统的吸收塔,经物理吸收或者化学吸收法吸收二氧化碳。出塔气中二氧化碳含量要求小于0.1%。为了防止气体夹带出脱碳液,脱碳后的液体进人洗涤塔,用软水洗去液沫后再进入甲烷化换热器。脱碳塔出来的富液经换热器后,减压送至二氧化碳再生塔,用蒸汽加热再沸器,再脱去二氧化碳。由再生塔顶出来的CO2,经空冷器和水冷器,气体温度降至40℃,再经二氧化碳分离器除去冷凝水,送到尿素车间作原料。再生后的脱碳液(贫液),先进溶液空冷器,冷却至65℃左右,由溶液循环泵加压,再经溶液水冷器冷却至40℃后,送入二氧化碳吸收塔循环使用。 1.2净化工序中脱碳方法

在合成氨的整个系统中,脱碳单元将为系统关键主项,脱碳工序运行的好坏,直接关系到整个装置的安全稳定与否。脱碳系统的能力将影响合成氨装置和尿素装置的能力。CO2是一种酸性气体,对合成氨合成气中CO2的脱除,一般采用溶剂吸收的方法。

根据CO2与溶剂结合的方式,脱除CO2的方法有化学吸收法、物理吸收法和物理化学吸收法三大类。

1.2.1化学吸收法

化学吸收法即利用CO2是酸性气体的特点,采用含有化学活性物质的溶液对合成气进行洗涤,CO2与之反应生成介稳化合物或者加合物,然后在减压条件下通过加热使生成物分解并释放CO2,解吸后的溶液循环使用。化学吸收法脱碳工艺中,有两类溶剂占主导地位,即烷链醇胺和碳酸钾。化学吸收法常用于CO2分压较低的原料气处理。 (l)烷链醇胺类的脱碳工艺有:

①-乙醇胺(monoethanolamine,H2NCH2CH2OH,MEA)法;

②甲基二乙醇胺(methyl diethanolamine,CH3N(CH2CH2OH)2,MDEA)法; ③活化MDEA法(即aMDEA工艺)。

(2)碳酸钾溶液作吸收剂的脱碳工艺,即热钾碱脱碳工艺有:

①无毒G-V法;②苯菲尔法;③催化热钾碱(Cata carb)法;④Flexsorb法[2]。 1.2.1.1.1MEA法

MEA法是一种比较老的脱碳方法。吸收过程中,MEA与CO2发生反应生成碳酸化合物,经过加热即可将CO2分解出来。该法的最大优点是可以在一个十分简单的装置中,把合成气中的CO2脱除到可以接受的程度。

但它本身存在两个缺点:(1) CO2能与吸收反应生成的碳酸化合物发生进一步反应生成酸式碳酸盐,该盐较稳定,不易再生;(2) CO2能与MEA发生副反应,生成腐蚀性较强的氨基甲酸醋,容易形成污垢。 1.2.1.2甲基二乙醇胺MDEA MDEA法脱碳过程中,CO2与甲基二乙醇胺(MDEA,一种叔胺)生成的碳酸盐稳定性较差,分解温度低,且无腐蚀性。相对其它工艺,MDEA法有以下优点:(1)能耗和生产费用低;(2)脱碳效率高,净化气中CO2含量可小于100ppm;(3)使用范围广,可用于大、中、小各型合成氨厂;(4)溶剂稳定性好;(5)溶剂无毒、腐蚀性极小;(6)能同时脱硫。由于MDEA具有以上优点,所以不需要毒性防腐剂,设备管道允许采用廉价碳钢材料,不需要钝化过程,耗热低,设备管道不需要伴热盘管,能达到很好的节能效果[3]。

在MDEA溶液中添加少量活化剂即为aMDEA法,活化剂为眯哇、甲基咪哇等,浓度约为2-5%。活性MDEA工艺开发于20世纪60年代末,第一套活化MDEA脱碳工艺装置是1971年在德国BAFS公司氨三厂投入使用在此后的几年里,另有8套装置采用了活化MDEA,这些装置的成功使用,使得aMDEA工艺自1982年后备受欢迎。我国在大型装置中使用MDEA脱碳工艺,乌鲁木齐石化公司化肥厂属于首例[4]。BAFS公司推出的aMDEA脱碳工艺,主要用于对原来MEA工艺的改造,近几年我国一些研究单位正在对这方面进行积极的研究。

1.2.1.3低热耗苯菲尔法

相对上述脱除CO2的吸收剂溶液,碳酸钾溶液更价廉易得,并具有低腐蚀,操作稳定,吸收CO2能力较强等特性。但碳酸钾溶液本身吸收CO2的速度缓慢,需要添加一些活化剂。其中如无毒G-V法工艺就是由意大利Giammaro-Vetrocoke公司所开发,最初使用的活化剂和缓蚀剂为As2O3,但对人体有毒。后来有人用氨基乙酸取代As2O3,消除了毒性,成为无毒G-V法。我国栖霞山化肥厂就采用了这种工艺。由美国联碳公司开发的低热耗苯菲尔法,用二乙醇胺(DEA)作活化剂,V2O5作为腐蚀防护剂。我国于20世纪90年代相继以布朗工艺建了4套装置,即锦西天然气化工厂、建峰化肥厂、四川天华公司化肥厂和乌鲁木齐石化总厂第二化肥厂,规模都是日产氨1000吨。低热耗苯菲尔工艺是由美国联碳公司在传统苯菲尔工艺基础上开发的,采用了节能新技术。国内在20世纪70年代引进的13套大型化肥装置中,有10套采用苯菲尔脱碳工艺。从1985年起,己有7套进行了用低热耗苯菲尔工艺改造。国内新建的以天然气为原料的大型合成氨装置,脱碳系统也多采用低热耗苯菲尔工艺,如锦天化厂、建峰厂、天华公司等。中海石油化学有限公司合成氨装置脱碳系统采用改良型苯菲尔流程[5]。苯菲尔法可在高温下运行,再生热低,添加的V2O5可防腐蚀,但该工艺需对设备进行钒化处理,要求工人的操作水平较高,并且浪费溶剂,能耗大,特别蒸汽用得多,有效气体损失也大,运行成本高等缺点。

1.2.2物理吸收法

物理洗涤是CO2被溶剂吸收时不发生化学反应,溶剂减压后释放CO2 (不必加热),解吸后的溶液循环使用。相对化学吸收法,物理洗涤法的最大优点是能耗低, CO2不与溶剂形成化合物,减压后绝大部分CO2被闪蒸出来,然后采用气提或负压实现溶剂的完全再生。这就使得工艺投资省、能耗低、工艺流程简单。物理吸收法主要有Selxeol法、Elour法、变压吸附法及低温甲醇法等[6]。物理吸收法常用于高CO2分压的原料气处理。 1.2.2.1NHD法

NHD法被认为是目前能耗最低的脱碳工艺之一,该法使用的溶剂为聚乙二醇二甲醚的混合物,其分子式为CH3-O-(CH2-CH2-O)n-CH2,式中n=2-8。NHD是兖矿鲁南化肥厂与南京化学工业集团公司研究院、杭州化工研究所共同开发成功的一种物理吸收硫化氢和二氧化碳等酸性气体的高效溶剂[7]。NHD气体净化技术改造系脱除酸性气体的物理吸收新工艺,适合于合成气、天然气、城市煤气等的脱硫脱碳。NHD具有对设备无腐蚀,对CO

2、H2S等酸性气体的吸收能力强、蒸汽压低,挥发性小、热稳定性和化学稳定性好、不会起泡,无腐蚀性等优点,并且该法在NHD的再生过程中几乎不需要能量,通常利用空分装置富余的低压氮气在气提塔进行脱碳富液的气提再生,其优点是减少利用空气气提带来系统内NHD溶液含水量的富集,省去了空气水冷、气水分离及NHD脱水设备,节约了投资,简化了流程[8]。

1.2.2.2碳酸丙烯酯法(PC)法

碳酸丙烯酯法是碳酸丙烯酯为吸收剂的脱碳方法。其原理是利用在同样压力、温度下,二氧化碳、硫化氢等酸性气体在碳酸丙烯酯中的溶解度比氢、氮气在碳酸丙烯酯中的溶解度大得多来脱除二氧化碳和硫化氢而且二氧化碳在碳酸丙烯酯中溶解度是随压力升高和温度的降低而增加的,CO2等酸性气体在碳丙溶剂中溶解量一般可用亨利定律来表达,因而在较高的压力下,碳酸丙烯酯吸收了变换气中的二氧化碳等酸性气体,在较低的压力下二氧化碳能从碳酸丙烯酯溶液中解吸出来,使碳酸丙烯酯溶液再生,重新恢复吸收二氧化碳等酸性气体的能力。碳酸丙烯酯法具有溶解热低、粘度小、蒸汽压低、无毒、化学性质稳定、无腐蚀、流程操作简单等优点。

该法CO2的回收率较高,能耗较低,但投资费用较高。适用于吸收压力较高、CO2净化度不很高的流程,国内主要是小型厂使用。用碳丙液作为溶剂来脱除合成氨变换气中CO2工艺是一项比较适合我国国情的先进技术,与水洗工艺比较,除具有物理吸收过程显著的节能效果外,在现有的脱碳方法中,由于它能同时脱除二氧化碳、硫化氢及有机硫化物,加上再生无需热能,能耗较低等优势,在国外合成氨和制氢工业上已得到广泛应用。 1.2.2.3变压吸附法

变压吸附气体分离净化技术,简称PSA(Pressure Swing Adsorption)。变压吸附法是近几年才用于合成气净化的,它属于干法,采用固体吸附剂在改变压力的情况下,进行(加压)吸附CO2或(减压)解吸。变压吸附法分离气体混合物的基本原理是利用某一种吸附剂能使混合气体中各组份的吸附容量随着压力变化而产生差异的特性,选择吸附和解吸再生两个过程,组成交替切换的循环工艺,吸附和再生在相同温度下进行。可用此法改造小型氨厂,将低能耗,在大型氨厂使用显得困难[9]。

为了达到连续分离的目的,变压吸附脱碳至少需要两个以上的吸附塔交替操作,其中必须有一个吸附塔处于选择吸附阶段,而其它塔则处于解吸再生阶段的不同步骤。在每次循环

中,每个吸附塔依次经历吸附、多次压力均衡降、逆向放压、抽空、多次压力均衡升、最终升压等工艺步骤。

目前,此种类型的装置在全国合成氨厂已广泛采用。如四川什邡某氮肥厂为天然气富氧造气,变换气脱碳采用我公司近年来开发的节能型变压吸附脱碳新工艺,多塔进料,多次均压,并实现了吸附塔和真空泵的新组合,同时对吸附剂、程控阀门、控制系统、动力设备的配置都做了较大的改进,从而使H

2、N2有效气体回收率大大提高,能耗进一步降低,装置投资也有所减少[10]。 1.2.2.4低温甲醇洗法

低温甲醇洗工艺(Rectisol Process)系由德国林德公司(Linde)和鲁奇公司(Lurgi)开发,是利用甲醇溶剂对各种气体溶解度的显著差别,可同时或分段脱除H2S、CO2和各种有机硫等杂质,具有气体净化度高、选择性好、溶液吸收能力强,操作费用低等特点,是一种技术先进、经济合理的气体净化工艺。自1954年Lurgi公司在南非Sasol建成世界上第一套工业规模的示范性装置以来,目前有100余套装置投入运行,尤其是大型渣油气化和煤气化装置的气体净化均采用低温甲醇洗工艺。

低温甲醇(Rectisol)法具有一次性脱除CO2,溶液便宜易得,能耗低,适用范围广泛等特点。但该法投资很大,我国镇海炼化厂大化肥等四家以重油和煤为原料的合成氨装置使用了低温甲醇法脱除CO2。

1.2.3物理化学吸收法

物理化学吸收法脱除CO2工艺主要有环丁砜(Sulfinol)法和常温甲醇(Amisol)法,物理化学吸收法常用于中等CO2分压的原料气处理。环丁砜法中所使用的溶剂由是环丁矾、二异丙醇胺与水组成,能同时吸收CO2和硫的化合物,且吸收速度快,净化度高,但再生耗热多,目前只有一些中小型厂使用。常温甲醇法是在甲醇中加入了二乙醇胺,当CO2分压升高时,以其在甲醇中溶解的物理吸收为主;当CO2分压较低时,以其与二乙醇胺发生化学反应的化学吸收为主,该法应用范围广,净化率高,但对H2S和CO2的选择性较差,己很少使用。

1.2.4固体吸附

固体吸附是CO2在加压时被吸附在多孔状固体上,减压时吸附的CO2被解吸,亦称变压吸附。

1.3碳酸丙烯酯(PC)法脱碳工艺基本原理

1.3.1PC法脱碳技术国内外现状

PC为环状有机碳酸酯类化合物,分子CH3CHOCO2CH2,该法在国外称Fluor法。PC法是南化集团研究院等单位于20世纪70年代开发的技术,1979年通过化工部鉴定。据初步统计,已有150余家工厂使用PC技术,现有装置160余套,其中大型装置两套,其余为中小型装置。大部分用于氨厂变换气脱碳。总脱碳能力约300万吨合成氨/年,其中配尿素型应用较多,占60%左右,至今该法仍是联碱、尿素、磷铵等合成氨厂使用最广的脱碳方法,其开工装置数为MDEA、NHD法总和的数倍。

1.3.2发展过程

PC技术的应用,主要经历了两个阶段:第一阶段始于70年代末,两个小氮肥厂用PC法代替水洗法脱CO2的工业试验装置获得成功,取得了明显的节能效果和经济效益。加之PC法在工艺上与水洗法相似,改造费用低,很快在一些小氮肥企业中推广应用;第二阶段,20世纪90年代以来,随着小化肥改变碳铵单一产品结构,适应市场需要,采用脱碳增氨转产尿素或联醇等方法,以提高经济效益,增强小化肥的竟争能力。为此,需要增设一套变换气脱碳装置,由于PC技术为典型的物理吸收过程,流程简单,投资少,节能明显,技术易于掌握。因此,很快得到了推广,并扩大了应用范围,技术上也趋于成熟。

1.3.3技术经济

由于碳丙脱碳纯属物理过程,因而它的能耗主要消耗在输送流体所须的电能。碳丙溶剂对CO2等酸性气体的吸收能力较大,一般为同条件下水吸收能力的4倍。因此,代替水洗法脱除变换气中CO2不但满足铜洗要求,而且回收CO2的浓度和回收率也能满足尿素、联碱生产的要求。与水洗法相比可节省电耗150-250KWh/tNH3,可节省操作费10-25元/t NH3。因而应用碳丙脱碳的厂家均可获得明显的节能效果。但这种效果随着工艺配置、设备、操作状况,处理规模和目的的不同而差异较大。碳丙脱碳与几种脱碳方法的能耗比较如表1.1。

表1.1 几种脱碳方法的能耗比较表 方法名称 加压水洗 能耗 2847

苯菲尔法 位阻胺法 改良MEDA法

1884

NHD法 1047-1256

PC法 1256

3558-5442 3349-4187

1.3.4工艺流程

1.3.4.1气体流程

(1)原料气流程

由压缩机三段送来2.3MPa的变换气首先进入水洗塔底部与水洗泵送来的水在塔内逆流接触,洗去变换气中的大部分油污及部分硫化物,并将气体温度降到30℃以下,同时降低变换气中饱和水蒸汽含量。气体自水洗塔塔顶出来进入分离器,自分离器出来的气体进入二氧化碳吸收塔底部,与塔顶喷淋下来的碳酸丙烯酯溶液逆流接触,将二氧化碳脱至工艺指标内。净化气由吸收塔顶部出来进入净化气洗涤塔底部,与自上而下的稀液(或脱盐水)逆流接触,将净化气中夹带的碳酸丙烯酯液滴与蒸气洗涤下来,净化气由塔顶出来后进入净化气分离器,将净化气夹带的碳酸丙烯酯雾沫进一步分离,净化气由分离器顶部出来回压缩机四段入口总管。根据各厂的具体情况和氨加工产品的不同,相匹配的碳丙脱碳条件及要求亦各异。在使用上,有替代加压水洗型、联碱型、配尿素型、联醇型、生产液氨型以及制氢等各类型;在净化效率上,有的对CO2进行粗脱,而大部分厂家,则进行精脱;对脱碳压力,有采用0.4MPa、1.1-1.3Mpa、1.6-1.8Mpa、2.5-2.8Mpa及4.3Mpa等多种类型。 (2)解吸气体回收流程

由闪蒸槽解吸出来的闪蒸气进入闪蒸气洗涤塔,自下而上与自上而下的稀液逆流接触,将闪蒸气夹带的液滴回收下来。闪蒸气自闪蒸气洗涤段出来后进入闪蒸气分离器,将闪蒸气夹带的碳酸丙烯酯液滴进一步分离下来,闪蒸气自分离器顶部出来送碳化,脱除二氧化碳并副产碳酸氢铵后,闪蒸气回压缩机一段入口总管。

由常解塔解吸出来的常解气进入常解-汽提气洗涤塔的常解气洗涤段,与自上而下的稀液逆流接触,将常解气中夹带的碳酸丙烯酯液滴与饱和于常解气中的碳酸丙烯酯蒸气回收下来,常解气自常解气洗涤段出来后进入常解气分离器,将常解气中夹带的碳酸丙烯酯液滴进一步分离,常解气自分离器顶部出来送食品二氧化碳工段。

汽提气由汽提塔出来后进入常解-汽提气洗涤塔的汽提气洗涤段,与自上而下的稀液逆流接触,将汽提气中夹带的碳酸丙烯酯液滴和饱和汽提气中的碳酸丙烯酯蒸气回收下来,经洗涤后汽提气由塔顶放空。 1.3.4.2液体流程

(1)碳酸丙烯酯脱碳流程简述

贫碳酸丙烯酯溶液从二氧化碳吸收塔塔顶喷淋下来,由塔底排出称为富液。富液经自调阀进入溶液泵-涡轮机组的涡轮,减压后进入闪蒸槽,自闪蒸槽出来的碳酸丙烯酯液一部分进入过滤器,大部分不经过过滤器,二者混合过后进入常解-汽提塔的常解段,碳酸丙烯酯液自常解段底部出来经过两液封槽进入汽提塔顶部,与自下而上的空气逆流接触,将碳酸丙烯酯溶液中的二氧化碳进一步汽提出来,经汽提后的碳酸丙烯酯溶液为贫液,贫液由汽提塔出来进入循环槽,再由循环槽进入溶液泵-涡轮机组的溶液泵,由泵加压后经碳酸丙烯酯溶液冷却器降温,进入二氧化碳吸收塔,从而完成了碳酸丙烯酯溶液的整个解吸过程。 (2)稀液流程循环

稀液(或软水)由常解-汽提气洗涤塔的常解段出来,经稀液泵加压后送往净化气洗涤塔上部自上而下。由塔底出来经自调阀进入闪蒸气洗涤塔的上部自上而下,由底部出来经自调阀进入常解-汽提气洗涤塔的汽提气洗涤段自上而下,由底部出来经一U型液封管进入常解气洗涤段继续循环。

1.3.5存在的问题及解决的办法

综合分析PC法脱碳各厂的使用情况,最具代表性的问题有: (1)溶剂损耗高。造成这一问题原因有三个因素: a.PC溶剂蒸汽压高;

b.PC气相回收系统不完善; c.操作管理水平的影响。

(2)净化气中CO2含量容易跑高,吨氨电耗高。净化气中CO2含量高,原因是多方面的如再生效果不好,系统残碳高或冷却不好等等。

目前,碳丙脱碳技术已提高到一个新的阶段,工业应用的或即将应用的最有吸引力的进展有以下几个方面。

1.3.6 PC法脱碳技术发展趋势

1.3.6.1塔器优化

塔器的优化包括塔径、塔填料、塔内件、塔过程控制的技术改造,改造后往往可提高20%-50%或更高的生产能力,改造主要分两部分进行:一是脱碳塔气液分布器和填料的改造,其目的是提高通气量和强化气液接触效率,加大润湿面积。具体办法是设税全截面均匀分布的气体和液体分布器,部分或全部采用规整填料;二是再生塔的改造。由于传统设计中再生塔常解段均为淋降式,当系统硫含量高时,受逆流及淋降板开孔直径的限制,易造成溶液中的单质硫积累结垢,渐渐堵塞淋降板上的开孔,使其失效故往往生产2年后再生效果会明显不如以前。由此可见,必须对这种结构彻底改造。具体办法是将常解段改为筛板或填料塔型,并增设类似塔型的真空解析段。

改造工作除了塔器以外,还进行了系统工艺优化,具体内容有:(1)调整溶剂泵的扬程,串联1台增压泵;(2)气提流程由原正压气提改为负压气提,有利于提高贫度;(3)降低变换气和循环溶剂的温度,以提高碳丙吸收能力;(4)采取碳丙溶剂半过滤或全过滤方法,杜绝系统堵塞隐患;(5)提高变换气脱硫效果;(6)碳丙稀液回收改造[11]。 1.3.6.2复合溶剂法

用两种或两种以上的物理、化学或物理化学溶剂作为复合溶剂净化酸性气体的研究,多年来一直方兴未艾。复合溶剂法的优点从选择性和吸收能力分析,特别是高分压下,选择合适的复合溶剂,优于纯溶剂,显著地提高了溶剂的吸收能力;另一方面明显地降低了能耗。除此以外,复合溶剂为了达到操作特性要求所作的混合过程,还具有其它方面的灵活性,即复合溶剂的组成。而且,复合溶剂可以优化配方用最低的费用达到所须的分离要求(见表1.2)。

表1.2 两种方法的技术经济比较(以吨氨计)

项目 CO2净化度(%) 溶剂损耗(Kg) 电耗(KWh) 操作成本(元)

PC法 0.8 1.5 145 85

复合溶剂法

0.5 0.75 100 60 1.3.6.3低温PC法

实践证明,低温碳丙法具有以下优点:(1)气体净化度高;(2)降低溶剂循环量;(3)降低溶剂损耗。

为了在较低操作压力下获得需要的气体净化度、降低溶剂循环量、节省动力消耗、降低溶剂蒸发损失,吸收操作可在低于常温条件下进行,即低温碳酸丙烯酯脱碳技术。CO2在溶剂中的溶解度可用下式表示:lgx*=lgp+B/T+C+lgζ

式中:

x*——CO2在含水溶剂中的饱和溶解度,摩尔分数;p——气相CO2分压,1.01×105Pa; B、C——常数,B=686.1,C=-4.245;

ζ——溶剂含水量的修正系数,当含水量为2%时,ζ=0.9,lgζ=-0.046; T———吸收温度,K。 1.4工艺设计的意义和目的

随着合成氨工业的飞速发展与国际经济的迅速变化,合成氨工业的经济性急需要提高,来降低成本,抵御风险。就碳酸丙烯酯法脱碳工艺进行深入研究,以达到成本最低化,资源有效化。

因此,在国际经济与国家政策的前提下,将合成氨的风险和利润投入到中间工序脱碳工段,对陷入困境的化工行业是一个很好的出路,对内外交困的合成氨行业来说,可以避免风险,降低成本。此工艺能有效缩短流程,降低能源消耗,减少污染排放,在提高产品附加值的同时也填补了脱碳工艺的国内空白,并且为合成氨领域的进步积累了难得经验。

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:环保健康安全承诺书下一篇:湖北省公务员考试网