欧姆定律教案范文

2023-06-28

欧姆定律教案范文第1篇

一、教学目标

(一)知识与技能

1.理解电功、电功率的概念,公式的物理意义。了解实际功率和额定功率。 2.了解电功和电热的关系。了解公式Q=I2Rt(P=I2R)、Q=U2t/R(P=U2/R)的适应条件。

3.知道非纯电阻电路中电能与其他形式能转化关系,电功大于电热。 4.能运用能量转化与守恒的观点解决简单的含电动机的非纯电阻电路问题。

(二)过程与方法

通过有关实例,让学生理解电流做功的过程就是电能转化为其他形式能的过程。

(三)情感态度与价值观

通过学习进一步体会能量守恒定律的普遍性。

三、重点与难点:

重点:区别并掌握电功和电热的计算。

难点:主要在学生对电路中的能量转化关系缺乏感性认识,接受起来比较困难。

四、教学过程:

(一)复习上课时内容

要点:串、并联电路的规律和欧姆定律及综合运用 。

提出问题,引入新课

1.通过前面的学习,可知导体内自由电荷在电场力作用下发生定向移动,电场力对定向移动的电荷做功吗?(做功,而且做正功)

2.电场力做功将引起能量的转化,电能转化为其他形式能,举出一些大家熟悉的例子:电能→机械能,如电动机。电能→内能,如电热器。电能→化学能,如电解槽。 本节课将重点研究电路中的能量问题。

(二)新课讲解-----第五节、焦耳定律 1.电功和电功率

(1).电功

定义:电路中电场力对定向移动的电荷所做的功,简称电功,通常也说成是电流的功。用W表示。

实质:是能量守恒定律在电路中的体现。即电流做功的过程就是电能转化为其他形式能的过程,在转化过程中,能量守恒,即有多少电能减少,就有多少其他形式的能增加。

【注意】功是能量转化的量度,电流做了多少功,就有多少电能减少而转化为其他形式的能,即电功等于电路中电能的减少,这是电路中能量转化与守恒的关键。

在第一章里我们学过电场力对电荷的功,若电荷q在电场力作用下从A搬至B,AB两点间电势差为UAB,则电场力做功W=qUAB。

对于一段导体而言,两端电势差为U,把电荷q从一端搬至另一端,电场力的功W=qU,在导体中形成电流,且q=It,(在时间间隔t内搬运的电量为q,则通过导体截面电量为q,I=q/t),所以W=qU=IUt。这就是电路中电场力做功即电功的表达式。

表达式:W = Iut ① 【说明】:①表达式的物理意义:电流在一段电路上的功,跟这段电路两端电压、电路中电流强度和通电时间成正比。

②适用条件:I、U不随时间变化——恒定电流。 单位:焦耳(J)。1J=1V·A·s (2)电功率

①定义:单位时间内电流所做的功

②表达式:P=W/t=UI(对任何电路都适用)② 上式表明:电流在一段电路上做功的功率P,和等于电流I跟这段电路两端电压U的乘积。

③单位:为瓦特(W)。1W=1J/s ④额定功率和实际功率

额定功率:用电器正常工作时所需电压叫额定电压,在这个电压下消耗的功率称额定功率。

实际功率:用电器在实际电压下的功率。实际功率P实=IU,U、I分别为用电器两端实际电压和通过用电器的实际电流。

这里应强调说明:推导过程中没用到任何特殊电路或用电器的性质,电功和电功率的表达式对任何电压、电流不随时间变化的电路都适用。再者,这里W=IUt是电场力做功,是消耗的总电能,也是电能所转化的其他形式能量的总和。

电流在通过导体时,导体要发热,电能转化为内能。这就是电流的热效应,描述它的定量规律是焦耳定律。

学生一般认为,W=IUt,又由欧姆定律,U=IR,所以得出W=I2Rt,电流做这么多功,放出热量Q=W=I2Rt。这里有一个错误,可让学生思考并找出来。

错在Q=W,何以见得电流做功全部转化为内能增量?有无可能同时转化为其他形式能?

英国物理学家焦耳,经过长期实验研究后提出焦耳定律。 2.焦耳定律——电流热效应 (1)焦耳定律

内容:电流通过导体产生的热量,跟电流强度的平方、导体电阻和通电时间成正比。 表达式: Q=I2Rt ③

【说明】:对纯电阻电路(只含白炽灯、电炉等电热器的电路)中电流做功完全用于产生热,电能转化为内能,故电功W等于电热Q;这时W= Q=UIt=I2Rt (2)热功率:单位时间内的发热量。即P=Q/t=I2R ④

【注意】②和④都是电流的功率的表达式,但物理意义不同。②对所有的电路都适用,而④式只适用于纯电阻电路,对非纯电阻电路(含有电动机、电解槽的电路)不适用。

关于非纯电阻电路中的能量转化,电能除了转化为内能外,还转化为机械能、化学能等。这时W 》Q。即W=Q+E其它

或P =P 热+ P其它、UI = I2R + P其它

引导学生分析P56例题(从能量转化和守恒入手)如图 再增补两个问题(1)电动机的效率。(2)若由于某种原因电动机被卡住,这时电动机消耗的功率为多少?

最后通过“思考与讨论”以加深认识。注意,在非纯电阻电路中,欧姆定律已不适用。

(三)小结:对本节内容做简要小结。并比较UIt和IRt的区别和联系,从能的转化与守恒的角度解释纯电阻电路和非纯电阻电路中电功和电热的关系。在纯电阻电路中,电能全部转化为电热,故电功W等于电热Q;在非纯电阻电路中,电能的一部分转化为电热,另一部分转化为其他形式的能(如机械能、化学能),故电功W大于电热Q。

(四)巩固新课:

1、复习课本内容

2、完成P57问题与练习

3、作业纸

2教后记:

欧姆定律教案范文第2篇

教学目的:进一步深化对电阻概念的认识,掌握电阻率的物理意义。 教学过程: 复习引入:(1)欧姆定律是如何表述的?

(2)不同导体的电阻大小不同,那么,导体电阻的大小是由哪些因素决定的呢?

我们这堂课就来研究这个问题。

讲授新课:

演示实验:在如图所示的电路中,保持BC间的电压不变

① BC间接入同种材料制成的粗细相同,但长度不相同的导线。 现 象:导线越长,电路中电流越小。

计算表明:对同种材料制成的横截面积相同的导线,电阻大小

跟导线的长度成正比。

② BC间接入同种材料制成的长度相同,但粗细不相同的导线。 现 象:导线越粗,电路中的电流越大

计算表明:对同种材料制成的长度相同的导线,电阻大小跟导线的横截面种成反比。 即:导体的电阻跟它的长度成正比,跟它的横截面积成反比——这就是电阻定律。

R∝L/S

R=ρL/S„„„„„„(1)

(1)式中的ρ是个比例系数.当我们换用不同材料的导线重做上述实验时会发现:不同材料的ρ值是不相同的,可见, ρ是个与材料本身有关的物理量,它直接反映了材料导电性的好坏,我们把它叫做材料的电阻率. ρ=RS/L„„„„„„(2)

注意: ⑴电阻率ρ的单位由(2)式可知为:欧姆米(Ωm)各种材料的电阻率在数值上等于用该材料制成的长度为1米,横截面积为1平方米的导体的电阻. 但电阻率并不由R S和L决定. ⑵引导学生阅读P30表格 思考: ①哪些物质电阻率小,哪些物质电阻率大? 纯金属的电阻率小,合金的电阻率较大,橡胶的电阻率最大. ②电阻率相差悬殊各有什么用途? 电阻率小用作导电材料,电阻率大的用作绝缘材料.

0③表中说明“几种材料在20C时的电阻率”,这意味着什么? 材料的电阻率跟温度有关系. 各种材料的电阻率都随温度而变化.a,金属的电阻率随温度的升高而增大,用这一特点可制成电阻温度计(金属铂).b,康铜,锰铜等合金的电阻率随温度变化很小,故常用来制成标准电阻.c,当温度降低到绝对零度附近时,某些材料的电阻率突然减小到零,这种现象叫做超导现象,处于这种状态的物体叫做超导体. 综上所述可知:电阻率与材料种类和温度有关.(对某种材料而言,只有温度不变时ρ才是定值,故(1)式成立的条件是温度不变) 在温度不变时,导线的电阻跟它的长度成正比,跟它的横截面积成反比——这就是电阻定律。 巩固新课:

提出问题1:改变导体的电阻可以通过哪些途径?

回 答:改变电阻可以通过改变导体的长度,改变导体横截面积或是更换导体材料等途径。最简 单的方法是通过改变导体的长度来达到改变电阻的目的。(以P31(5)题为例介绍滑线变阻器的构造及工作原理)

提出问题2:有一个长方体的铜块,边长分别为4米,2米,1米(如图所示),求它的电阻是多大?(铜的

-8电阻率为1.7×10欧米). 通过本例注意: R=ρL/S 中S和L及在长度L中, 导体的粗细应该是均匀的.

提出问题3:一个标有“220V,60W”的白炽灯泡,加上的电压U是由0逐渐增大到220V,在此过程中,电压U和电流I的关系可用图线表示,在下图中的四个图线中,肯定不符合实际的是( ACD )

提出问题4:一根粗细均匀的电阻丝,当加2V电压时,通过的电流强度为4A。现把此电阻丝均匀拉长,然后加1V的电压,这时电流强度为0.5A.求此时电阻丝拉长后的长度应原来长度的几倍?(2倍)

-6提出问题5:一立方体金属块,每边长2cm,具有5×10欧的电阻,现在将其拉伸为100米长的均匀导线,求它的电阻? (125欧)

欧姆定律教案范文第3篇

万有引力定律的应用

一、知识目标

1.会利用万有引力定律计算天体的质量。 2.理解并能够计算卫星的环绕速度。

3.知道第二宇宙速度和第三宇宙速度及其含义。

二、情感、态度与价值观:

1.了解万有引力定律在探索宇宙奥秘中的重要作用,感受科学定律的巨大魅力。 2.体会科学探索中,理论和实践的关系。 3.体验自然科学中的人文精神。

三、能力目标

培养学生对万有引力定律的理解和利用有限的已知条件进行近似计算的能力。

四、教学重点:

1.利用万有引力定律计算天体质量的思路和方法 2.发现海王星和冥王星的科学案例 3.计算环绕速度的方法和意义

4.第二宇宙速度和第三宇宙速度及其含义

五、教学难点:

天体质量计算 教学方法:

自主讨论思考、推导、引导分析 课时安排:1课时

教学步骤:

一、导入新课

牛顿通过对前人研究结果的总结和假设、推理、类比、归纳,提出了万有引力定律

FGm1m2 2r在一百多年后,由英国科学家卡文迪许精确测定了万有引力常数G,从那时候起,万有引力才表现出巨大的威力。尤其在天体物理学计算、天文观测、卫星发射和回收等天文活动中,万有引力定律可称为最有力的工具。

二、新课教学

投影月球绕地转动的动画演示,

提出问题:若月球绕地球做匀速圆周运动,其周期为T,已知月球到地心距离为r,如何通过这些条件,应用万有引力定律计算地球质量?(要求学生以讨论小组为单位就此问题展开6分钟讨论,讨论出结果后,提供计算基本思路、计算过程和结果、并总结万有引力定律计算天体质量的方法,教师在教室巡回,找出两个结果比较完整,讨论思路清晰但计算过程略有不同的组,要求其对所讨论的问题进行回答。)

显示:匀速圆周运动,周期T、月球到地心距离r,求:地球质量M 教师总结两组的讨论过程和结果,比较后,对所讨论的问题得出一个更加完善的答案。板书演示,重现这一完整过程,并对问题的答案做出总结。要求各小组将这个结果和自己小组的结果进行两分钟比较讨论。(总用时约6分钟)

提出问题:利用这种方法,是否可以计算不带卫星的天体的质量?为什么? 学生回答,教师总结。

讲解例题(课本练习1):已知地球绕太阳做匀速圆周运动的周期为365天,地球到太阳的距离为1.5×10m,取G=6.67×101

1-11

N·m/km,求太阳的质量。

2提问学生,将学生的思路地月系扩展到太阳系。提问学生太阳系目前观测到有多少颗行星?他们分别是哪些呢?

学生回答后,投影出太阳系九大行星运行图,并展示部分行星的照片。

提出:引入美国天文学家发现的可能的太阳系的第十颗行星,及海王星和冥王星发现的故事,要求学生就这些案例,联系认识宇宙范围越大,所需探索时间越长这个事实,经过三分钟讨论,谈谈自身获得什么启示。并鼓励学生查阅相关资料,了解更多的关于行星的知识,激发学生对这一问题的兴趣,鼓励学生利用已有条件,探索宇宙的奥秘。

将课堂引回地月系,从地月系的环绕关系,引入地球卫星。提问有关卫星的一些问题。 例如:卫星发射速度、卫星轨道形状、卫星运行速度等等。

讲述卫星的理论模型在牛顿年代已经出现,并演示这一模型。让学生接受环绕速度的概念。通过万有引力定律和向心力公式联系,解出地球附近的环绕速度的值,板书这一题设和计算推理过程。

提出问题:如果发射速度大于环绕速度会有什么结果?提醒学生结合卫星的椭圆形轨道,作出讨论猜想,学生讨论出结果之后,提供不同情况下的卫星运行演示。

引入大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度。再用演示和计算结合的方法引导学生得到环绕速度是卫星运行的最大速度,也是最小发射速度这一结论。

教师总结指出这里学生常常出现的错误,并加以强调。

提供地球上不同纬度地区单位质量物体所受重力的值(相当于提供重力加速度),和地球表面单位质量物体所受地球的万有引力的值,要求学生作出比较,讨论,学生可以得到两者近似相等的结论:地面附近mg=GMm/R,即gR=GM这一结论。

例题(课本练习3)如果近似地认为地球对地面物体地引力等于其重力mg,你能否据此推出环绕速度?提问后,再讲解。

2

2三、小结:本节课的重点问题:

1.利用万有引力定律计算天体质量的思路和方法 2.了解发现海王星和冥王星的科学案例 3.计算环绕速度的方法和意义

4.知道第二宇宙速度和第三宇宙速度及其含义 课后作业:本节课后练习

1、3两道题。

教学总结

欧姆定律教案范文第4篇

教学目标

①、了解热力学第二定律的发展简史,

②、了解什么是第二类永动机,为什么第二类永动机不可以制成。 ③、了解热传导的方向性,

④、了解热力学第二定律的两种表述方法,以及这两种表述的物理实质, ⑤、了解什么是能量耗散 教学重点

热力学第二定律及所反映出的热现象的宏观过程的方向性。 教学难点

热力学第二定律中所描述的 "不发生其他变化" 教学方法

多媒体辅助教学,分析讨论讲解相结合 教学器材

多媒体演示系统、自制电脑教学软件 教学过程

一、引入新课

1、复习提问

①热力学第一定律的内容是什么? ②第一类永动机为什么没有制成? ③能量守恒定律是怎样表述的?

2、引入新课

教师说明:在能量守恒定律中,存在着能量的 "转移"和 "转化",具体到热力学第二定律,内能和内能之间存在着"转移"以及内能和机械能之间也存在着"转化"的过程,引入课题:热力学第二定律。

二、新课教学

(一)内能的转移

内能转移实质就是热传递。 举例:

1 冰箱中的冰激凌在停电时的融化过程,引导学生分析融化的原因。 (热量可以从高温物体传递给低温物体)

2 冰箱里的冰激凌在冰箱正常工作时并没有融化。

进一步引导学生思考热量只能从高温物体传递给低温物体这种说法是否妥当。如果不妥当应该怎样说。从而得出所谓的热量从高温物体向低温物体传递是一个自发的过程,热量从低温物体向高温物体转移需要其他的物理过程参与。以模拟动画说明内能转移过程的方向性)得出热力学第二定律克劳修斯表述:不可能使热量从低温物体传递到高温物体而不产生其他变化。

内能转移过程的方向性

说明: 不产生其他变化是指没有其他物理过程参与

(二)内能和机械能之间的转化

瓦特蒸汽机的发明说明人们开始了热机理论的研究,("热机"就是一种把内能转化为机械能的机械)

1824年,卡诺在《论火的动力》中指出 "凡是有温度差的地方就能够发生动力" 1834年,克拉珀龙把卡诺这一思想几何化为"卡诺循环" 热机从高温热源吸收热量Q,其中一部分对外做功W,另一部分被释放给低温热源,根据能量守恒定律

Q1 = Q2 + W η=W/ Q1 = (Q1- Q2) /Q1 =1 - Q2/ Q1

可以知道Q2 越少,η越高

于是人们就考虑能否让Q2不存在,这样就可以产生一个η=100%的热机,就可以产生另一种永动机,可以看到这种机械并不违反能量守恒定律,这一类永动机叫第二类永动机。 第二类永动机:能从单一热源吸收热量全部用来做功而不引起其他变化的机械。

如果这一类永动机能够制成,它就可以从外界诸如空气、海洋、土壤等单一热源中不断地吸取能量,而对外做功。众所周知在空气和海洋中内能是取之不尽的,这样的话飞机不用带油箱,轮船不用带燃料。人们为此做出了许多努力,做了大量的尝试,但是第二类永动机始终还是没能制成。伴随着一次次的失败,终于认识到第二类永动机是不可能制成的。 这个结论是开尔文首先提出来的。

开尔文表述:不可能从单一热源吸收热量并把它全部用来做功,而不产生其他变化。即:第二类永动机是不可能制成的。

说明热力学第二定律两种表述形式实质是一样的,只是侧重角度不同:

1、克劳修斯表述体现热传导的方向性

2、开尔文表述体现机械能和内能之间转化的方向性 能量耗散

引导学生阅读46页能量耗散的内容并归纳出自然界中的能量有的便于利用而有的不便于利用,内能作为能量发展的最终形式是没有办法把这些流散的内能重新收集起来加以利用。

举例:电能转化为光能再转化为内能:烤火时高温物体的内能变为低温物体的内能都是无法将散失的内能重新再利用能量耗散是从能量转化的角度反映出自然界中的宏观过程具有的方向性。说明能量耗散不是能量损失,只是可便于利用的能量减少了。 第四环节:强调"方向性"进行小结,使课堂难点、重点突出。

总结扩展:热力学第二定律提示了有大量分子参与的宏观过程的方向性,使得它成为独立于热力学第一定律的一个重要自然规律。

说明:不仅仅在物理上存在这种"方向性",在其他领域也都存在。比如:化学中的不可逆反应;生物中的进化过程的不可逆都说明了这一点。

欧姆定律教案范文第5篇

2.欧姆定律是研究导体中的电流与导体两端电压以及导体电阻三者关系的规律。 ( )

某一段导体两端的电压和通过导体的电流来测定这段导体的电阻,这种方法称为伏安法。 ( )

5.欧姆定律中的电流、电压和电阻必须在同一段电路上。 ( )

6.1伏/欧=1库·秒。 ( )

二、填充题

1.将阻值3千欧电阻接在6伏电源上,电路中的电流为____安,合____毫安。

2.10微安电流流过3兆欧电阻,电阻两端的电压为________伏。

3.将10欧电阻直接接在1节干电池两端,电路中的电流为____毫安。若用电流表测量该电流时应选用________量程,物理试题《第二节欧姆定律习题一》。

4.当导体两端电压为3伏时,通过导体的电流为0.1安。该导体的电阻是____欧。若使导体中的电流为0.5安,则导体两端的电压是________伏,此时导体的电阻是____欧。

三、计算题

1.如图1所示,并联的红、绿、白三盏电灯,它们两端的电压都是220伏,电阻分别是3230欧、1210欧、484欧。求通过各盏灯的电流。

2.一段导体两端的电压2伏时,导体中的电流为0.5安,如果两端电压增大到4伏时,导体中的电流为多大?如果电压减小到1伏时,电流又是多大?

3.一个定值电阻两端的电压是3伏时,它的电流是0.5安。如果电压是5伏时,能不能用量程是0.6安的电流表来测量这个定值电阻的电流?

欧姆定律 答案

一、1.× 2.√ 3.× 4.√ 5.√ 6.×

二、1.2×10-3;

22.30

3.150;0.6安

4.30;15;30

三、1.0.07安;0.18安;0.45安

2.1安;0.25安

上一篇:传统文化教案下一篇:时间管理教案

热门文章

欧姆定律教案