垃圾焚烧炉特点范文

2023-12-06

垃圾焚烧炉特点范文第1篇

( 报 批 稿 )

浙江省环境保护科学设计研究院

ENVIRONMENTAL SCIENCE RESEARCH ( DESIGN INSTITUTE OF ZHEJIANG PROVINCE 国环评证:甲字第2003号 二○○九年三月

一、项目概况

1、项目来源

随着临安市城市的发展,人口和消费水平的提高,生活垃圾逐年增加,根据有关资料统计,2007年临安市城区生活垃圾产生量232吨/日,临安市城区未来十年内生活垃圾产生量将以约5%的速度递增。目前,临安市城市生活垃圾主要送往临安市垃圾填埋场作填埋处置,而一期垃圾填埋场已填满,二期垃圾填埋场已于2004年建成使用,设计使用年限10年,按目前的垃圾填埋速度预计使用寿命缩短至5年,因此如垃圾仅考虑填埋预计到2010年左右将填满。为解决临安市生活垃圾的出路问题,绿能环保发电有限公司拟投资建设临安市垃圾焚烧发电项目,建设规模为2台225t/d二段往复式炉排垃圾焚烧炉配1套6MW汽轮发电机组。本工程的建设可推进临安市生活垃圾无害化、减量化及资源化的进程,节约了大量的宝贵的土地资源,对促进临安市国家级生态示范区建设具有积极的意义。

2、立项情况

省发改委关于临安绿能环保发电有限公司垃圾焚烧发电项目服务联系单[2009]15号。

3、建设地点

位于临安市锦南街道上畔村。

4、项目性质

本项目属于新建项目。

二、工程概况

1、工程组成

项目基本构成见表2-1。 表2-1 项目基本构成

项 目 名 称 临安绿能环保发电有限公司垃圾焚烧发电项目

建 设 单 位 临安绿能环保发电有限公司

工程总投资 18968万元

建设地点 位于临安市锦南街道上畔村,用地面积57.99亩

建设性质 新建 建设规模 日焚烧垃圾450吨,

主体工程 垃圾焚烧炉 2台225t/d二段往复式炉排垃圾焚烧炉

汽轮机 1台6MW凝汽式汽轮机组

发电机 QF-6-2发电机组

配 套 工

程 辅助

工程 垃圾运输 垃圾由临安市及周边地区环境卫生部门分散收集后,用专用垃圾车运送到垃圾发电厂。

垃圾库房 有效容量2100t,可贮存5天的垃圾量。

灰、渣库等 设渣库一座,有效容积300m3,灰库一座,有效容积约400m3

供水系统 生活用水水源来自城市供水管网,锅炉除盐水和设备冷却水补充水来自横溪(水源为大坑坞水库),采用机力通风冷却塔的循环供水系统。

化水处理设施 采用活性炭过滤+离子交换处理工艺

排水系统 雨污分流,渗滤液、生活污水和冲洗废水经预处理达进厂标准后送入临安市城市污水处理厂,其它废水回用于生产。

排烟设施 单筒钢筋砼结构,高度70m、出口内径1.8m

贮运

系统 垃圾库、渣库、灰库、地下式贮油罐、输送系统等

环保

工程 焚烧炉废气采用半干法反应塔+活性炭吸附+布袋除尘器;渗滤液、生活污水和各类冲洗废水等预处理达标后排入城市污水处理厂,化水、锅炉排污水和冷却塔排污水等经预处理后回用于生产;飞灰安全处置、炉渣综合利用,设灰渣暂存设施;事故应急池;在线监测系统;综合降噪措施等。

2、垃圾的来源、垃圾收集和运输系统

根据临安市目前生活垃圾收集范围和本项目拟增加收集的乡镇,目前已纳入临安市环卫收集系统并通过填埋处理的共4个街道和2个镇,共计人口21.24万人,本项目计划新增收集的有2个乡和4个镇,共计人口12.18万人。

本项目收集范围内共有小型垃圾填埋场3座,分别为於潜、太湖源、高虹垃圾填埋场。 根据《临安市环境卫生专项规划》,近期将对市中心40吨/日的一般垃圾转运站扩建为转运能力80吨/日的压缩式垃圾转运站,同时在青山湖片区新建80吨/日的压缩式垃圾转运站一座。远期将城南40~50吨/日的一般垃圾转运站扩建为转运能力40~80吨/日的压缩式垃圾转运站,同时新建40~80吨/日的压缩式垃圾转运站8座。

3、垃圾组份和理化性质 由于临安生活垃圾目前尚未进行成分分析,因此项目申请报告采用了邻近城市(湖州)生活垃圾成分分析结果,详见表2-2。 表2-2 生活垃圾物理组成成分表

类别 有机物 无机物 可回收物 其他 混合

动物 植物 灰土 砖瓦陶瓷 纸类 塑料橡胶 纺织物 玻璃 金属 竹木

小项(%) 0.48 21.41 14.24 2.95 8.03 27.82 3.91 2.57 0.45 1.17 0 16.98 大项(%) 21.89 17.19 43.95 0 16.98 垃圾元素特性分析及热值如下:

碳 份 Car=24.82% 氢 份 Har=2.47% 硫 份 Sar=0.13% 氧 份 Oar=9.53% 氮 份 Nar=0.79% 灰 份 Aar=59.14% 水 份 Mar=44.6% 低位发热量 Qar net =4430kJ/kg

4、机组选型及方案 (1) 装机方案

本项目本期的装机方案为:2×225t/d二段式炉排垃圾焚烧炉+1套6MW凝汽式汽轮机和1台QF-6-2汽轮发电机。 (2)焚烧炉型

本工程拟采用结合了逆推加顺推两种技术优势的二段式炉排,目前该炉型已成功地应用在温州的临江、永强等垃圾发电厂,江苏的太仓、江阴等垃圾发电厂。 (3)余热锅炉

本工艺采用的余热锅炉为烟道式、单锅筒自然循环中温中压锅炉。 (4)汽轮机的配置

块本工程汽轮机组配置采用一台6MW的C6-3.43/0.98抽凝式汽轮机配一台QF-6-2发电机。

三、工程分析

1、垃圾焚烧发电工艺流程

本项目垃圾焚烧发电主要由燃烧系统、热力系统、点火及助

燃油系统、自动控制系统等组成。其中垃圾焚烧发电主要工艺流程见下图。

EMBED Visio.Drawing.6

2、类比调查

(1)太仓协鑫垃圾焚烧发电厂环保竣工验收资料 ■类比条件分析及工艺参数

太仓协鑫垃圾焚烧发电厂主要处理太仓市内的生活垃圾,不处理工业固废和医疗废物,因此处理对象相同;焚烧炉为二段往复式炉排焚烧炉,与本项目相同;烟气处理工艺采用半干反应塔+活性炭喷射+布袋除尘装置,与本项目相同;因此具备类比条件。 ■焚烧炉废气类比监测结果

二噁英浓度为0.041~0.118ngTEQ/m3,平均浓度为0.074ngTEQ/m3,平均浓度能够达到欧盟标准(0.1ngTEQ/m3),但监测资料中有一次监测数据超过了欧盟标准,超标18%。分析原因可能主要与太仓协鑫垃圾焚烧发电厂布袋除尘器的除尘效率过低有关,其平均除尘效率仅为99.48%,而其他同类工程除尘效率基本在99.9%以上。除尘效率过低导致布袋对烟气中的二噁英拦截率降低,二噁英以吸附在飞灰及细微的活性炭颗粒表面上的形式排入大气中。 ■恶臭污染物类比监测结果

2006年12月13日至14日江苏环境监测中心在太仓协鑫垃圾焚烧发电厂上、下风向共设4个监测点(上风向对照点1个,下风向厂界3个),监测结果表明,各测点臭气浓度和甲硫醇均未检出,氨和硫化氢的最大浓度均出现在下风向,其中氨的最大浓度点位于在垃圾库和卸料大厅南侧,硫化氢最大浓度点位于垃圾库和卸料大厅东南侧。臭气浓度、甲硫醇、氨和硫化氢均能够达到《恶臭污染物排放标准》(GB14554-1993)中二级标准。 (2) 温州永强垃圾焚烧发电厂环保竣工验收资料 ■类比条件分析及工艺参数

温州永强垃圾焚烧发电厂主要处理温州市内的生活垃圾,不处理工业固废和医疗废物,因此处理对象相同;焚烧炉为二段往复式炉排焚烧炉,与本项目相同;烟气处理工艺采用半干反应塔+活性炭喷射+布袋除尘装置,与本项目相同;因此具备类比条件。 ■焚烧炉废气类比监测结果

2#垃圾焚烧锅炉脱硫除尘系统二个生产周期的烟尘排放浓度分别为3.30mg/N.m3和4.22mg/N.m3;SO2排放浓度38.6mg/N.m3和75.7mg/N.m3;HCl排放浓度分别为32.6 mg/N.m3和36.5mg/N.m3;NOX排放浓度分别为319mg/N.m3 和263mg/N.m3;CO排放浓度分别为2.0mg/N.m3和小于1.0mg/N.m3;Hg排放浓度分别小于0.029mg/N.m3和0.028mg/N.m3;Cd排放浓度均小于0.005mg/N.m3;Pb排放浓度分别为0.111mg/N.m3和<0.088mg/N.m3;烟气黑度均小于1。各项指标均低于GB18485-2001《生活垃圾焚烧污染控制标准》中规定的各污染物排放浓度限值,符合国家排放标准的要求。

除尘效率为99.92%和99.95%,脱硫效率为43.4%和76.4%,脱酸效率为76.8%和83.6%。

垃圾渗滤液类比监测结果 垃圾渗滤液类比监测结果见表3-1和3-2。 表3-1 垃圾渗滤液类比监测结果 (1) 单位:mg/L(除pH外) 采样日期 pH CODCr 氨氮 悬浮物 砷 六价铬

4月 24日 范围 7.22(7.25 2.56(104( 2.95(104 901( 1.40(103 328(382 0.068( 0.169 0.010( 0.011

平均值 / 2.76(104 1.23(103 359 0.101 0.010 4月 25日 范围 7.13(7.44 2.23(104( 6.89(104 408( 990 146(250 0.32( 0.080 0.009( 0.010

平均值 / 3.64(104 758 202 0.055 0.010 两日均值

3.20(104 994 281 0.078 0.010 表3-2 垃圾渗滤液排放废水监测结果(2) 单位:mg/L(除pH、Hg外) 采样日期 硒 氟化物 汞(μg/L) 铅 镉

4月

24日 范围值 0.0012(0.0051 5.22(5.98 2.67(4.63 <0.5(0.58 <0.0

5 日均值 0.0031 5.73 3.55 <0.5 <0.05 4月

25日 范围值 0.0010(0.0031 6.47(10.8 2.28(4.24 <0.5 <0.05

日均值 0.0025 8.06 3.21 <0.5 <0.05 两日均值 0.0028 6.90 3.38 <0.5 <0.05 ■噪声类比监测结果

主要噪声源为设备噪声,主要有空压机、汽轮机、送风机、冷却塔、发电机、引风机等,其源强在74.4~93.7dB(A)范围内。具体见表3-3。 表3-3 主要噪声源监测结果

序号 设备名称 监测结果(dB)

1 空压机 82.4 2 汽轮机 90.9

3 送风机 87.5 4 冷却水塔 74.4 5 给水泵 93.7 6 发电机 90.8 7 引风机 84.2

3、工程污染源汇总 工程“三废”污染物产生和排放量汇总见表3-4。 表3-4 工程“三废”污染物产生量和排放量汇总表

污染物名称 产生量(t/a) 削减量(t/a) 排放量(t/a) 废气 SO2 356.4 267.3 89.1

烟尘 12605.55 12586.62 18.93

NOX 175.92 0 175.92

HCl 106.29 85.04 21.25

二噁英 / / 0.59×10-4

Hg / / 0.044

Pb / / 0.124

Cd / / 2.95×10-3

NH3 0.134 0 0.134

H2S 0.014 0 0.014 废水 废水量 67657 0 67657

CODCr 734.03 729.97 4.06

NH3-N 22.89 22.35 0.54 固 体 废弃物 炉渣 23760 23760 0

飞灰 7920 7920 0

污泥 10 10 0

生活垃圾 13.2 13.2 0

四、选址周边环境及保护目标

1、主要保护目标

(1)环境空气:评价范围内厂界外评价范围内村庄及学校。

(2)水环境:工程拟建地附近的横溪和临安城市污水处理厂纳污水体锦溪,III类水质。 (3)声环境:推荐厂址方案200m内无噪声敏感点。 (4)生态环境:土地、绿化、植被。 表4-1 污染物控制内容与控制目标

控制对象 控制内容 控制目标

大 气

污染物 SO

2、烟尘、NOX、HCl、二噁英类、臭气、NH

3、H2S和重金属的排放浓度和排放量。 控制非正常工况的发生与非正常工况下污染物的排放量。

杜绝风险事故的发生。 污染物达标排放,环境中污染物浓度达到相关标准要求

废 水 pH、COD、BOD

5、NH3-N的排放浓度和排放量 冷却水循环使用,锅炉和冷却水排污水回用,职工生活污水、各类冲洗废水和垃圾渗滤液经处理达相应进管

标准后进污水处理厂 固 体

废弃物 飞灰、炉渣的收集、存贮与处理 固体废物有序分类贮存,不产生淋溶水和扬尘等二次污染物,可回收利用固废回收利用,危险固废按有关规定进行处理

噪声 锅炉、发电机组、各类风机、压缩机、水泵、冷却塔的声源及传播 使厂界噪声达到《工业企业厂界噪声排放标准》(GB12348-2008)中的2类标准要求

表4-2 评价区域环境空气敏感点分布(推荐厂址方案)

序号 敏感点名称 方位 距厂界最近距离(m) 总规模

1 玲珑中学 NW 3600 71名教师、1059名学生,23个班级、3个年级

2 玲珑村 NW 3300 411户、1230人

3 卦畈村 NNW 2800 613户、1978人

4 杨岱村 NW 860 581户、1780人

5 东山村 WNW 2260 765户、2321人

6 上泉村 SW 1360 501户、1523人

7 上甘村 SSE 665 301户、1020人

8 上畔村 E 690 810户、2561人

9 柯家村 NNE 1440 532户、1580人

10 市坞村 NE 3590 263户、780人

2、环境质量现状

◎环境空气质量现状评价

评价区域各测点SO

2、NO2一次浓度和TSP、PM10日均浓度能够满足《环境空气质量标准》(GB3095-1996)中的二类区标准;各测点NH

3、H2S、HCL一次浓度能够满足《工业企业设计卫生标准》(TJ36-79)中“居住区大气中有害物质的最高容许浓度”的限值要求;各测点重金属As、Pb和Hg的日均浓度能够满足《工业企业设计卫生标准》(TJ36-79)中“居住区大气中有害物质的最高容许浓度”的限值要求,Cd日均浓度能够满足前南斯拉夫环境标准要求;二噁英日均浓度能够满足日本标准。总的来说,评价区域现状环境空气质量较好,能够满足相应标准要求。

◎水环境质量现状评价

(1)横溪断面水质均满足《地表水环境质量标准》(GB3838-2002)中的Ⅲ类标准限值。锦溪三个监测断面中,污水处理厂排放口上游除氨氮略有超标外,其余各项评价因子均满足《地表水环境质量标准》(GB3838-2002)中的Ⅲ类标准限值。污水处理厂排放口及排放口下游1000m两个监测断面COD、BOD

5、氨氮均出现较大程度超标,其余各项评价因子均满足《地表水环境质量标准》(GB3838-2002)中的Ⅲ类标准限值。分析原因可能为监测断面位于临安城市污水处理厂排污的混合过程段内,也可能由附近存在工业企业排污或沿岸生活污水排入等因素导致。

(2)厂址拟建地上、下游地下水监测项目中各项监测指标均能够满足《地下水质量标准》Ⅲ类标准的要求,评价区地下水现状水质较好。 ◎声环境质量现状调查

上畔村厂址及其附近敏感点各噪声监测点昼、夜间噪声监测值均能够满足《声环境质量标准》GB3096-2008中的1类标准,拟建厂址周边声环境质量现状良好。 ◎土壤环境质量现状调查

监测点土壤中的汞、铅等重金属含

量均满足《土壤环境质量标准》(GB15618-1995)中的二级标准值,重金属镉含量均出现超标,镉是一种较为典型的由于人类活动进入环境的元素,通常镉超标被认为与电镀、合金、塑料稳定剂以及颜料和电池生产污染有关,但本项目拟建地附近工业企业较少,因此类生产活动造成土壤中镉超标的可能较小,超标原因可能与农田塑料地膜的大量使用有关。土壤中二噁英能够满足加拿大居住区土壤中二噁英的控制标。 总体而言,区内土壤质量较好,基本达到Ⅱ类土壤的要求。

3、规划相符性和选址合理性分析 ◎规划相符性分析

(1)生态环境功能区划的相符性 根据《临安市生态环境功能区规划》,本工程所在区域属于Ⅱ1-20185D02上甘城镇及生态工业发展生态环境功能小区,属于优化准入区,详见附图2。

区内建设开发活动环境保护要求:发展以电子、服饰等环保生态型工业及无污染、少污染的高新科技企业。禁止在非工业区地块新建、扩建、改建产生噪声、烟尘、粉尘、恶臭和有毒气体以及污水无法排入城市污水管网的项目,工业用地应相对集中。本项目为生活垃圾焚烧发电工程,属于环保生态型工业,用地性质已转为工业用地,污水能够进管,因此与生态环境功能区规划基本相符。

(2)与城市总体规划及土地利用规划的相符性 本项目位于城市建成区范围外,《临安市城市总体规划》和《临安市土地利用总体规划》对本项目拟建地的土地利用规划均没有定位,城市总体规划图见附图11。目前,临安市规划局已出具了选址意见,国土局已出具了土地预审意见,因此本项目与城市总体规划和土地利用规划没有冲突。

(3)与环境功能区划符合性

本工程纳污水体锦溪为III类水质多功能区;工程所在区域环境空气功能区划为二类区。 根据本报告书环境影响评价结果,在切实落实各项环保措施情况下,本工程建成投产后正常情况下,主要污染物对周围环境以及各环境保护目标影响较小,区域环境质量的控制目标是可达的,项目建设与环境功能区划要求是相符的。 (4)与临安市环境卫生专项规划符合性 根据《临安市环境卫生专项规划》(2005~2020年),近期规划设置市级大型垃圾填埋场一处(在现有垃圾填埋场厂址附近扩建),设计日垃圾填埋量300吨,总库存量200万立方米;远期为减少垃圾处理场对城市建设区的影响,废除现有垃圾填埋场,在青山湖片区南侧规划一座垃圾焚烧发电厂,日处理能力400吨,采用先进的焚烧发电处理工艺,用地规模6~8公顷,周边应设置不小于10m的绿化隔离带,设立特殊垃圾焚烧炉,至2020年,使城市生活垃圾无害

化处理率达到100%。

由此可见,本项目选址与临安市环境卫生专项规划有所差异。根据向临安市建设局了解,临安市环境卫生专项规划将随着临安城市发展和城市总体规划的调整而进行调整,原因是现有垃圾填埋场距离市区过近,不宜再进行大规模扩建,而垃圾填埋场另行选址又非常困难,至2010年现有垃圾填埋场填满后临安市的生活垃圾将没有去处,因此生活垃圾的减量化势在必行,拟将远期规划建设的垃圾焚烧厂调整为近期建设,初步规划选址位于锦南街道上畔村附近,为此临安

***[JimiSoft: Unregistered Software ONLY Convert Part Of File! Read Help To Know How To Register.]***

程拆迁量小、土地使用价值较低;

厂址周围空旷、居民点少,并有扩建余地。 本项目厂址选择的不利方面 (1)本项目的废渣排放出路问题,区域没有满足垃圾发电厂废渣(特别是危险废物)排放所需的达到要求的城市集中处理场地;

(2)厂址应建在城市的下风向或离城市有一定距离,避免垃圾处理厂废气排放和恶臭污染影响。本项目选址位于临安市区的常年主导风向的下风向,同时位于城市建成区外,但本项目选址与临安市区相对距离较近,约3.5km,且锦城街道的发展方向以向南、向西发展为主。若今后在锦城街道南侧发展大规模居住区,则可能存在环境污染风险,建议对本项目周边相邻地块规划进行控制,不宜规划发展大型居住区。

五、环境影响主要结论

1、环境空气影响评价结论

(1)在有组织废气(SO

2、PM

10、NO

2、HCl、二噁英)正常排放工况下,除NO

2、HCl最大小时地面浓度贡献值超过相应环境质量标准外,其余各类废气污染物最大小时地面浓度贡献值与本底叠加后均能满足相应环境质量标准;针对NO

2、HCl的超标情况必须采取优化排放方式等措施;各有组织排放废气最大日均、年均地面浓度贡献值与本底叠加后均能满足相应环境质量标准。

(2)有组织废气(SO

2、PM

10、NO

2、HCl、二噁英)正常排放,对评价区域内各敏感点SO

2、PM

10、NO

2、HCl、二噁英等废气污染物的小时、日均、年均浓度贡献值均较小,与相应本底浓度叠加后,可满足相应环境质量标准要求。

(3)有组织废气(SO

2、PM

10、二噁英)非正常排放时,SO

2、PM

10、二噁英最大地面小时浓度贡献值高于正常工况,但与本底叠加后仍能满足满足相应环境质量标准要求。 (4)有

组织废气(SO

2、PM

10、二噁英)非正常排放时,评价范围内各敏感点SO

2、PM

10、二噁英最大地面小时浓度贡献值均高于正常工况,但与本底叠加后仍能满足相应环境质量标准。

(5)无组织废气(氨气、硫化氢)正常排放工况下,氨气、硫化氢最大地面小时浓度、日均浓度贡献值均超过相应环境质量标准,但能满足厂界标准要求,考虑到最大浓度落地点位于厂区范围内,可通过设置大气环境防护距离等措施,减轻无组织废气排放对附近居住环境的影响,保护人群健康。氨气、硫化氢最大地面年均浓度与本底值叠加后可满足相应环境质量标准要求。

(6)无组织废气(氨气、硫化氢)正常排放,对评价区域内各敏感点氨气、硫化氢废气污染物的小时、日均、年均浓度贡献值均较小,与相应本底浓度叠加后,可满足相应环境质量标准要求。

环境防护距离:项目环境防护距离为500m。经调查现环境防护距离内无环境敏感点,因此环境防护距离能保证。此外,要求当地规划部门在该防护距离范围内严格控制新居民点的建设。 环境防护距离:

(1)大气环境防护距离

本项目无组织排放源主要为垃圾仓发出恶臭污染物,主要成份为NH3和H2S。垃圾池是一个密闭且微负压的水泥池,垃圾贮坑上部设焚烧炉一次风机和二次风机的吸风口,风机从垃圾贮坑中抽取空气,用作焚烧炉助燃空气,维持垃圾贮坑中的负压,防止坑内臭气外溢。同时,在垃圾贮坑上部设有事故风机,在全厂停炉检修或突发事故的情况下,将垃圾坑内的气体通过事故风机收集后通过烟囱排入大气,避免臭气外溢。卸料大厅设一个进出口,进出口上方设有电动卷帘门防止臭气向外环境扩散,卸料大厅保持微负压。因此,正常情况下基本不排放恶臭污染物,只在垃圾运输车辆进出卸料大厅时存在部分恶臭气体逸出。 根据《环境影响评价技术导则-大气环境》(HJ2.2-2008)中推荐模式的大气环境防护距离模式进行计算,计算参数和结果见表5-1。因此,本项目大气环境防护距离为垃圾库为中心200m。 表5-1 大气环境防护距离计算参数及结果 污染物名称 排放速率 (kg/h) 面源长度 (m) 面源宽度 (m) 源高 (m) 计算结果

(m) NH3 0.27 35 24 7 无超标点

H2S 0.028

200 (2)环境防护距离

根据《关于进一步加强生物质发电项目环境影响评价管理工作的通知》附件“生物质发电项目环境影响评价文件审查的技术要点”:

一、生活垃圾焚烧发电类项目的第6条:根据正常工况下产生恶臭污染物(氨、硫化氢、甲硫醇、臭气等)无组织排放源强计算的结果并适当考虑环境风险评价结论,提出合理的环境防护距离,作为

项目与周围居民区以及学校、医院等公共设施的控制间距,作为规划控制的依据。新改扩建项目环境防护距离不得小于300米。 根据环境风险评价结果,事故情况下焚烧烟气中SO

2、PM10最大落地小时浓度能达标;而HCl和二噁英虽然各敏感点处浓度能够达标,但由于受地形影响,在项目东南侧山顶处出现落地小时浓度的超标,距离烟囱约461m(即距厂界约420m),其他区域落地小时浓度能够达标。事故情况下,垃圾坑内气体通过事故风机收集后通过烟囱排入大气,预测结果显示最大落地点浓度能够达标。因此,在大气环境防护距离200m的基础上,适当考虑环境风险评价结论,取本项目环境防护距离为500m,目前在该范围内目前不存在村庄等敏感点。 建议相关规划部门对本项目500m范围内的用地进行规划控制,禁止在该范围内建设居住、学校、医院等敏感建筑。

2、水环境影响评价结论

环评中要求各类冷却水循环使用,冷却塔排污水、锅炉排污水、化水车间化学废水处理后纳入中水系统并回用,本项目建成投产后产生的职工生活污水与垃圾渗滤液、各类冲洗水经处理后排入临安城市污水处理厂。由于本项目污水排放量较小,因此本项目污水由临安城市污水处理厂处理达标后排放,对纳污水体锦溪的贡献值较小,锦溪水质基本能够维持现有状况。 项目生产用水取自横溪,职工生活用水则来自自来水管网,本项目不开采地下水。在设计中对收集垃圾渗滤液的滤液池按照处置危险废物的防渗要求,采取各项防渗措施,确保不污染地下水。

3、声环境影响评价结论

根据预测,厂界噪声级昼间均可以达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中的2类标准,夜间均出现不同程度超标。北厂界夜间超标8.8dB,主要受综合水泵房噪声影响,东厂界夜间超标5.3dB,超标原因是主要厂房集中布置在厂区偏东侧,西、南厂界因距离主要噪声源相对较远,夜间超标程度相对较小(<4 dB) 。由于项目周边居民距离厂界较远(大于665m),且有山体阻隔,一般不会造成噪声扰民现象。但对于厂界噪声超标现象,应对主要声源进行进一步治理,确保厂界噪声达标。本环评要求综合水泵房由半地下布置改为地下布置,其他高噪声车间须加强车间墙体的隔声和吸声效果,确保隔声量在15dB以上,同时在4个厂界处加强绿化降噪。在进一步采取了以上降噪隔声措施后,各厂界噪声能够达到2类区标准。 此外,余热锅炉不定期的蒸汽放空噪声的噪声级高(噪声级在110dB以上),噪声影响范围远,但排气放空时间短,相应影响时间也短。在事故排放时间内,夜间超1类区标准距离超过2km

,对周围环境将产生一定程度影响,因此要求企业对排气管设置消声器(消声量在25dB以上),以减少对周围环境的影响。放空时间一般较短,通过控制放空的时间和周期,有计划的选择在白天放空,同时公告附近居民,减小噪声对敏感目标影响。

4、固体废弃物处置影响分析结论

项目建成投产后产生的炉渣外运至附近水泥厂和砖瓦厂综合利用综合利用,目前建设单位已与板桥五金建材厂签订处置协议;飞灰经鉴定若符合《生活垃圾填埋场污染控制标准》(GB16889-2008)中第6.3条规定,则可送至临安垃圾填埋场填埋处置,如不符合则由杭州大地环保有限公司妥善处置。同时本环评中针对性提出了相关防治措施,确保产生的固体废弃物在贮存、利用或运输过程中,不外溢进入水体、空气而造成二次污染。

5、事故风险影响分析结论

项目建成投产后可能存在的环境风险主要来自于以下几个方面:废气、废水等治理设施因故不能运行,使得大量污染物直接排放;有毒有害工业垃圾混入生活垃圾中焚烧;工厂处于较长时间的停机状态,垃圾得不到及时的处置。最可能出现的环境风险之一就是各治理设施不能正常运行所导致的事故排污风险。污染物事故排放对周边环境会造成较为严重的影响。故项目在建成投产后须加强管理,严格落实本环评中提出的各项风险防范措施,杜绝各类事故的发生。

6、公众参与结论

依据《环境影响评价公众参与暂行办法》中的相关要求,建设单位在确定了本项目的环评单位之后,于2009年1月12日在《今日临安报》发布第一次公示,公示日期为2009年1月12日~2009年1月23日;第二次公示采用了媒体与附近村庄告示栏相结合的方式。于2009年2月16日在《今日临安报》发布公示相关信息(见附件),公示时间为2009年2月16日~2月27日,同时在附近的上畔村、上甘村、杨岱村公告栏张贴公告。根据临安市环保局《临安垃圾焚烧发电项目环评报告书公示证明》,公示期间未收到公众任何意见和建议。

在公众调查过程中,本项目投产后公众担心的主要环境问题为大气污染,关于本次项目的总体态度,大多数被调查者表示支持,占总调查人数的77.2%,其余被调查者表示无所谓,没有出现持反对意见。被调查团体建议切实做好周围区域垃圾收集工作,厂址选址考虑垃圾运输成本;被调查个人建议本项目应在污水处理、烟气处理方面做到达标排放。

7、环保投资

项目环境保护投资主要由焚烧废气处理设施、废水综合利用、灰渣处理、噪声防治、环境监测、绿化等方面组成。具体环保投资分项估算见表13.4-1。环保投资估算为2871.9万元。约占总投资的

15.1%。

六、对策措施

营运期污染控制对策与措施:

1、废气污染防治对策与措施 二氧化硫、烟尘控制措施:

本项目配备半干法反应塔+活性炭喷射+布袋除尘器烟气净化装置对产生的焚烧烟气进行治理。 该工艺基本原理是利用干反应剂CaO或熟石灰粉Ca(OH)2原料制成Ca(OH)2溶液,由旋转的喷嘴将Ca(OH)2溶液喷入反应器中,形成粒径极小的液滴,烟气与石灰浆液滴充分接触,吸收焚烧烟气中的SO

2、HCl及SO3等生成固态颗粒,同时在高效布袋除尘器前喷入活性炭吸附焚烧烟气中的微量二噁英及重金属致癌物质,再利用高效布袋除尘器除去焚烧烟气中的固体颗粒。

目前省内垃圾发电厂普遍应用的半干法烟气处理装置,采用该类烟气净化装置的同类型垃圾焚烧发电厂运行效果表明,经治理后排放烟气中的SO

2、烟尘等的排放浓度均低于《生活垃圾焚烧污染控制标准》(GB18485-2001)中的标准限值。

本次设计对半干法反应塔进行改进,将该装置原有的固定式喷枪改为旋转喷雾器,使石灰浆的雾化效果更好,脱硫和脱酸效率将会得到更大的提高,性能指标脱硫效率达85%。 氮氧化物控制措施:

因垃圾焚烧炉属于中温燃烧,通过炉内温度的控制,可以降低NOX在锅炉出口的浓度,排放浓度可满足《生活垃圾焚烧污染控制标准》(GB18485-2001)标准限值,故不设置专门的NOX抑制措施,但预留脱硝空间。 二噁英控制措施:

(1)控制炉膛内或在进入余热锅炉前烟道内的烟气温度不低于850℃,烟气在炉膛内的停留时间不小于2s,O2浓度不少于6%,并合理控制助燃空气的风量、温度和注入位置,也称“三T”控制法。有利于抑制PCDD/PCDF的生成及生成的PCDD/PCDF的完全分解。缩短烟气在处理和排放过程中处于300~500℃温度域的时间,控制余热锅炉的排烟温度不超过250℃左右(本项目设计排烟温度为210℃)。

(2)配备半干法烟气净化装置去除焚烧烟气中的二噁英。由于二噁英是细微的有毒物质,即使在焚烧炉中完全焚烧后仍会有微量的二噁英产生。二噁英为高沸点物质,气化压力很低,在布袋除尘器附近烟气(温度为150℃~180℃)中的二噁英为细小颗粒,当烟气穿过布袋除尘器时,二噁英便会得到过滤并逐渐积聚在粉层上,同时烟气净化装置在布袋除尘器前加喷活性炭,可对二噁英起到吸附作用,吸附后的活性炭被布袋除尘器过滤下来,则焚烧烟气中所含的大部分二噁英可被去除。

(3)将锅炉的出口烟气急冷降至200℃左右,避免烟气再度形成二噁英,把布袋除尘器前的烟气入口温度控制在150℃以下,使二噁英更易去除。二噁英在常温下以固态存在,烟气温度越低,越容易由气化状态变

为细小颗粒物,更易在布袋除尘器中去除。表11.2-3为日本三菱重工对几个商业焚烧厂中试验研究的数据。由测试结果可知,当烟气温度从200℃降低到150℃后,布袋除尘器出口测得的二噁英浓度进一步降低。

(4)在布袋前设置的活性炭喷射装置,改变原来靠负压吸入的方式,采用鼓风喷射的方式,使活性炭能够更加充分的混合,增强活性炭的吸附效率。 恶臭污染物的控制措施: (1)垃圾库房恶臭强度较高,应保证焚烧炉一次送风系统的正常运行,使垃圾库房始终处于负压状态,控制垃圾库房恶臭气体的外泄,并且通过将恶臭气体燃烧处理,以消除恶臭。 (2)垃圾运输车将生活垃圾卸入库房时须开启垃圾库房大门,此时将有部分恶臭气体的泄出,垃圾库房大门处应设置双层内幕以有效控制恶臭气体的排放。

(3)垃圾运输车应采用密封型的车辆,运输过程车厢严禁敞开,禁止车厢破损、密闭性能不好有可能导致撒漏的垃圾车运输垃圾,以减少运输过程中恶臭气体对沿线的影响;当地环卫部门在制定垃圾运输路线时应尽量绕开居住区,尤其是密集居住区。在厂界附近应设置绿化带,以阻挡垃圾运输车散发的恶臭气体。

(4)垃圾渗滤液处理站产生的恶臭气体构筑物(调节池、厌氧池)均加盖密闭,并吸风排至垃圾坑负压区。

其它大气污染防治措施:

(1)本工程烟气净化系统采用采用国际主流的半干法反应塔+活性碳喷射+布袋除尘器除尘对烟气中的颗粒物、酸性气及重金属体进行治理,应加强对烟气净化设施的维护管理,制定严格的操作规程,提高操作人员的业务素质,加强教育提高其工作责任心,以确保烟气净化设施的正常运行,保证颗粒物、酸性气体和重金属的去除率。

(2) 灰库保持密闭,库顶设置布袋除尘器,防止粉尘外逸对周边环境造成影响。固化后的飞灰及时外运,外运运输应采用密封罐车,避免造成飞灰的二次扬尘污染。 (3)活性炭粉仓设置布袋除尘器,防治粉尘外逸。

(4)工程设计中采用先进的DCS中央控制系统及以太网,使全厂的生产能够在统一协调指挥下运行。

(5)加强厂区内的绿化工作,特别是在垃圾库房、灰渣库等四周种植树木,种植树种以常绿树木为主,如冬青、雪松、香樟及高大的水杉等,以形成上下立体绿化,绿化高度可达3~5米,在美化环境的同时,还可起到抑尘降噪的作用。

2、水污染防治对策

本项目渗滤液拟采用场内预处理+排入城市污水处理厂的处理方式。沥液进渗沥液处理站处理后达到临安城市污水处理厂进厂水质标准,即pH6~

9、CODcr350mg/l、BOD5200mg/l、SS200mg/l、氨氮30mg/l,经加压后输送至临安城市污水处理厂。

(1)渗滤液和各类冲洗废水的处理

根据本工程渗滤液的水质、水量特点和处理要求,以及国内垃圾焚烧厂的渗滤液处理工程实践,建议本项目渗滤液处理设施规模为200m3/d,渗沥液处理系统由三部分组成,包括:初沉池、调节池、厌氧反应器、膜生化反应器MBR系统。设计进水浓度为CODcr50000mg/L、氨氮1500mg/L,各主要工艺单元处理效率见表6-1。由表可见,出水能够达到临安城市污水处理厂进管标准,即CODcr350mg/L,氨氮30mg/L。 表6-1 各主要工艺单元处理效率

单元 项 目 CODcr(mg/l) NH4-N(mg/l) 渗滤液初沉池 进水 50000 1500

出水 35000 1500

去除率 30% / 渗滤液调节池 进水 35000 1500

出水 28000 1350

去除率 20% 10% 冲洗废水调节 进水 28000/473 1350/15.5

出水 9786 467 去除率 / / 厌氧反应器 进水 9786 467 出水 1957 93

去除率 80% 80% 反硝化池 进水 1957 93 出水 1761 84

去除率 10% 10% 硝化池 进水 1761 84

出水 528 34

去除率 70% 60% 超滤装置 进水 528 34

出水 264 17

去除率 50% 50% 此外根据类比调查,太仓协鑫垃圾焚烧发电厂就是采用了以上的渗滤液处理工艺,根据江苏省环境监测中心于2006年12月12日至12月13日对废水预处理设施出口的监测数据显示(表6-2),由表可见,污水经预处理后出水能够达到临安城市污水处理厂的进厂标准,第一类污染物出水浓度能够达到《污水综合排放标准》(GB8978-1996)中第一类污染物最高允许排放浓度,因此本项目渗滤液和各类冲洗废水预处理工艺采用厌氧反应+膜生化反应组合工艺是可行的,污水经预处理后能够满足相应的进管标准。

表6-2 太仓协鑫废水预处理设施水质监测结果

监测位置 日期 日均值

pH SS CODcr BOD5 总磷 氨氮

废水预处理设施出口 12月12日 7.55~7.58 87 158 9.58 0.16 5.74

12月13日 7.58~7.59 166 214 15.0 0.29 18.6 临安城市污水处理厂进厂标准 6~9 200 350 200 3 30 监测位置 日期 日均值

氟化物 总砷 总铅 六价铬 总镉

废水预处理设施出口 12月12日 0.66 3.05×10-3 0.09 0.294 0.01L

12月13日 0.68 4.04×10-3 0.09 0.324 0.01L 临安城市污水处理厂进厂标准 / 0.5* 1.0* 0.5* 0.1* *注:第一类污染物执行《污水综合排放标准》(GB8978-1996)中第一类污染物最高允许排放浓度。

为防止渗沥液渗漏,避免造成重金属及其它污泥物对地下水及土壤的二次污染,对垃圾贮存坑、渗滤液储水池以及事故收集池底部及四壁采取防渗漏的措施,依据建筑材料的渗透系数和厚度,采用复合衬层或双人工衬层,衬层使用HDPE(人工合成材料:高密度聚乙烯),以免污染地下水。

为预防垃圾渗滤液污水处理发生故障等应急情况,垃圾池侧设渗滤液收集池,收集池容量不少于1000m3

,足够有5天收集容量。 (2)其他生产废水和生活污水处理

生产废水主要是冷却塔排污水、锅炉排污水、化学废水,化学废水经中和处理后和冷却塔排污水及锅炉排污水一起纳入中水回用系统,回用于车间和道路冲洗水、尾气处理系统用水、绿化等。本项目生活污水经化粪池预处理后,纳入市政污水管网。 (3)污水管网的建设

根据调查,目前临安市城市污水管网

***[JimiSoft: Unregistered Software ONLY Convert Part Of File! Read Help To Know How To Register.]***

汽口、主蒸汽母管排汽口都装有小孔消声器;发电机和水泵等设备外加噪音隔离罩;风机进出口、水泵进出口加装橡胶接头等振动阻尼器;水泵等基础设减振垫,从传播途径控制噪声的传播。 提高自动控制水平,风机、水泵等高噪声设备的参数检测和自控运行做到无需要人员在现场工作。检修时应对有关人员的工作时间作出相应规定以减少人员受噪声危害。 主厂房合理布置,噪声源相对集中,控制室、操作间采用隔音的建筑结构。

总图合理布局并加强厂区绿化,充分利用厂内建筑物的隔声作用,利用绿化带降低噪声,减少噪声对周围环境的影响。

车辆产生的噪声,可以通过加大车辆行驶管理力度,如限制鸣笛和车速来降低交通噪声。 以上措施可使车间噪声水平符合《工业企业设计卫生标准》(GBJ86-97)所规定的限值。再经过厂房建筑的隔声、空气的吸收以及噪声传播过程中的衰减,厂界噪声水平能符合《工业企业厂界噪声排放标准》(GB12348-2008)2类区所规定的限值,对环境不会产生大的影响。评价具体建议如下:

(1)锅炉安全阀排气系统降噪措施

①在排气口安装小孔喷注、节流降压型消声器; ②将锅炉蒸汽的排空口背向厂前区。 (2)风机噪声控制措施

①在风机进出口安装使用阻性或阻抗复合性消声器; ②加装隔声罩;

③在风机与基础之间安装减振器,并在风机进出口和管道之间加一段柔性接管; ④确保消声器和隔声罩综合降噪量不小于20dB。 (3)汽轮发电机组噪声控制 ①选用低噪声的发电机组;

②在进排气管道上装设阻性消声器; ③机组四周安装隔声箱体(罩); ④机座下安装隔振支承;

⑤发电间采用吸声和隔声设计,在房间顶部屋顶吊设吸声体,并在墙体表面敷放吸声材料,确保车间墙体隔声量不低于15dB。 (4)空压机噪声控制 ①在进气口

装抗性消声器; ②机组加装隔声罩;

③避开共振管长度,并在管道中心加设孔板进行管道防振降噪; ④在贮气罐内适当位置悬挂吸声锥体,打破驻波降低噪声。 (5)水泵噪声控制措施

①水泵房半地下布置改为地下布置; ②在墙体与基础之间设置减振器;

③水泵房采用吸声和隔声设计,在房间顶部屋顶吊设吸声体,并在墙体表面敷放吸声材料。 (6)管路系统噪声控制 ①选用低噪声阀门;

②在阀门后设置节流孔板; ③在阀门后设置消声器;

④合理设计和布置管线,设计管道时尽量选用较大管径以降低流速,减少管道拐弯,交叉和变径,弯头的曲率半径至少5倍于管径,管线支承架设要牢固;靠近振源的管线处设置波纹膨胀节或其他软接头,在管线穿过墙体时最好采用弹性连接; ⑤在管道外壁敷设阻尼隔声层。

从垃圾发电厂的平面布局来看,由于发电机组、引风机、松风机、锅炉等是主要噪声源,将主厂房布置在周围没有敏感点的厂区东侧是较合理的。需对发电机组、风机和锅炉等作强化隔声、吸声处理,并充分利用建筑物进行遮挡隔声,加强厂区绿化,以保证厂界噪声达标和不对附近农居产生影响。 (7)冷却塔噪声控制

①在冷却塔顶增加一截扩散段,可降低通风机噪声;有效控制冷却塔的落水声,在水面上张布细眼在右网,水面漂浮透水降噪聚酯氨酯软体塑料;

②冷却塔采用低噪声风机和低噪声电动机,如采用低转速电动机,噪声级可降低6~12dB; ③冷却塔设置隔声屏障,隔声量不低于10dB。

4、固体废弃物防治对策

本工程产生的固体废弃物主要是焚烧炉渣、飞灰、污水处理污泥和职工生活垃圾,根据其性质,炉渣做为一般性固废可进行填埋处置或综合利用,而飞灰根据《生活垃圾焚烧污染控制标准》(GB18485-2001)标准,应按危险废物处理。 (1)炉渣的处理

该项目产生的大量炉渣(约16%),炉渣浸出成份测定结果均在《危险废物鉴别标准—浸出毒性鉴别》(GB5085.3-1996)的标准限值之内,经分选出金属后,根据《生活垃圾焚烧污染控制标准》(GB18485-2001),可以被当成一般的固废,再进一步分选,可以被广泛地用于建材、填方、造路。 (2)飞灰的处理

本项目垃圾焚烧炉飞灰应通过危险废物鉴别,如符合《生活垃圾填埋场污染控制标准》(GB16889-2008)中第6.3条规定,则可固化后送至填埋场填埋处置,如不符合则按危险固废委托杭州大地环保有限公司妥善处置。 (3)本项目厂内生活垃圾和污泥处理

本项目厂内的生活垃圾和污泥由项目自行收集焚烧处理。

施工期污染控制对策与措施:

1、施工扬尘污染控制对策 控制施工期

扬尘的主要措施有:(1)洒水抑尘;(2)限制车速;(3)保持施工场地的清净;(4)避免大风天气作业。

2、施工噪声控制措施

施工期的噪声主要通过减少高噪设备的使用;合理安排施工时间和加强对一线操作人员的环境意识教育来控制。在施工过程中尽可能选用机械噪声较低的设备,对于必须使用的设噪设备,要尽量安排在白天施工,但尽可能避开教学时间,并有必要在市环保登记备案,若因施工必要,必须连续施工(如连续灌桩)则需事先申报环保局,经批准方可使用,一般情况严禁夜间施工。另一个方面,要加强一线操作人员的环境意识,对一些零星的手工作业,如拆装模板、装卸建材,尽可能做到轻拿轻放,并辅以一定的减缓措施,如铺设草包等。表6-3为《建筑施工场界噪声限值》(GB12523-90),各施工点必须严格按照该限值执行。在夜间严格禁止各种打桩机的使用。

表6-3 不同施工阶段场界噪声限值

序号 施工阶段 主要噪声源 昼间 夜间

1 土 石 方 推土机、挖掘机、装载机 75 55 2 打 桩 各种打桩机 85 禁止施工

3 结 构 混凝土搅拌机、振捣机、电锯 70 55 4 装 修 吊车、升降机 65 55

3、施工期水污染的防治措施

对于钻孔灌注桩打桩过程中产生的泥浆水,应设置临时沉砂池进行沉淀,上清液可排放,剩余泥浆应干化后用于厂区填方或运往垃圾填埋场填埋。 严禁将各类生活废水和生活垃圾任意排放和丢弃,充分利用现有的污水收集和垃圾收集系统,各类生活污水(包括冲洗水)必须进入化粪池进行处理,生活垃圾要集中定点收集,纳入临安市的生活垃圾清运系统,不得任意堆放和丢弃,以减少对环境的影响。

4、施工固体废弃物污染防治措施

建设施工期间产生的建筑垃圾必须按相关管理条例有关规定进行处置,不能随意抛弃、转移和扩散,特别是不能倒入附近的排洪冲沟及河道内,造成水土流失,应及时运到指定点(如垃圾填埋场)或作铺路基等处置。

5、施工期生态减缓措施 (1)项目填方取土的地方,还须尽快加强地表的绿化植被,以确保因裸露和雨水冲刷而引起水土流失。

(2)在工程总体规划中必须考虑工程对生态环境的影响,将生态损失纳入工程预算;在工程勘察、设计、施工过程中,除考虑工程本身高质、高效原则以外,也必须考虑减少生态损失的原则。

(3)施工期间要尽力缩小施工范围,减少生态环境的暂时损失,减少工程对生态的破坏范围。 (4)提高工程施工效率,缩短施工时间,同时采取措施,减少裸地的暴露时间。

(5)严格管理施工队伍,对施工人员、施工机械和施工车辆应严格按规定的路线行驶,不得随意破坏非施

工区内的地表植被。

(6)杜绝施工现场的油泥等污染物随处堆放和填埋,生活垃圾需设临时垃圾箱,由当地环卫部门定期进行清运。在施工完成,准备从施工现场撤出的同时,应及时清除施工场地滞留下的各类施工垃圾和废物等。

6、水土保持措施

1、Ⅰ区:建筑物工程防治区 本区防治责任面积9500平方米。方案考虑临时堆土作临时防护措施,以拦挡建筑物基础开挖过程中产生的水土流失。

建筑物基础工程共开挖土石方约2080方米,临时堆置在建筑物周边,待基础完成后全部回填。回填土在建筑物周边呈线型分布,需采取临时覆盖和临时拦挡措施进行防护。设计堆土断面为梯形,堆高2.5米,内外边坡均为1:1.5,堆土断面约为5-6平方米。装入表土的填土草包围护在建筑物占地区下边界,填土草包顶宽0.5m,高1m,内外坡均为1:0.2,填土草包填料取自临时堆土。为提高土体抗侵蚀能力,临时堆土填筑完成后,采用机械对临时堆土表面进行拍实,提高堆土面层土地密实度,遇雨天在堆土表面用彩条布覆盖。主体工程完工后,拆除填土草包,草包袋集中清运出场,土方取出用于工程区回填。工程共修建填土草包约310m3,拍实表层土体约2080立方米,彩条布1500平方米。

2、Ⅱ区:道路及广场工程防治区

本区防治责任面积18400平方米。包括道路、广场、绿化和管线工程。主体工程设计中采取的措施考虑较全面,基本能够满足水土保持要求。但在施工临时排水措施考虑欠缺,因此方案提出相应的防治措施,同时结合水土保持相关法律法规,提出水土保持要求。 (1)施工期排水

项目区已设计永久排水系统,方案新增施工期临时排水措施,设置简易排水沟、沉沙池,防止施工期工程区内排水不畅,造成裸露填方在降雨等作用下发生水土流失,水流无序排放,挟沙排入下游河道,影响周边环境。 ① 排水沟设置

工程区为方状,项目区内汇流面积较小,内以漫流为主,故工程区排水沟沿道路及冲沟纵向和横向设置。临时排水沟采用土质(梯形断面,边坡1:0.5,断面尺寸为30cm×30cm,人工开挖排水沟,边坡夯实,满足2年一遇洪水要求。整个项目区共设置排水沟687米,开挖土方103立方米。 ② 沉沙池设置 根据工程区情况,排水系统规模较小,经计算沉沙池尺寸为2米×1.5米×1.5米。矩形断面,采用标准砖砌筑,衬砌厚度25cm。整个项目区共设置沉沙池4座。位于项目区的道路边。 施工中应加强巡查维护,发现排水系统损坏应及时修补,定期清理排水沟和沉沙池内淤积的泥沙,清理出的泥沙运输至临时堆土场,晾晒干化后用于区域绿化区填筑。主体工程完工后,

用于排水沟和沉沙池占地范围的回填平铺压实。 (2)管线开挖临时堆土防护

管线工程开挖的土石方在道路工程占地范围内临时堆放,用于管道敷设后的回填。施工期间,大量的土石方被开挖、扰动和堆积,破坏了原来的稳定和平衡状态,使土体抗侵蚀能力降低,水土流失加剧。

管线工程为线形工程,根据对部分在建工程的实地调查,若不及时采取防护措施,临时堆土将产生大量水土流失,严重影响周边环境。由于管线工程施工期较短,方案设计对临时堆放的土石方采用彩条布临时覆盖。 管线工程共开挖土石方2920立方米,全部用于管线沟槽和周边场地回填。管线线工程施工期短不采用草包防护。回填前在管线沟槽两侧分别堆置,需采取临时覆盖措施进行防护。设计堆土高1.5m,内外边坡均为1:1.5,为提高土体抗侵蚀能力,临时堆土填筑完成后,采用机械对临时堆土表面进行拍实,提高堆土面层土地密实度。考虑彩条布可周转2~3次,管线工程临时堆土覆盖使用彩条布与Ⅰ区共用。土体拍实2920立方米。

3、Ⅲ区:施工场地防治区

施工场地防治区面积1600平方米。为确保施工区排水畅通,减轻由于降雨等形成的地表径流对工程区扰动地表的侵蚀,方案设计在施工场地外侧开挖排水沟,与设置的沉沙池相连将水流淀后,将施工场地内集水排入布置的施工期临时排水沟。临时排水沟采用土质(梯形断面,边坡1:0.5,断面尺寸为30cm×30cm,人工开挖排水沟,边坡夯实,满足2年一遇洪水要求。施工区共设置排水沟160米,开挖土方24立方米。工程结束后对场地进行平整,恢复设计功能。

4、Ⅳ区:临时堆土场防治区

临时堆土场防治区主要为表土临时堆放场防治责任范围为2845平方米,均为项目建设区,主体工程设计中主要采取了表土剥离、植被恢复、硬化地面等水保措施,方案新增水保措施主要为临时堆土拦挡、施工临时排水、土地平整等。 (1)临时堆土场防护

本项目共设置1处临时堆土场,堆土面积2845平方米,堆土量5200立方米,用于后期项目区绿化覆土。表土临时堆土较为松散,土体抗侵蚀能力弱,在降雨等作用下易发生水土流失,且堆置时间较长,约为0.9年,为防治施工期间表土发生大量水土流失,方案设计对表土进行修整,表面撒种狗牙根草籽。设计堆土高度不大于2.5m,边坡1:1.5,坡脚采用填土草包进行防护,填土草包顶宽0.5米、高1米,底宽0.9米。临时堆土场共修筑填土草包护脚250米,计188立方米。填土草包填筑土源取自临时堆放的表土,完工后,拆除填土草包,拆除土方用于绿化覆土,草包袋统一回收运输出场。 (2)排水及

场地平整

其次在临时堆土场四周开挖临时土质排水沟(0.3米×0.3米),长约250米,与Ⅱ区的临时排水沟、沉沙相连排出项目区。排水沟土方开挖38立方米。

在施工结束后拆除拆除填土草包,进行场地平整,恢复表土绿化。

5、Ⅴ区:边坡工程防治区

主体工程已考虑边坡防护、绿化等措施。方案新增措施主要为排水。在边坡坡脚设置临时排水沟,断面(0.3米×0.3米),长约780米,土方开挖117立方米。并役置沉沙池4座。沉沙池尺寸为2米×1.5米×1.5米。矩形断面,采用标准砖砌筑,衬砌厚度25cm。

6、建设区施工管理措施及要求

结合水土保持相关法律法规的规定,对工程建设防治区施工提出以下要求: 1)场地填筑采用水平分层填筑,定期定时做好洒水防尘工作。 2)开挖、填筑等施工活动尽量避开雨日。

3)建设单位尽量做好土石方协调工作,开挖土石方尽可能利用,严禁任意倾倒,做到有土石方堆置就有防护。

4)为了保证土石方调运的交通畅通,施工单位严格按照施工方案规定的施工时序进行施工,合理安排施工组织,力求施工顺利进行,同时建设单位和监理单位要加强现场组织管理,切实做到文明施工。

5)切实保证遵循“三同时”的原则,做到水土保持防护工程与主体工程施工同步进行。

7、主要工程量

Ⅰ区:填土草包310立方米,拆除填土草包310立方米,土体拍实2080立方米,彩条布1500平方米。

Ⅱ区:排水沟土方开挖103立方米,沉沙池4座,土体拍实2920立方米。 Ⅲ区:排水沟土方开挖24立方米,场地平整1600平方米。

Ⅳ区:填土草包188立方米,拆除填土草包188立方米,排水沟土方开挖38立方米,场地平整2845平方米,撒种狗牙根草籽3000平方米(考虑坡度)。 Ⅴ区:排水沟土方开挖117立方米,沉沙池4座。

事故污染控制对策:

生活垃圾焚烧过程发生故障的原因较多,如喷嘴堵塞、仪器、设备损坏等。出现事故情况,会导致废气污染的排放量增大,对环境产生影响,为此要做好以下事故防范措施:

(1)加强对设备的维修管理,使其在良好的情况下运行,严格按规范操作,尽可能避免事故性的排放。特别要注意保证尾气处理设施的正常运行,定期检查石灰浆喷枪的运行情况,发现堵塞,及时更换和疏通。建议在线监测系统与石灰浆喷入系统及锅炉主控系统联网,一旦出现超标现象能够自动采取措施,提高石灰石的投加量。

(2)垃圾焚烧炉须安装在线监测仪,同步监测SO

2、HCl、烟尘等的排放浓度,一旦发现污染物排放浓度超标,可及时发现并采取相应的补救措施。

(3)当地环保部门要加强监管,定期对垃圾发电厂进行例行监测和抽查

,发现问题及时处理。 (4)厂内设废水事故贮存池,对锅炉检修等情况下的垃圾渗滤液进行暂时贮存,并采取加盖密封等措施。事故贮存池底部及四壁均采取防渗措施。 (6)厂方应设置专职的环保管理机构,配备专职环保管理人员,加强污染治理设施的日常管理,避免出现风险事故,同时加强日常培训,在出现风险事故的情况下,可及时采取有效措施,将风险事故的影响降至最低。

主要污染防治措施及效果: 污染防治措施清单见表6-4。 表6-4 污染防治措施清单

分类 措施名称 主要内容

施工期 废气 施工期在大风干燥天气实施洒水进行抑尘,并保持场地清洁和限制车速。减少裸露地面,及时覆土回填。

废水 设置临时沉砂池,对钻孔灌注桩泥浆水进行处理。

设置临时化粪池,利用周围现有的排水设施,对施工现场的生活污水进行处理后才能排放。

噪声 严禁夜间打桩,采用低噪音设备。

固废 合理处置废土石方,防止二次污染。

施工管理 (1)打桩建议采用灌注桩机或液压桩机; (2)加强施工管理,严格控制夜间施工; (3)开展施工期环境监理。 营运期 废 气 垃圾焚烧炉

烟气 (1)采用半干法反应器+活性炭喷射+布袋除尘器;脱硫率≥85%,除尘率≥99.9%,HCl去除率≥80%;设置永久采样孔和监测用平台;

(2)必须安装在线监测系统,对SO

2、HCl、烟尘等进行监测; (3)必须设置炉温自动监控系统,焚烧炉温度控制在850℃以上;

(4)严格执行“三T”措施,设置炉内温度850℃以上,停留时间2秒以上及合适的湍流度,焚烧炉渣热灼减率≤5%;焚烧炉出口烟气中含氧量6~12%之间;

(5)对温度、停留时间、湍流度、含氧量、活性炭加料、袋式除尘器等进行工艺连锁,DCS控制;

(6)提高烟囱排放高度为80m,并预留脱硝措施;

(7)每年由企业委托有资质单位进行两次例行检测,其中一次必须检测二噁英。

臭气 (1)垃圾库房、垃圾输送系统采用全密闭防渗漏设计,助燃空气由

一、二次风机从垃圾库上部引入,形成负压,以免臭气外逸; (2)垃圾运输车必须采用专用的压缩式密封垃圾车,并保持正常车况,运输路线尽量远离居民点;

(3)渗滤液处理构筑物应加盖密封处理,并抽风至垃圾储坑;装卸平台密闭,进出门设风帘。

粉尘 灰库保持密闭,库顶设置布袋除尘器;活性炭粉仓,设置布袋除尘器;防止粉尘外逸对周边环境造成影响。固化后的飞灰鉴别后若符合《生活垃圾填埋场污染控制标准》(GB16889-2008)第6.3条规定则填埋处置,若不符合则委托杭州大地环保有限公司处置,外运运输应采用密封罐车,避免造成飞灰的二次扬尘污染。

营运期 废 水 冷却

水 冷却水采用闭式循环,定期对凝汽器进行清洗,基本不排污。

废水 本项目渗滤液和各类冲洗废水目前考虑采用场内预处理+排入城市污水处理厂的处理方式。渗滤液和各类冲洗废水进渗沥液处理站处理后达到临安城市污水处理厂进厂水质标准,经加压后输送至城市污水处理厂,设计废水预处理能力200m3/d。设置事故应急池1000m3。废水应安装在线监测系统,对出水COD、氨氮进行监测。废水处理全部构筑物加盖。

营运期

噪 声 选型和安装 (1)选择低噪声设备;

(2)锅炉、发电机房、空压机房、水泵房壁衬隔声吸声材料; (3)蒸汽放空管及减压阀设小孔消音器,并严格禁止夜间排汽; (4)机炉集中控制室内,门窗处设置隔声装置;

(5)烟道与风机接口处,采用软性接头和保温及加强筋; (6)风机、空压机等设备设置消声器,并加装隔声罩; (7)冲管时需装设消声器;

(8)水泵房改为地下布置。 营运期

固 废 垃圾焚烧炉灰 本项目固化后的飞灰鉴别后若符合《生活垃圾填埋场污染控制标准》(GB16889-2008)第6.3条规定则填埋处置,若不符合则委托杭州大地环保有限公司处置。

垃圾焚烧炉渣 一般固废,综合利用。

生活垃圾 收集后厂内焚烧处理。

废水处理污泥 收集后厂内焚烧处理。

绿化与环 境 防 护 / (1)定期在垃圾库内及厂区道路喷洒灭虫药水,防止蚊蝇滋生; (2)搞好厂区绿化,设置一定宽度的绿化隔离带;

(3)环境防护距离为500m,防护距离内控制规划,禁止建设敏感建筑。

主要污染防治措施对策预期效果见表6-5。

表6-5 主要污染防治措施对策一览表

分类 措施名称 主要内容 预期效果

废气 焚烧炉废气处理装置 配备半干法烟气净化装置,焚烧烟气由80m高的烟囱高空排放。 脱硫率达到85%以上,除尘效率达到99.9%以上,脱酸效率达到80%以上。垃圾焚烧炉废气排放达到《生活垃圾焚烧污染控制标准》(GB18485-2001)。 二噁英排放达到欧盟标准。

NOX处理措施 预留脱硝空间

在线监控措施 安装在线监测系统,同时与当地的环保系统联网

臭气处理措施 垃圾库房、垃圾输送系统采用全密闭防渗漏设计,助燃空气由

一、二次风机从垃圾库上部引入,形成微负压,确保臭气不外逸。 渗滤液处理构筑物应加盖密封处理。 厂界NH

3、H2S等恶臭污染物厂界达到《恶臭污染物排放标准》(GB14554-93)。

粉尘处理措施 在活性炭粉仓、飞灰库顶安装布袋除尘器 颗粒物达到《大气污染物综合排放标准》(GB16297-1996)二级排放标准。

废水 垃圾渗滤液和

冲洗废水处理措施 预处理达进管标准后排入临安市城市污水处理厂,废水事故应急池1000m3,厂内污水预处理站设

计规模200m3/d。 达临安城市污水处理厂进管标准

生活污水

其它废水

处理措施 化学废水中和处理后回用,锅炉排污水和冷却塔排污水回用,中和池2m3 化水、锅炉和冷却塔排污水回用生产,雨水进市政雨水管网。

噪声 降噪措施 选用低噪设备、隔声降噪、优化总图、加强管理和绿化 达到《工业企业厂界噪声排放标准》(GB12348-2008)2类标准

固废 炉渣处理措施 综合利用 无害化处理

飞灰 有条件的填埋或委托大地环保有限公司处置

生活垃圾和污泥 厂内焚烧处理

风险 管理措施 制订安全管理措施及应急预案 降低风险事故的发生

总量控制:

根据《浙江省人民政府关于进一步加强污染减排工作的通知》(浙政发[2007]34号)和浙江省环境保护局浙环发[2007]57号《关于印发浙江省主要污染物总量减排管理、监测、统计和考核四个办法的通知》文件要求,须进行新增污染物总量替代。本项目所涉及的总量控制指标主要为SO

2、CODCr总量控制指标。 (1)总量控制指标建议值

根据工程分析以及该2台焚烧炉的烟气控制排放浓度和废水的排放标准,计算出该项目的SO2和CODCr总量控制指标建议值,列表6-6。 表6-6 总量控制指标建议值

项目 排放控制浓度(mg/m3) 本项目总量控制指标建议值(t/a) 说明

SO2 150.9 89.1

CODCr 350 24.68 纳管量

60 4.06 进入环境量

(2)总量控制方案

根据临安市环保局关于临安绿能环保发电有限公司垃圾焚烧发电项目新增总量平衡来源的回复,本项目新增的CODcr排放总量在2008年临安板桥华生造纸厂工程减排的11.7t/a中按1:1平衡;本项目新增的SO2排放总量在2008年关停的临安武隆砖瓦厂38t/a和杭州大众塘瓷有限公司57.6t/a中按1:1平衡。

同时,根据《杭州市主要污染物排放权交易实施细则(试行)》:“新增二氧化硫(SO2)或化学需氧量(COD)排放量的新建企业,经杭州市环保局核准认定后,均应通过排放权交易方式有偿获得二氧化硫(SO2)或化学需氧量(COD)排污配额,方可按建设程序办理其他手续。”因此,本项目污染物排放总量应根据《杭州市主要污染物排放权交易实施细则(试行)》的有关规定获取配额。

七、公众参与 (1)综合结果:

在调查过程中,项目拟建地周围的居民对临安市垃圾焚烧处理工程非常支持,绝大多数的公众认为本工程的建设利大于弊,表示积极支持,并希望本工程能够尽快建设投产,为促进当地的经济发展、改善该区域的环境质量做出贡献。公众对项目建设还提出以下主要意见: 团体表意见及建议:切实做好周围区域垃圾收集工作,厂址选址考虑垃圾运输成本。 个人表意见及建议:应在污水处理、烟气

处理方面做到达标排放。 (2)公众参与意见的反馈和落实: 从以上公众调查结果可知,大部分被访者及被访单位是同意本项目在拟选厂址区进行建设的。针对以上公众调查结果及公众意见及建议,临安市政府相关部门应结合本项目建设切实做好垃圾接收范围内的垃圾收集和清运工作。同时,本环评提出如下几点要求: (1)要求建设单位严格执行环保“三同时”制度,落实本环评报告中提出的各项污染防治措施,加大污染物治理力度,依照国家相关法规要求,确保污染物能够达标排放或得到妥善处置; (2)项目在建成投产后需不断提高自身的清洁生产水平,从源头上最大限度的减少污染物的产生及排放量;

(3)项目实施单位应加强生产设备和污染治理措施的日常维护管理工作,杜绝出现事故排放的现象;

(4)建设单位在本项目建设过程中以及投产后,应始终牢固树立以人为本的思想,加强环境保护工作,最大限度的减少污染物的排放量,从而最大限度的减轻对环境的影响,保障周边居民的生活环境质量,以利于项目更好的生存与发展。

(3)公众参与公示

依据《环境影响评价公众参与暂行办法》中的相关要求,建设单位在确定了本项目的环评单位之后,于2009年1月12日在临安市《今日临安报》发布公示相关信息(见附件),公示日期为2009年1月12日~1月23日。根据临安市环保局《临安垃圾焚烧发电项目第一次环评公示证明》(详见附件),公示期间未收到公众对该项目在环境保护方面的意见和建议。 第二次公示采用了媒体与附近村庄告示栏相结合的方式。于2009年2月16日在《今日临安报》发布公示相关信息(见附件),公示时间为2009年2月16日~2月27日,同时在附近的上畔村、上甘村、杨岱村公告栏张贴公告(公示证明见附件)。根据临安市环保局《临安垃圾焚烧发电项目环评报告书公示证明》(详见附件),公示期间未收到公众任何意见和建议。

八、环保可行性结论

临安市垃圾焚烧发电工程符合国家产业政策及资源综合利用政策,项目的建设基本符合相关规划要求,符合清洁生产的要求。项目的建设可推进临安市生活垃圾无害化、减量化及资源化的进程,节约了大量的宝贵的土地资源,对促进临安市国家级生态示范区建设具有积极的意义;同时本项目的建设已落实了总量来源。

在切实落实各项污染防治措施的基础上,项目投产后产生的污染物可做到达标排放或得到安全的处理、处置,项目总量控制指标可以落实,对周边环境的影响在可承受范围之内,项目选址基本合理。

综上所述,本环评认为在切实落实各项污染防治措施及环境管理要求、严

格执行环保“三同时”制度的前提下,从环保角度出发,本项目是可行的。

· PAGE 10 ·

· PAGE 35 ·

PAGE

36

垃圾焚烧炉特点范文第2篇

1、布袋除尘器基本原理及工艺流程。

2、环境保护法律法规基本知识。

3、除尘设备的分类及工作原理。

4、袋式除尘器系统的组成及作用。

5、袋式除尘器技术性能及操作维护知识。

6、附属设备操作维护知识。

7、电工、仪表的基本知识。

8、袋式除尘器和放灰系统设备的开停机操作。

9、处理袋式除尘器紧急停机和一般故障。

10、按标准维护和保养设备,更换易损件。

11、润滑系统的操作和调节。

12、记录操作参数,填写运行报表。

13、在生产中及时发现存在的安全隐患,并提出整改措施。

xxxxxxxxxxxxxxxx除尘运营管理部

垃圾焚烧炉特点范文第3篇

Green Energy (Hangzhou) Corporate Management Co., Ltd

环保能源电厂流化床垃圾焚烧锅炉

垃圾库房管理制度

为了最大限度挖掘企业内部潜能,降低生产成本消耗,提高锅炉产能,从而为企业在一定程度上增加效益;结合目前日益严峻的煤炭市场形势,对原生垃圾合理、科学的有序堆放及保证垃圾预处理系统的正常运行,确保预处理质量来提升垃圾热值是生产链中对降低生产成本极为重要的一个环节。

根据余杭垃圾堆放渗水试验结果及几个煤耗相对较低电厂的经验积累,本着安全、经济的角度出发,现对垃圾堆放及预处理系统的相关管理做如下规定:

一、 库房垃圾堆放管理

1、 根据历史进库情况,对进料垃圾堆放大致需要有个原则性的认识,如区域性的垃圾成分分析;对水份较高的垃圾或工业垃圾进行有意识的分区域堆放。

2、 视库房与垃圾渗滤液收集坑的设计,原则上往后墙或中间堆放,以使垃圾渗滤液能够最大限度的排放至低端流往污水收集系统。

3、 对未改进设计只有一个库房的垃圾焚烧厂,垃圾上料经预处理系统后进行有定点性的堆放,最好能堆放2天或2天以上后焚烧,有一定沼气量溢出后送入炉内焚烧。

4、 有原生库与成品库房设计的电厂,应最大限度的利用原生库的功能,先在原生库堆放2天或2天后,以使垃圾水分最大程度的溢出,也便于污水的收集,然后再经过预处理后继续有序的在成品库存放2天或2天后抓吊入炉焚烧;各电厂可根据实际绿能(杭州)企业管理有限公司运行管理部

2012年11月

情况出台不绿能 (杭州)企业管理有限公司

Green Energy (Hangzhou) Corporate Management Co., Ltd

同的《垃圾抓吊堆放管理细则》。

5、对于垃圾抓吊岗位,各运行电厂应结合企业的实际情况制定与锅炉运行相关联的捆绑式考核管理细则,以提高相关人员的工作积极性与责任性。

6、在垃圾有计划的堆放与管理过程中,对于垃圾抓吊设备与垃圾预处理设备的连续、安全运行起着重要的作用;抓好设备的维护与保养工作,定期对设备进行例行检查,备品件根据实际应用情况备臵到位,一旦有故障发生,能在最短的时间内加以解决;检修人员应对垃圾处理及抓吊系统做好相关技术资料的记录与整理,跟踪设备运行状况,加强维修工艺,做到“应修必修、修必修好”的原则,切实提高设备运行的可靠性。

二、 垃圾预处理系统的管理

1、垃圾预处理设备运行前的检查 (1)车间内照明应完好。 (2)各设备内外应清洁无杂物。 (3)各设备传动部位防护罩应完好。

(4)各设备传动链及输送链应处于正常的张紧状态。 (5)各转动设备的固定螺栓应无松动。 (6)各转动设备轴承温度应正常,无异声。

(7)对各设备进行联动一次,检查设备运转是否正常。

2、垃圾预处理设备运行中的检查

(1)垃圾预处理设备在运行中,集中控制室操作人员要通过工业电视巡检系统主要部位设备的运行状况是否正常,如有不正常之处,应及时采取措施进行调整和处理。

绿能(杭州)企业管理有限公司运行管理部

2012年11月

绿能 (杭州)企业管理有限公司

Green Energy (Hangzhou) Corporate Management Co., Ltd

(2)预处理设备在正常运行中,现场工作人员也要定时对设备进巡检,察看设备有无异常情况,若有及时进行调整和处理。

3、垃圾预处理设备的维护保养 (1)每一个月给轴承加润滑油脂2次。 (2)每一个月给传动链加润滑油3-5次。 (3)每一个月给输送链刷涂润滑油2次。 (4)交接班时应做到现场清洁。

4、对于外包的辅助工管理各运行企业要出台《辅助用工人员的考核细则》,主要结合垃圾预处理质量、预处理车间清洁程度、安全生产等方面列出具体的实施细则。

三、垃圾库房的卫生管理

1、每天一次冲洗一次库房前及卸料平台地面。

2、每周对垃圾库房及平台上进行一次灭蚊虫工作。

3、地面无散落垃圾、无污水横流现象。

4、应保持清洁无重大异味,每周应定时喷洒药水,防止发生虫害及污染。

5、垃圾车撒落在地应及时清扫,炉燃分场应按相关标准检查工 作情况,并记录。

四、垃圾库进库管理

1、进场人员和车辆必须遵守场内各项规章制度,服从现场工作人员指挥。

2、垃圾运输车进场必须过磅计量,并按指定位臵倾倒垃圾,严禁随意倾倒。

3. 垃圾运输车运送垃圾时,密闭设备必须齐全,防止垃圾抛洒,保持环境卫生。

绿能(杭州)企业管理有限公司运行管理部

2012年11月

4、

绿能 (杭州)企业管理有限公司

Green Energy (Hangzhou) Corporate Management Co., Ltd

垃圾运输车应严格按照场内规定速度行驶,严禁酒后开车,杜绝事故发生。

5. 库房内严禁烟火。

五、垃圾库房安全管理

1. 定期对职工进行安全培训和突发事件的应急处理训练,并做好记录。

2. 重点部位应设臵醒目警示标志。

3、发生事故时,当班人员应立即上报主管部门及有关领导。

4、 发生事故时,应迅速组织抢救疏散,防止事故蔓延扩大,同时上 报主管部门和有关领导。

5、认真记录事故处理、处臵情况。

绿能(杭州)企业管理有限公司

2011年12月13日

绿能(杭州)企业管理有限公司运行管理部

垃圾焚烧炉特点范文第4篇

一、技术开发的背景与意义

二十世纪以来,固体废弃物的排放急剧增加,造成的大气污染、地下水污染、土壤污芽土地占用、自然景观破坏等问题日趋严重。固体废弃物分为工业垃圾和城市垃圾两种,城市垃圾的产量是惊人的,据统计,中国1990年城市垃圾总产量为6900万吨,北京市每年的城市权产量超过200万吨。如何有效地处理这些城市垃圾,使之资源化、减量化和无害化(即"三化"),成为当前世界各国十分关注的课题。

对城市垃圾的常用处理方法有填埋、堆肥,制沼气、填海、焚烧和流化床制燃气等,其中以焚烧、流化床制燃气的处理方法为佳,符合“三化”的要求。由于流化床制燃气的方法投资大、工艺设备复杂,尚处于研究起步阶段。城市垃圾焚烧技术在美国一日本、法国、德国等发达国家己得到初步应用,并产主了良好的环保和经济效益。

焚烧垃圾、回收能源的办法是我国处理城市垃圾的一个主要发展方向。

二、国外垃圾焚烧发电概况

1.国外垃圾发电

国外最早进行垃圾焚烧技术研究开发的是德国,随即英国、法国、美国、日本等国也积极开展了这方面的研究。

德国目前己有五十余座从垃圾中提取能量的装置及十多家垃圾发电厂,并且用于热电联产,以便有效地对城市进行采暖或提供工业用汽,1965年联邦德国垃圾焚烧炉只有7台,年处理垃圾71.8万吨,可供总人口4.1%的居民用电。至1985年,焚烧炉已增至46台,年处理垃圾800万吨以上,占垃圾总数的30%,可供总人口34%的居民用电,柏林、汉堡、慕尼黑等大型城市中,民用电的

10、7%来自垃圾焚烧。1995年德国垃圾焚烧炉达67台,受益人口的比率从34%增加到50%。法国共有垃圾焚烧炉约300台,可将城市垃圾的40%以上处理掉。巴黎有4个垃圾焚烧厂,年处理量170万吨,占全市垃圾总量的90%,口收的能量相当于20万吨石油,供蒸汽量占巴黎市供热公司总量的三分之一。美国从80年代起,政府投资70亿美元,兴建90座焚烧厂,年总处理能力3000万吨。目前最大的垃圾发电厂已经在底特律市建造,日处理垃圾量4000吨,发电量65MWe。瑞典、丹麦等国也有类似的焚烧发电厂。

2.国外垃圾焚烧设备

垃圾锅炉是垃圾热电站台的主要设备,亦是发展垃圾热电站的关键所在。由于垃圾燃料是具有一定腐蚀性、水分大、热值不稳定的垃圾,因而垃圾锅炉及其燃烧设备在设计上有其一定的特殊性。由于垃圾发热值低,且水份含量较高,因此,性能优良的燃烧设备是垃圾锅炉的关键之处。国外已投入运行的垃圾锅炉燃烧方式主要有以下几种:

(1)多级阶梯链条炉排垃圾在炉排上由高到低逐级流动,逐级燃烧至燃尽。

(2)倾斜往复式炉排是间隙动作的逆向倾斜往复炉排,与我国一般燃煤的间隙动作顺向倾斜往复式炉排不一样。这种炉排的优点是:

①火种与主垃圾混合性好,易干燥,着火快。

②垃圾层间搅拌充分,利用完全燃烧:

③干燥、着火、燃烧、燃尽一系列过程都在炉排上进行,故而处理效率极高

④垃圾层均匀,燃烧稳定,炉温及锅炉蒸发量变动很小。

(3)流化床燃烧方式流化床燃烧对燃料的适应性好,能完全燃烧各类城市垃圾或有机的工业垃圾等。

(4)旋转式燃烧旋转式燃烧是KWU/SIEMNS公司在Uim一Wibligen试验成功的新的工业流程。该工艺是将垃圾在缓慢旋转的简体内450℃进行无氧碳化,产主沼气和固态残留物。固态残留物中用机械方法去除非可燃物(如金属、石块、玻璃等),余下部分为碳化物,其热值达到与褐煤相仿。这部分碳化物与产生的煤气共同在1300℃下燃烧。

(5)等离子弧燃烧方式该方法是通过在垃圾堆中设一条通道,将等离子弧及冷却剂和气体经通道输入垃圾中,这时火种将垃圾熔化蒸发,使之变成无害的玻璃状熔渣。燃烧火焰温度可高达8000℃,释放的气体引入燃料电池发电。

目前,国外垃圾焚烧锅炉的容量一般在10t/h~100t/h,蒸汽压力为1.4Mpa~4.7Mpa,蒸汽温度多为饱满和温度,一般是在400.C左右。

三、中国迫切需要发展垃圾焚烧发电技术

1.我国垃圾产量及成份

我国经济的持续发展和人民主活水平的不断提高,城市生活垃圾的产量逐年增加,年均增长率接近9%。虽然我国城市居民人均日产垃圾不足1kg,低于大多数发达国家,但其总产量却相当高,见表1。预计到2000年我国城市垃圾产量将达到19000万吨左右,我国城市垃圾的特点是无机物含量高于有机物含量,不可燃成分高于可燃成分。但不同类别城市之间差别较大,中小城市垃圾的有机质含量多为2%左右,一些大城市如北京市的垃圾有机质含量可高达8%以上。有机成分中,以生物质(即生物与厨房垃圾)所占比例为大,纸张较少,而国外垃圾中纸张所占比例较大:无机成分中,以灰土砖石为主,玻璃、金属等含量很低。垃圾组成成分不同,决定了我国垃圾处理应走自己的路、而且不同城市之间也采取不同的处理,不能简单地仿效国外。

2.发展垃圾焚烧发电技术大有可为

一般认为,当垃圾的发热值大于3349kJ/kg时,就可以由自然方式直接燃烧。我国垃圾的发热值远远低于发达国家。

我国中等以上城市的垃圾低位发热量一般在2512~4605kJ/kg范围内,北京地区较高,可达到349~65605kJ/kg。随着城市生活水平的不断提高,北京市1997年以后天然气营道接通后城市燃煤气率将有突破性增加,垃圾的发热值还会不断增加。显然,燃煤气化的发展对保证垃圾可烯是很重要的一步。

燃用煤气地区的城市垃圾中有机物的含量相当高,一般超过50%,高的达80%以上。大量的有机垃圾是极宝贵的资源,它既可提炼有用的物质,亦是垃圾中主要的可燃成分。

发展城市垃圾热电站与城市人口数量亦有一定的关系,因为电站的主产是连续性的,需要有厄够数量的垃圾才能保证连续运行。同时,还要考虑垃圾数量与质量会随季节的不同而有变化。按城市人口平均每人每天产主垃圾量约为1kg(发达国家稍多)计算,城市人口太于100万以上·则每日产主城市垃圾在1000吨以上,就可以保证稳定发电。

3.开发适合我日垃圾的国产焚烧锅炉

国外目前比较成熟的垃圾焚烧设备多为马丁炉排链条炉。对于热值较高的城市垃圾而言,这种选择无疑具有其科学性,但在处理热值较低且变化范围较大的我国城市垃圾时,必然带来一定程度上的困难,甚至影响整个垃圾焚烧厂运行。深圳卫主处理厂引进的日本焚烧炉就已经遇到了这一情况,从投资的角度来看,引进一套(两台)日处理量600吨垃圾(发电功率为2x3Mwe)的焚烧发电处理厂需要投资约4.5亿人民币,对于处于发展时期的我国来说是难以接受的。若能开发研制符合中国国情的国产化垃圾焚烧炉,将具有广阔和应用前景。在固体废弃物的焚烧处理方面,我国科研工作者做过大量的工作,主要采用鼓泡流化床或循环流化床燃烧方式。对于热值及成分多变的垃圾,流化床燃烧是具有其独特的优势的,这己为国外学者所公认。尤其是在污染物控制方面,流化床同时解决了燃烧与脱污染物过程,有效地降低了设备的初投资,减小系统的复杂性,因此采用流化床焚烧方式,开发研制符合中国国情的国产化垃圾焚烧炉将是一条合理的技术路线。从工艺角度看。垃圾焚烧技术的核心是燃烧问题,只有保证锅炉能稳定、充分清洁地燃烧,才可能实现垃圾的无害化和降容化。为了组织好燃烧;需要开发一套成熟的能把成分复杂、大小不一的原始垃圾顺利送入燃烧装置,并把灰渣及不可燃物质(如石砖等)从燃烧设备顺利排出的技术和装置,焚烧后垃圾减量程度可达90%。为了保证垃圾焚烧后不对环境造成二次污染,需要发展相关的污染控制技术,一方面要靠合理、有效地组织燃烧过程以控制Nox和二恶英、吹哺类的污染物产生量,另一方面要有效地去除或防止HCI、Sox和重金属的污染,为了减少投资和提高效率,需要有效地回收燃烧产物:烟气中的热能。烧掉垃圾,只是满足环保的需要,实现了垃圾的无害化、降容化。垃圾焚烧炉的热利用,亦即进一步运用余热锅炉,充分利用焚烧热,实现蒸汽发电、供热,是垃圾的资源化。此外,还可对焚烧后的灰渣进行制砖等综合利用。概括他说,垃圾焚烧综合利用技术需要解决燃烧、污染控制和进料、排渣等一系列问题。这些问题在通常的燃烧组成稳定的燃料时是可以解决的,但由于作为燃料的垃圾的复杂成分需要进行深入详细的研究。

四、垃圾焚烧发电综合利用技术

1.垃圾进料装置

国内的城市生活垃圾没有分类,而分选、破碎的设备不仅十分复杂,而且可靠性差,因此不能走国外的流化床焚烧炉把垃圾破碎到一定粒度(如1~10mm)的路线,必须开发出能原始垃圾(尽管其中可能含有木头、金属和砖石等不规则物体)顺利送入炉膛的进料装置,清吩学根据几十年煤燃烧技术科研与工程的经验和对国内外有关装置的比较、研究,选用炉排进料、流化床燃烧的方式,顺利解决了这个问题。

2.流化床垃圾焚烧技术流化床燃烧技术是专门针对低热值燃料而开发的,流化床焚烧低热值的垃圾有较高的效率,燃烧效率可高达95%以上,而且对燃料成分变化不敏感:热值不足以维持热平衡时投入辅助燃料(煤)助燃。通过实验运行,己解决了焚烧的充分性、可靠性,而且由于流化床独特的燃烧方式,其气体有害物的排放量少于其它焚烧方式。清华大学对垃圾焚烧机理的理论与实验研究己为垃圾焚烧炉的设计提供了必需的设计依据。

3.流化床床上排渣技术

由于垃圾成分及形状复杂,灰渣的颗粒大泞、形状也不尽一致,不同子一般流化床的排料条件,需采用特殊的排渣技术。清华大学通过研究、采用床上定向排渣技术可以解决排渣问题。

4、受热面防腐技术垃圾焚烧时由于其原始组成中含有大量的塑料,会生成具有很强腐蚀能力的HC1:为降低氮的氧化物生成,需要分级燃烧,炉膛内形成还原气氛。应研究还原区的高温腐蚀。此项技术正在研究中。

5.污染物脱除技术

一般地,利用流化床可实现炉内脱硫、除HCI等,并有效地降低氮的氧化物Nox的生成。为经济、有效地控制污染物的排放,应研究污染物的生成机理,开发可靠的脱除污染物技术。目前清华大学已具有实用的炉内脱硫、除HCI技术,其它污染物的脱除技术正在研究中。根据清华大学已有日处理10吨垃圾的热态实验装置上试验的结果,HCL<50ppm,NOX<500ppm,S0X<1500ppm,均低于国家排放标准。由于采用流化床焚烧技术,有机物充分燃尽,几乎不存在二恶英、呋喃排放问题。

6.灰渣综合利用技术

对流化床排出的灰渣经磁选除去金属(回收)后,进行简单破碎,即可成为水泥、砖等的原料之一,需要时焚烧后的灰渣成分、特性及其它原料的配比进行研究。

五、产业化条件

城市垃圾焚烧发电综合利用可逐步产业化,不仅可将以后产生的城市生活垃圾全部焚烧发电降容处理。而且可能部分的消化以前多年遗留下未处理的垃圾。除发电外,还可以为垃圾焚饶处理厂附近的企事业单位或居民提供热源如冬委供暖、工业用汽,焚烧后的灰渣可以制成建筑材料或作为筑路材料。焚烧后垃圾体积下降90%,焚烧降容后填埋占用土地面积大大下降。其效益是多方面的。一台蒸发量为20t/h的焚烧锅炉每天可处理垃圾约300吨左右,按每年运行300天计,一年可处理城市垃圾计9万吨,这相当于30万城市居民一年的垃圾排放量。焚烧炉的各项排放指标均可以达到国家环保要求。垃圾焚烧产生的热量可用于发电或供热、制冷,发电功率为3000kWe,可保证垃圾焚烧厂在经济上不仅可自我维持,节省了垃圾处理费用,甚至还略有盈余。

一我国近五百个大中小城市,每年垃圾产量可达七千多万吨,市场是极为广阔的。据统计分析,我国大中城市垃圾中无机物平均含量较大,有机可燃物含量较小。除局部地区热值可达6500kJ/kg外、大部分垃圾的热值不足4000kJ/Kg,而国外的垃圾焚烧设备主要适用于处理较高热值的垃圾(一般热值应大于6500kJ/kg),此外,我国垃圾没有分拣,成分远比国外的生活垃圾复杂。由于不同热值、、不同成分燃料的燃烧特性差异很大,因此,从技术上说,照搬国外的技术、设备是不能很好地解决我国的垃圾焚烧问题的。

二从经济上说,国外的12Mwe垃圾发电机组的初投资可达0.5亿美元,是其常规火力电站投资的二倍以上,而比国内同等规模的常规火力电站的初投资(约1亿人民币)大四倍多。运行费用高30~50%以上。因此,大规模引进国外机组建设垃圾焚烧厂是不可能的,在中国是没有经济可行性的。

六、科研开发条件

清华大学工业锅炉及民用煤清洁燃烧国家工程研究中心在流化床燃烧技术研究方面一直处于国内领先水平。先后研制出4~220t/h蒸发量多种类型的燃煤国产化循环流化床锅炉,现正在主持国家九五攻关项目“125Mwe循环流化床锅炉的研制”工作。

1993年,向台湾出售一台75t/h(12Mwe)以工业固体废弃物为燃料的焚烧炉整套技术图纸。在垃圾焚烧发电技术研究方面,清华大学己作了大量工作,利用自筹资金建设了热态实验台和冷态实验台,开展一些基础研究和技术开发工作,并取得了阶段性成果,已申请两项国家专利,其一是“燃用多成分低热值的流化床锅炉及其运行方法”,是主要针对大中城市研制的大型流化床焚烧炉,单炉处理量150一500t/d,其二是“燃用固体废弃物的快装流化床焚烧炉”,是针对小区、车站、机场、码头的设计的快装型流化床焚烧炉,单炉处理量50一150t/d。前面所述的进料技术、流化床焚烧技术、排渣技术和污染物脱除技术包含在这两个专利之中。此外,还有多项技术,有害物经济脱除技术等正在研究中,拟研究成功后申请相应的国家专利。

七、商业化垃圾电站投资及效益分析

根据清华大学目前研究和热态实验的基本数据,参照国内常规小型热电站投资、收费标准,以每天处理900吨垃圾的焚烧发电厂为例,说明完全国产化的垃圾电站的投资运行费用概算。

1.建设规模与内容

垃圾处理量900t/d,占地面积2500m2,建筑面积18000m2,全厂包括垃圾收集上料系统、垃圾焚饶锅炉、汽轮发电机系统、三废处理系统及辅助工程系统等。拟采用三机四炉,即三套汽轮发电机,四台垃圾焚烧锅炉(三开一备)。

2.主要设计参数

(1)单炉垃圾处理量300t/d

(2)焚烧锅炉台数4台

(3)年运行时间>7000小时

(4)垃圾低位发热量5000kJ/kg(4180~6500kJ/kg)

(5)垃圾水分20~45%

(6)垃圾焚烧温度800~950’C

(7)过量空气系数1.5~1.7

(8)汽轮发电机出力3000kw/台

(9)轮发电机台数3台

(10)有害物排放浓度烟尘<30mg/m3,HCI<50mg/m3,N0x<500mg/m3,SOx<200mg/m3,CO<60mg/m33.

3.效益分析

三台汽轮发电机总发电功率为9000kw,自用电为2000kw,外供7000kw,全年运行7000小时,共外供7000x7000=4.9X107kw.h,每度电售价按0.3元考虑,则年售电收入1470万元,如果锅炉产生蒸汽不仅发电,而且进行供热,效益会更好。回收的废金属可外售,焚烧后的灰渣可作建筑原料,也可有少量收入。此外,工程建成后,每年减少垃圾填埋量约26万吨,每吨填埋费按25元计,每年可节省填埋费650万元,同时可减少用于填埋的占地约30亩,又可节省一笔土地征用费,并节约了土地资源。

桑榆选自

垃圾焚烧炉特点范文第5篇

2.负责余热锅炉和除尘系统的操作。

3.按岗位作业指导书,完成本岗位的工作。

垃圾焚烧炉特点范文第6篇

企业人工成本的构成主要是两部分,一部分是直接的用工成本,即员工工资总量,指那些直接投资在员工身上的工资、福利等成本;一部分是间接的用工成本,指那些为了获取有效的人力资源而投入的招聘、培训等成本。当然员工工资总量是构成人工成本的主要部分,从降低工资总量入手是最快捷、最有效的方式,但是企业往往为了应一时之需而忽略了重新获取有效人力资源的难度和投入,因此合易顾问建议企业不要仅仅从人工成本总量上进行分析和考量,而应该关注一下人工成本的结构和比率。

人工成本结构分析

人工成本的结构是指人工成本各组成项目占人工成本总额的比例,反映人工成本投入构成的情况与合理性。企业人工成本通常由以下几部分构成:

人力资源的获取成本:是指组织在招募和录用员工过程中发生的成本。主要包括招募成本、选择成本、录用成本和安置成本。

人力资源的开发成本:是组织为提高员工的生产技术能力,以便于使之适合组织任务,为增加组织人力资产的价值而发生的成本,主要包括岗前培训成本、岗位培训成本、脱产培训成本等。

人力资源的使用成本:人力资源的使用成本是组织在使用员工的过程中发生的成本。主要包括工资福利等维持成本、奖金等奖励成本以及调剂成本等。

人力资源的保障成本:人力资源的保障成本是保障人力资源在暂时或长期丧失使用价值时的生存权而必须支付的费用,包括退休养老保障、失业保障、健康医疗保障、安全生育保障等费用。

人力资源的退出成本:人力资源的退出成本是由于员工离开组织而产生的成本,包括离职补偿成本、离职前低效成本、离职后的岗位空缺成本(新员工补充成本,新员工的训练成本,新员工的低效成本)等。

这其中有些成本是显性的,直接通过财务支出可以体现出来,如招募成本、培训成本、奖励成本等;有些成本是隐性的,并没有产出直接的支出,而是通过对其他成本的影响进而增加组织运营的总体成本,如错误甄选人员造成的低效成本、录用不合格的人员离职造成的补充成本、人员离职前的低效成本、离职后的岗位空缺成本等都属于隐性成本。

企业处在不同的发展阶段,各部分成本在人工总成本中所占的比例会有所不同,呈现如下基本规律:在创业期和成长期,企业的发展规模逐步扩大,对人力资源的需求呈上升趋势,因此其获取成本和开发成本高于其他时期。而在成熟期和衰退期,企业发展势头渐缓,往往呈现出人浮于事的现象,其使用成本和保障成本所占的比例要明显偏高;而在成长期和衰退期,企业人事变动频繁,退出成本明显高于其他时期。企业可以通过上述规律对本企业人工成本的结构进行分析来判断一下合理性。

在我们曾经咨询过的企业中有一家高新技术企业A公司,A公司正处在成长期,整个行业的发展速度很快,企业前景乐观,员工的工资水平也一直处在同区域行业的前端。但是A公司在人力资源方面存在的最大问题就是员工流失率过高,人员的频繁变动制约了企业的发展,为此A公司的管理层非常困惑,他们不理解员工为什么会舍得放弃这么好的收入而另谋低就。我们通过数据分析发现,A公司的人工成本结构为使用成本>退出成本>保障成本>获取成本>开发成本,可见A公司管理层过于重视以高薪吸引和激励人才,而忽略了对人才的开发与培养。这个结论在访谈调研过程中也得到了证实,员工感觉自己一直在为企业透支,企业却没有为员工的技能提升投资,致使员工对个人的未来发展失去信心,而不得不放弃了短期的收益,选择离开。

对A公司来说,如果想要控制人工成本,最有效的方式就是调整人工成本结构,提升开发成本在总成本的比重,这样虽然暂时会形成总人工成本的短期上升,但是对员工技能的投资一方面会直接提升企业的劳动生产效率,另一方面也会提升员工的满意度和投入度,间接提升企业的劳动生产效率,达到降低人工成本的目的。

人工成本比率分析

人工成本的比率是指将人工成本与经济效益联系起来的相对数,从投入产出的经济效益角度考虑,人工成本作为一种消耗性要素,这种消耗的必要性取决于它为企业带来产出效益的大小。也就是说,一定的人工成本投入应带来一定的产出效益,因此从人工成本比率的分析可以判断企业人工成本投入的合理性。人工成本比率指标主要包括以下几个:

劳动分配率:劳动分配率=(人工成本总额/增加值)×100%

人事费用率:人事费用率=(人工成本总额/销售收入)×100%

人工成本占总成本比重:人工成本占总成本比重=(人工成本总额/总成本)×100%

劳动分配率表示企业在一定时期内新创造的价值中有多少比例用于支付人工成本,它反映分配关系和人工成本要素的投入产出关系。同一企业在不同劳动分配率比较,在同一行业不同企业之间劳动分配率的比较,说明人工成本相对水平的高低。

人事费用率表示企业生产和销售的总价值中有多少用于人工成本支出,同时也表示企业职工人均收入与劳动生产率的比例关系、生产与分配的关系、人工成本要素的投人产出关系。

劳动分配率和人事费用率实质上反映的是人工成本作为一种投入的效益,而人工成本占总成本的比重,反映活劳动对物化劳动的吸附程度,这一比值愈低,反映活劳动所推动的物化劳动愈大,反之,活劳动所推动的物化劳动愈小。该指标用于衡量企业有机构成高低和确定人工费用定额。

合易咨询在为山东某制造企业B公司进行薪酬设计时,曾经对B公司的总成本状况和人工成本状况进行了分析,并与行业数据进行了比较,结果发现几个比值很能说明问题:B公司的人事费用率与同行业相比明显偏高,高出行业平均水平两倍,但同时B公司人工成本占总成本的比重又明显偏低,还不及同行业的70%.这两组数据使我们对B公司的企业管理水平有了更清晰的概念,一方面B公司花费了大量的人工成本,却没有创造良好的效益,另一方面B公司也在其他成本上投入过多,生产管理粗放,其成本控制能力相比行业内其他企业而言,处于落后状态。

作为B公司,必须要同时降低总人工成本和其他成本,提升企业的人均劳效,以此来提升企业整体效益水平。合易顾问建议B公司从两方面同时入手,并辅导B公司采取了相应的策略。一方面就是裁员,直接的降低人工成本。我们通过对B公司岗位职责和岗位任职人状况的调研分析,发现B公司在很多部门存在着人情岗、养老岗现象,尤其是职能部门,人员冗余严重。在战略导向、职能导向原则下,合易顾问帮助企业梳理了组织结构和岗位设置,进行岗位精简和定编,并辅导企业开展全员竞聘上岗,由公司聘任高层,高层聘任中层,中层聘任基层,层层聘任,将人情压力逐步分解,顺利实现了裁员目的。另一方面就是通过目标导向的考核制度设计,引导员工关注成本及成本降低,将成本目标逐级分解,如生产能耗指标,一方面按照能耗项目分解,一方面按照工序分解,将成本控制目标一直落实到各个工序。并以考核需求为牵引,对财务部门的成本核算提出了更加细化和明确化的要求,使B公司的成本分析更能够指导生产管理。

上一篇:科药事管理制度范文下一篇:篮球社团策划书范文