加工工艺范文

2023-09-18

加工工艺范文第1篇

【关键词】数控加工工艺;传统机加工工艺;夹具;刀具

数控加工工艺从多方面对传统加工工艺进行了改进,只有对这些差异了如指掌,才能确保数控加工工艺的使用,使加工过程顺利完成,并有助于加工质量的提高。

1.工艺复杂性的差异

加工零件的工艺性、定位基准及装夹方式、工艺路线的制定、工艺参数、刀具及切削方式的选择等都是数控加工工艺需要考虑的因素,不过在传统加工工艺中,这些因素都能够进行简化处理。相对传统加工工艺而言,数控加工工艺显得更为复杂,且影响因素也更多一些,基于此,对数控编程全过程实施综合分析、合理安排并进行整体完善具有重要意义。对同一个数控加工任务来说,有多套数控工艺方案可供其选择[1]。多样化既是数控加工工艺的主要特色,也是与传统加工工艺的重要区别之一。

2.装夹及夹具选择的差异

数控加工工艺要求夹具必须满足以下条件:(1)夹具的坐标方向必须与机床的坐标方向保持相对固定;(2)对零件与机床坐标系之间的尺寸关系进行协调。如在机床上安装数据加工中心夹具时,会利用工作台上的基准孔或基准进行定位,这样能够保证零件工件坐标与机床坐标系之间形成固定的尺寸关系,这明显不同于传统加工工艺。定位和夹紧是装夹的两个重要步骤,传统加工工艺中,由于机床加工能力有限,往往需要进行多次装夹才能完成整个加工任务。而数控机床仅需一次装夹就能完成,有效避免了因多次装夹所产生的误差。设计并使用专用夹具的目的是为了能够方便快捷的完成定位和夹紧工作,不过设计和生产专用夹具需要高昂费用,如果加工工件数量较少的话,会导致分摊在被加工工件身上的夹具费用十分可观,因此在使用专用夹具前应进行综合考虑。而数控加工工艺能够通过仪表调试法完成定位任务,并使用最为普通的夹紧元件完成夹紧任务,这样能够有效避免因使用专用夹具而产生的高成本。

3.刀具选择的差异

不同加工工艺和加工方法所需要的刀具也不尽相同,尤其是数控加工工艺中的高速切削同传统加工工艺中的速度切削有着明显不同,它以独特的机理使加工效率和质量都有大幅提升,在减少切削变形及缩短加工周期这两方面也成效显著,这必然会导致与其相配套的高度切削刀具需求量直线上升[2]。另外,还有一种只需加少许切削液或不加切屑液的干切削加工技术,该技术对刀具的耐热性有着极高要求。同传统加工工艺相比,数据加工工艺对刀具各方面性能的要求都显著增强。另外,刀具行业的地位和作用也随着数据加工工艺的产生发生了明显变化,由之前单一的刀具生产和供应发展到目前对切削技术和产品的创新及研发;由之前纯粹的供应商身份转变成当前能够帮助企业提高生产效率和质量,减少生产成本的重要合作伙伴。

4.加工方式的差异

传统加工工艺中应慎重采用的加工方式在数控加工工艺中变得简单可行,如现代数控机床中的调头镗取代了传统加工方式中的悬臂镗。进行孔位加工时,传统加工工艺中所采用的空刀法和修整法被数据加工工艺中的背镗法和数控修整法所取代。硬切削工艺是目前新出现的一种加工工艺,它以较高的加工效率、较低的设备资金投入及加工成本对传统磨削工艺形成了强烈的冲击。同传统的湿切削技术相比,干切削技术有着“绿色制造工艺”的美誉,不过也存在一些不足,如切削变形严重和切削力明显增大等,但通过对这些缺点进行分析,并采取有效措施加以完善后,干切削还是有明显优势的,它也必将被广泛的推广和应用。

数控加工中的高速加工具有传统加工工艺所无可比拟的优势,下面以模具加工为例进行具体说明:在传统加工工艺中,通常需要多道加工工序才能完成模具加工任务,而利用高速加工只需要1~2道工序即可完成,并且因高速加工的精度较高,不必在进行传统加工中的电加工和磨削加工这两道工序。同普通加工相比,高速加工的切削速度提升了5~10倍,其优点如下:缩短加工时间,便于采用较小直径的刀具;有利于脆性材料和薄壁零件的加工;仅需极少工序即可达到傳统加工需要多道工序才能获得的表面加工质量和加工精度,生产效率和经济收益大幅提高。

5.热变形的差异

热变形是切削过程中不可避免的问题之一,工件进行精加工期间,热变形会对其加工精度产生直接影响。由于传统加工工艺的加工工序较多,各个工序的衔接有一定的缓冲时间,可以在上道加工所产生的温升下降到正常水平后再进行下一工序,直至最后的精加工,另外,对工步间的间隔时间进行有效控制也是降低热变形影响的有效方法[3]。

由于数控加工能够连续高效地对多个面进行加工,所以在连续切削过程中产生的热量无法及时恢复正常,如果通过控制工步间的间隔时间来降低热变形影响,又会降低加工效率,基于此,数控加工中的热变形是当下亟待解决的问题。发现热变形的规律并通过程序进行预补偿是降低热变形影响的理想方法,不过目前并无法发现热变形的规律,所以采用数控机床加工精度要求较高的零件时,也只能采取先冷却再精加工的方法来降低热变形的影响。

6.柔性化程度不同

传统的通用机床与专用机床相比,通用机床柔性好、可效率不高,而专用机床效率高,可是刚性大、柔性差,且对零件适应性低,在激烈的市场竞争中,传统通用机床的改型频率相对较低。而对于数控机床来说,它的市场适应性强,只要改变程序就能加工新的零件,不仅自动化高,而且柔性高、效率高。

7.结语

对于数控加工工艺来说,普通加工工艺是其基础及技术保障,它是由传统加工工艺、计算机数控技术、计算机辅助设计技术和计算机制造技术组成的,并起源于传统的机加工工艺。本文主要围绕数控加工工艺与传统机床加工工艺的特点及差异展开探讨,从而编制出更好的、适宜的工艺文件。

【参考文献】

[1]郭英杰.浅谈数控加工切槽与切断[J].张家口职业技术学院学报,2010(01):51-53.

[2]高素琴.数控车床螺纹加工指令的分析与应用[J].南通职业大学学报,2011(01):77-79.

[3]吴霞,周太平.数控加工中的工艺与夹具设计若干问题探讨[J].煤矿机械,2010,31(2):96-98.

加工工艺范文第2篇

1 夹具的基本概念

1.1 什么是夹具

夹具是加工时用来迅速紧固工件, 使机床、刀具、工件保持正确相对位置的工艺装置。也就是说工装夹具是机械加工不可缺少的部件, 在机床技术向高速、高效、精密、复合、智能、环保方向发展的带动下, 夹具技术正朝着高精、高效、模块、组合、通用、经济方向发展。

夹具又称卡具。从广义上说, 在工艺过程中的任何工序, 用来迅速、方便、安全地安装工件的装置, 都可称为夹具。例如焊接夹具、检验夹具、装配夹具、机床夹具等。其中机床夹具最为常见, 常简称为夹具。

1.2 夹具的运用及优点

在机床上加工工件时, 为使工件的表面能达到图纸规定的尺寸、几何形状以及与其他表面的相互位置精度等技术要求, 加工前必须将工件装好 (定位) 、夹牢 (夹紧) 。应用机床夹具, 有利于保证工件的加工精度、稳定产品质量;有利于提高劳动生产率和降低成本;有利于改善工人劳动条件, 保证安全生产;有利于扩大机床工艺范围, 实现“一机多用”。

夹具通常由定位元件 (确定工件在夹具中的正确位置) 、夹紧装置、对刀引导元件 (确定刀具与工件的相对位置或导引刀具方向) 、分度装置 (使工件在一次安装中能完成数个工位的加工, 有回转分度装置和直线移动分度装置两类) 、连接元件以及夹具体 (夹具底座) 等组成。

夹具在电子厂商使用也是非常高的, 在生产中为了提高生产效率和产品质量, 在生产的中段和后段就常用工装夹具来进行功能测试或者辅助装配 (能装配出固定的外形及高度等) 。

1.3 弹簧夹具的特点

弹簧夹具有很多的特点, 但是在不同的行业中也并非包含这样的特点, 但是在我们实习的公司中这样的夹就能体现出这样的特点, 比如说弹簧夹具具有很好的松紧的特性, 再比如说这样的夹具具有专一性, 只针对一种零件使用, 具有很高的精密性。因为我们的加工零件比较的特殊, 所以我们利用弹簧夹具来有效的克服了零件脱落的情况, 同时我们还大大的提高了零件的精密度, 比一般普通的夹具要紧密使用的多。

2 弹簧夹具的加工工艺分析

2.1 弹簧夹具的零件图

2.2 下料

因为没有直径为φ274的材料, 所以我们就只能用聚甲醛的板材去下料, 首先将板材下成一块四边形, 但因为要将四边形车成圆形就会很费时间, 所以要将这块板材继续进行切割, 最后成多边形, 这样就大大节约了粗加工的时间, 我们将这块料切割到内切圆直径为φ300。

2.3 选择夹具

我们在下好材料之后, 要选择一个适合于工件装夹方法的夹具, 因为零件的形状比较特殊, 所以不能选择用三自定心卡盘去直接装夹, 因此我们只能选择用顶针去装夹工件, 将三爪卡盘收到合适位置将顶针装于尾座, 之后尽量将材料放于中心用顶针固定。

2.4 找正

工件装夹完毕后, 我们要进行找正, 因为工件为多边形, 所以我认为可以利用刀具的刀尖部位当做一个参照点, 来对我们的工件进行找正, 首先将刀用中拖板摇到靠近工件的一个棱角, 之后用手转动主轴, 观察刀尖是否切到每一个棱角的尺寸相同, 如果发现刀尖与工件位置切削深度跳动较大, 那么这时我们应该用橡皮小饼轻轻敲打工件, 使之被切削深度相对均匀, 大概在2~3mm左右为合适。

3 弹簧夹具的加工工艺过程

3.1 外圆粗车加工

找正的工作完毕之后, 我们要开始进行工件外圆的粗加工, 首行我们应该选择好刀具, 为普通的粗车刀, 调好刀具位置中心之后锁紧刀具, 之后进行粗车、粗车时先要对刀, 将刀具摇到2件外轮廓也就是X轴, 因为材料内切圆为φ300, 而我们的零件要求尺寸为φ274, 所以我们还有26mm的余量, 将刀直接打进, 再接下来第二次进刀, 因为去除了棱角, 所以这次可以进得多一些, 进到10mm, 最后一次进刀要留5mm的余量, 将工件加工到φ279。在加工的过程中应注意, 因为工件是预持的方法, 所以尾座会比较靠前, 会挡住溜板箱运动, 我们只能移动小拖板去加工未加工到的外圆。加工完外圆之后, 因为要保正工件的平行度, 所以要在工件的端面切削2~3mm深度。

3.2 内孔加工

在我们加工工件的内孔之前, 我们应该先选好对应的内孔刀具, 将刀具装夹好, 接下来换反爪来直接夹持工件, 加工孔之前我们要钻孔, 换上一把φ40的钻花, 打进工件深度为38mm, 也就是钻花碰到工件表面进7圈多3mm, 之后在换内孔刀来加工, 首先要对刀, 先对Z轴, 使刀碰到工件端面时摇动小拖板, 让大拖板的读数为一个整数, 以便计算。再一次对刀, 对X轴, 用内孔刀碰到φ40的内孔壁, 记下中拖板数据, 之后因为钻花头部尖成锥形, 所以孔也为锥形的, 所以沿着对好的X轴慢慢移动, Z轴进刀到39.5mm深的地方, 摇动中拖板直接加工到φ44的地方, 进给为4mm, 深度直接到44mm深, 摇动中拖板对孔底进行修平, 第一个孔加工完毕。接下来加工第二个台阶, 尺寸为φ200, 减去第一个孔的直径φ44, 我们要切削的量为156mm, 我们再一次去对刀, 将刀摇到φ44孔的内壁去碰, 然后记下中拖板的数据, 每次进刀量为15mm, 切10刀, 深度为22, 因为Z轴的坐标改变了, 所以我们要重新进行对刀, 记下大拖板的数据。每次进刀深度为21.5mm, 最后一刀进刀量为6mm, 深度到22mm处摇动中拖板将面修平, 第二个台阶加完毕之后要连继加工两个台阶, 而且一个过渡的台阶, 还要一定的角度, 所以选择将刀座变换一个角度, 将刀座螺母拧开, 顺时针板动刀座至80度, 之后将刀板用来进行台阶φ231的车削, 首先对刀, X轴用刀去碰φ200孔的内壁, 记下中拖板的数据, 再对Z轴, 记下中拖板的数据, 每刀进给量为10mm, 切3次深度为7.4mm。之后移动中拖板至φ220处, 再摇动小拖板对斜面进行加工, 加工完毕后, 最后对13度的斜面进行加工, 将刀架的螺母拧开, 顺时针将刀架扳到77度的地方, 固定好刀架, 将刀移到靠近φ44孔约10mm的地方, 摇动小拖板, 对角度为13度的斜面进行加工。直到快接近孔φ200深度的约2mm的地方, 反向退刀加工斜面至孔φ200处斜面加工完毕, 最后为保证平行度, 在端处刀削约20丝, 然后进行倒角, 最后加工外圆至φ65处, 因为毛丕为φ80厚, 所以可夹持。

3.3 打孔攻丝

按照图纸要求, 需要在φ100外打孔, 在中心打一个小径为φ8的通孔, 大径为φ20的沉头孔, 第一个方法可以用再划线规画之后用台钻打孔, 第二个方法可以用尾座上已有的孔来描点, 进行打孔, 打完孔之后用丝攻进行攻丝。

3.4 锯槽

按图纸要求我们现在开始锯槽, 我们的工件有大的还有小的, 我们要经过计算, 来确定我们的槽到底要开几条, 我们先用孔的直径去乘3.14算出圆的周长, 再用算出来的周长去除槽的条数, 大概数值长度在18到19之间。大概的值求出来之后再用360°去除槽的条数, 算出每一半槽的角度平均分配。之后我们将零件夹在分度头上面, 选好2mm宽的卧铣刀片后, 启动铣床开始加工夹具。

通过夹具的制作与使用, 经过我们的观察, 这样的夹具在使用的过程中, 因为材料使用的不同, 会导致各种的变化。我们使用聚甲醛为工件材料, 因此在做夹具的时候, 应该将夹具的尺寸放大一些, 因为这样的材料会有一定的变形, 在加工过程中温度较高, 加工完毕后就会产生变形。如果我们用铝来作为夹具的材料, 那么就一定要按照尺寸要求来做, 因为铝的形变量会小一些。铝是用来做这样的弹簧夹具相对较好的材料。当今激烈的市场竞争和企业信息化的要求, 企业对夹具的设计及制造提出了更高的要求。

摘要:夹具在我们加工的过程中是非常重要的一个辅助用具, 夹具的类型品种有很多很多, 虽说是用来辅助加工的, 但是缺少了这个用具却会影响我们的加工, 甚至于无法完成加工。好的夹具设计可以提高产品劳动生产率, 保证和提高加工精度, 降低生产成本等, 还可以扩大机床的使用范围, 从而使产品在保证精度的前提下提高效率、降低成本。本文主要阐述了弹簧夹具的加工工艺过程。

关键词:辅助,夹具,加工工艺

参考文献

[1] 王绍俊.机械制造工艺设计手册, 哈尔滨:哈尔滨工业大学出版社, 1981.

[2] 刘文剑, 曹天河.夹具工程师手册.黑龙江科学技术出版社, 1987.

[3] 卢小平.数控加工与编程.电子科技大学出版社, 1999.

加工工艺范文第3篇

关键词:数控加工 工艺 设计

随着科学技术的飞速发展,机械加工技术也与时俱进地更新换代,工艺要求也逐渐变得严格。为了保证加工成品的合格率,必须调整工作里的每个细节。提高产品的精度避免成品不合格造成的负面影响。随着不规则形状零件对现代机械技术发展的挑战越来越高,加工技术的提高也急不可待。数控加工工艺取代传统加工技术成为主要加工技术也是时代发展的潮流。

1 数控加工的内涵

1.1 数控加工的概念及其发展

数控加工是指在机床上利用数控技术对零件进行加工的一个过程。数控加工和非数控加工的流程从整体上来说是大致相同的。但在技术上却大相径庭。采取数字信息控制加工零件的数控加工方法是针对零件种类多样、相同型号产量少、结构复杂、精度要求高等现实状况达到高效化和自动化加工的有效方法。数控加工的发展方向是高速和高精度。20世纪50年代,MIT设计了APT。APT具有程序简洁,方法灵活等优势。但也有很多不足之处如对于复杂的几何形状,无法表达几何即视感[1]。为修正APT的不足,1978年,法国达索飞机公司开发了CATIA。这个系统有效的解决了几何形状复杂、难以表达即视感的缺陷。目前,数控编程系统正向高智能化方向发展。

1.2 数控加工的内容

数控加工的内容有挑选适宜在数控机床上加工的零件,对数控加工方案进行确定;详细绘制所加工零件的图纸;确定数控加工的详细流程,如具体工作的分工、工作的前后顺序、加工器具的选择与位置确定、与其他加工工作的衔接等;修正数控加工的流程;确定数控加工中的允许误差;指挥数控机床上一些工艺部分工作等。

2 数控加工的工艺设计

2.1 数控加工的工艺设计特点

采用数控加工的工艺设计具有加工程序简单,解放枯燥工作的劳动力等特点。改进了传统机床工艺的工序繁多,劳动强度大的弱点。如此便使数控加工工艺设计形成了自身的独特的特点。正常来讲,数控加工的内容要比传统机床加工的内容繁多。数控加工的内容非常精确、工艺设计工作十分逻辑明确。数控加工的工作效率非常高。零件在一道工序中能完成多项工作项目。而这些工作如果换成传统工艺则需要多个步骤才能做好[1]。所以,数控加工具有工作效率高的特点。将传统加工工作中的几个步骤在数控加工工艺中浓缩成更少的工作步骤,这让零件加工所需要的专业工具数量大幅下降,零件需要加工的工序和所用时间也节省出很了多,进而大大提高所加工产品的成品率和生产效率。此外,在普通机床加工时,很多具体的工艺问题如加工时各类工序如何分类和顺序如何安排、每道工序所使用工具的形状大小、如何切割、切割多少等,在实际工作中都是靠工作人员根据自己的多年工作经验和习惯慢慢锻炼成的纯熟的技巧来解决的。传统加工的工艺设计正常情况下不需要加工人员在设计工艺流程时做出过多的计划,实际工作做好就可以了。而在数控加工时,每个实际工艺问题必须事无巨细的都考虑到,而且每一个细节都必须在程序编辑时编入完全正确的加工指令,其结果也会是非常精细,这是数控加工最大的特点。

2.2 数控加工的工艺设计方法

工艺设计的任务就是明确零件的什么部位需要数控加工,经过什么流程,如何确定这些流程的前后顺序等等。通常在数控加工时确定零件加工的工作步骤有如下几种方法:按所使用的工作器具确定。为了减少切换工作器具次数,节省时间,可以采取将同一种工作器具集中使用的方法来确定工作步骤。在一个工序中使用同一个工作器具的全所有步骤率先集中,统一完成后然后再使用第二种工作器具进行该种工作器具所要加工的所有步骤,以此类推。平面孔系零件一般使用点位、直线操控数控机床来加工,制定加工的工作步骤时,着重于控制加工精度、成品率和加工所需时间。旋转体类零件通常使用数控车床或磨床加工。在车床上加工时,一般加工成品冗余多,使用粗加工方法。数控车床上用到低强度加工器具加工细小凹槽的情况很频繁,因此适于斜向进刀,一般不要崩刃。平面轮廓零件一般使用数控机床加工。方法上应该着重把控切入与切出的方向。使用直线和圆弧插补功能的数控机床在加工不规则零件的曲线轮廓时,一定要用最短的直线段或圆弧段来无限逼近零件轮廓,让零件的误差在合格的基础上加工的直线段或弧段的数量最少为最佳方案[2]。立体轮廓零件:某些形状的零件被加工时,由于零件的形状和表面质量等多方面问题致使零件强度较差。机床的插补方法可以解决这一难题。在加工飞机大梁直纹曲面时,如果加工机床是三轴联动便只能使用效率较低的球头铣刀;如果机床是四轴联动,则可以使用效率比球头铣刀高的圆柱铣刀铣削。

2.3 数控加工的工艺设计过程

数控加工的一般过程要经过阅读零件,工艺分析,制定工艺,数控编程,程序传输。数控加工之前应该绘制好零件的加工设计图稿。在数控机床上加工零件时,应该先按照之前绘制好的零件图稿来分析零件的结构、材质、几何形状、大小和精度要求,并采用分析结果作为确定零件数控加工工艺过程的基础。确定数控加工工艺过程,要先详细了解零件数控加工的内容和原则;之后再设计加工过程,挑选机床和加工零件所需的器具,确定零件的加工位置和装夹,确定数控加工中工作的步骤和顺序,确定每个工作步骤中具体的工作器具的使用方法及切割大小;还需要填写数控加工的工艺文件、加工程序及程序校验等。通过实际的操作经验总结,单纯的按照之前设定的数控加工程序来实际操作加工零件依然存在很多缺陷。因为人力工作可能对程序的具体步骤和原理不够明确,对编程人员的本意理解也不是很透彻,通常需要编程人员在零件加工时对加工人员进行现场的指导,这种情况对于零件数量较少的加工状况还能勉强正常工作,但对于时间长、数量大的生产情况,就会生出很多问题。所以,编程人员对数控加工程序比较复杂和不易理解的部分进行适当的补充和说明的作用是不可小觑的,尤其是要针对那些需要长时间和大批量生产零件的数控加工程序特别关键。

2.4 数控加工的工艺设计应注意的问题

在数控加工中一定要注意并且预防工作所使用的器具在工作中和零件等出现不必要的摩擦,所以一定要明确的强调工作人员数控加工的工艺设计编程中的加工器具的加工路线,使加工人员在加工前就都清楚明了的知道加工路线[2]。与此同时还应该设置好夹紧零件的位置,如此便可以减少不必要的问题出现。除此之外,對于某些程序问题需要调整程序及加工器具路线和位置时必须事先告知操作人员,以防出现不必要的问题。

3 结语

由于我国目前处在数控加工的工艺设计飞速发展阶段,关于数控加工的工艺设计技术引进速度非常迅猛,同时却缺乏对数控加工技术操作完全了解和掌握的人才,因此加快对数控加工技术的了解和学习,加大这方面人才的培养力度也急不可待。

参考文献

[1] 中国机床工具工业协会行业发展部.CIMT2001巡礼[J].世界制造技术与装备市场,2001,12(3):18-20.

[2] 梁训,王宣,周延佑.机床技术发展的新动向[J].世界制造技术与装备市场,2011,11(3):21-28.

加工工艺范文第4篇

甲方:磨憨尚勇生猪定点屠宰厂

乙方:尚勇、磨憨、尚岗生猪猪肉个体经营户

甲乙双方为了更好的服务市场,让老百姓吃上放心肉,促进市场繁荣,经双方多次协商,本着有偿服务的原则,在平等、自愿、互惠互利的前提下,达成以下协议:

一、甲方在对乙方的生猪屠宰过程中,如果由于甲方在电麻猪时,造成的猪大腿断裂所产生的肉质品出现质量问题,将由甲方按照市场猪肉价格进行赔偿。(甲方按市场价格买回大脚断裂部份的猪肉),杀甲或其它部份的质量问题不在赔偿范围。

二、甲方将收取每头猪加工费34元,代收检疫检验费6元,合计:40元。活猪和加工好的肉品由乙方自己运输,费用乙方自己负担。

三、如果是政府部门,政策性的调整生猪屠宰价格,不在本次协商的范围,将按照政策性的调价另外执行。

四、本协议的有效期为长期。

五、本协议签订之后,甲乙双方不得违约,如有违约,按照《合同法》之相关规定执行。

六、本协议从2013年8月1日起实施。

七、本协议经甲乙双方签字后生效。

甲方:磨憨尚勇生猪定点屠宰厂

乙方:尚勇、磨憨、尚岗生猪

猪肉个体经营户(签名或盖章)

加工工艺范文第5篇

轴类零件加工工艺及夹具设计

学生姓名: 学 号: 所在院部: 所学专业: 指导老师:

完成时间:2010年03月

摘 要

轴类零件是机器中经常遇到的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间;轴用轴承支承,与轴承配合的轴段称为轴颈。轴颈是轴的装配基准,它们的精度和表面质量一般要求较高。根据零件的结构及其功能,运用定位夹紧的知识完成了夹具设计。

关键词:轴类零件、轴颈、夹具

Abstract

The machine shaft is often encountered in one of the typical components. It is mainly used for support in mechanical gears, pulleys, cams and connecting rods and other transmission parts, to transfer torque. Different forms according to the structure, the axis can be divided into stepped shaft, taper spindle, axis, hollow shaft, crankshaft, camshaft, eccentric shafts, all kinds of screw shaft such as short axis aspect ratio of less than 5 large known as the slender shaft 20, most shaft in between; shaft bearings bearing, and bearing with the shaft segment called the journal. Journal is the axis of the assembly base, and their general requirements for precision and high surface quality. According to parts of the structure and function, using the knowledge of locating and clamping fixture design completed.

Key words:Shaft, journ 2

目录

1. 轴类零件技术要求 ................................. 3

1.1、尺寸精度 ........................................ 3 1.

2、几何形状精度 .................................... 3 1.3、 相互位臵精度 ................................... 3 1.

4、表面粗糙度 ...................................... 3 2. 轴类零件的毛胚和材料 .............................. 4 2.1 轴类零件的毛胚 ................................... 4 2.2 轴类零件的材料 ................................... 4 3. 轴类零件一般加工要求及方法 ........................ 5 3.1 轴类零件加工工艺规程注意点 ....................... 5 3.2 轴类零件加工的技术要求 ........................... 5 3.3 轴类零件的热处理 ................................. 6 4. 轴类零件工艺路线 .................................................................................................... 6 4.1、传承轴图样分析 .................................. 7 4.

2、确定毛坯 ........................................ 8 4.3、 确定主要表面的加工方法 ......................... 8 4.

4、确定定位基准 .................................... 8 4.5、划分阶段 ........................................ 9 4.

6、热处理工序安排 .................................. 9 4.7、加工尺寸和切削用量 .............................. 9 4.

8、 拟定工艺过程 ................................... 9 5.细长轴加工工艺特点 ............................................................................................... 10

5.1、 改进工件的装夹方法 ... ………………………………..10 5.

2、采用跟刀架 .................................... .10 5.3、采用反向进给 ................................... 11 5.

4、采用车削细长轴的车刀 ........................... 11 6. 夹具的设计 ................................................................................................................... 12 6.1 铣床夹具设计 ..................................................................................................... 12 6.1.1、六点定位原理 ........................................ 13 6.1.

2、应用定位原理几种情况 ................................ 11 (1)完全定位 ............................................. 11 (2)部分定位 ............................................. 11 (3)过定位(重复定位) ................................... 11 6.1.3、确定要限制的自由度 .................................. 14 6.1.

4、定位方案选择 ........................................ 14 6.1.5、计算定位误差 ........................................ 15 (1)夹紧方案 .............................................. 16 (2)对刀方案 .............................................. 16 (3)夹具体与定位键 ........................................ 16 (4)夹具总图上的尺寸、公差和技术要求 ...................... 16 (5)夹具精度分析 .......................................... 17 6.2 各类铣床夹具 ..................................................................................................... 18

6.2.1、铣床夹具 ............................................ 18 (1)铣床夹具的分类 ........................................ 18 (2)铣床常用通用夹具的结构 ................................ 18 (3)铣床夹具的设计特点 .................................... 18 6.2.

2、典型数控机床夹具 .................................... 19

1、数控铣床夹具 ............................................ 19

2、数控铣削加工常用的夹具大致有以下几种: ................... 7

结束语 ............................................. 21 谢 词 ............................................ 22 参考文献 ........................................... 23

2

1. 轴类零件技术要求 2. 1.1尺寸精度

起支承作用的轴颈为了确定轴的位臵,通常对其尺寸精度要求较高(IT5~IT7)。装配传动件的轴颈尺寸精度一般要求较低(IT6~IT9)。

1.2几何形状精度

轴类零件的几何形状精度主要是指轴颈、外锥面、莫氏锥孔等的圆度、圆柱度等,一般应将其公差限制在尺寸公差范围内。对精度要求较高的内外圆表面,应在图纸上标注其允许偏差。

1.3 相互位臵精度

轴类零件的位臵精度要求主要是由轴在机械中的位臵和功用决定的。通常应保证装配传动件的轴颈对支承轴颈的同轴度要求,否则会影响传动件(齿轮等)的传动精度,并产生噪声。普通精度的轴,其配合轴段对支承轴颈的径向跳动一般为0.01~ 0.03mm ,高精度轴(如主轴)通常为0.001~ 0.005mm。

1.4表面粗糙度

一般与传动件相配合的轴径表面粗糙度为Ra2.5~0.63μm,与轴承相配合的支承轴径的表面粗糙度为Ra0.63~0.16μm。

3

2.轴类零件的毛胚和材料

2.1 轴类零件的毛胚

轴类零件可根据使用要求、生产类型、设备条件及结构,选用棒料、锻件等毛坯形式。对于外圆直径相差不大的轴,一般以棒料为主;而对于外圆直径相差大的阶梯轴或重要的轴,常选用锻件,这样既节约材料又减少机械加工的工作量,还可改善机械性能。

根据生产规模的不同,毛坯的锻造方式有自由锻和模锻两种。中小批生产多采用自由锻,大批大量生产时采用模锻。

2.2 轴类零件的材料

轴类零件应根据不同的工作条件和使用要求选用不同的材料并采用不同的热处理规范(如调质、正火、淬火等),以获得一定的强度、韧性和耐磨性。

45钢是轴类零件的常用材料,它价格便宜经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45~52HRC。

40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。

轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50~58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。

精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。这种钢经调质和表面氮化后,不仅能获得很高的表面硬度,而且能保持较软的芯部,因此耐冲击韧性好。与渗碳淬火钢比较,它有热处理变形很小,硬度更高的特性。

3.轴类零件一般加工要求及方法

3.1 轴类零件加工工艺规程注意点

在学校机械加工实习课中,轴类零件的加工是学生练习车削技能的最基本也最重要的项目,但学生最后完工工件的质量总是很不理想,经过分析主要是学生对轴类零件的工艺分析工艺规程制订不够合理。

轴类零件中工艺规程的制订,直接关系到工件质量、劳动生产率和经济效益。一零件可以有几种不同的加工方法,但只有某一种较合理,在制订机械加工工艺规程中,须注意以下几点:

(1)零件图工艺分析中,需理解零件结构特点、精度、材质、热处理等技术要求,且要

4

研究产品装配图,部件装配图及验收标准。

(2)渗碳件加工工艺路线一般为:下料→锻造→正火→粗加工→半精加工→渗碳→去碳加工(对不需提高硬度部分)→淬火→车螺纹、钻孔或铣槽→粗磨→低温时效→半精磨→低温时效→精磨。

(3)粗基准选择:有非加工表面,应选非加工表面作为粗基准。对所有表面都需加工的铸件轴,根据加工余量最小表面找正。且选择平整光滑表面,让开浇口处。选牢固可靠表面为粗基准,同时,粗基准不可重复使用。

(4)精基准选择:要符合基准重合原则,尽可能选设计基准或装配基准作为定位基准。符合基准统一原则。尽可能在多数工序中用同一个定位基准。尽可能使定位基准与测量基准重合。选择精度高、安装稳定可靠表面为精基准。

3.2 轴类零件加工的技术要求

(1)尺寸精度轴类零件的主要表面常为两类,一类是与轴承的内圈配合的外圆轴颈,即支承轴颈,用于确定轴的位臵并支承轴,尺寸精度要求较高,通常为IT5~IT7;另一类为与各类传动件配合的轴颈,即配合轴颈,其精度稍低,通常为IT6~IT9。

(2)几何形状精度主要指轴颈表面、外圆锥面、锥孔等重要表面的圆度、圆柱度。其误差一般应限制在尺寸公差范围内,对于精密轴,需在零件图上另行规定其几何形状精度。

(3)相互位臵精度包括内、外表面,重要轴面的同轴度、圆的径向跳动、重要端面对轴心线的垂直度、端面间的平行 5

度等。

(4)表面粗糙度轴的加工表面都有粗糙度的要求,一般根据加工的可能性和经济性来确定。

3.3 轴类零件的热处理

(1)锻造毛坯在加工前,均需安排正火或退火处理,使钢材内部晶粒细化,消除锻造应力,降低材料硬度,改善切削加工性能。

(2)调质一般安排在粗车之后、半精车之前,以获得良好的物理力学性能。

(3)表面淬火一般安排在精加工之前,这样可以纠正因淬火引起的局部变形。

(4)精度要求高的轴,在局部淬火或粗磨之后,还需进行低温时效处理。

4.轴类零件工艺路线

(1)轴类零件是常见的零件之一。按轴类零件结构形式不同,一般可分为光轴、阶梯轴和异形轴三类;或分为实心轴、空心轴等。它们在机器中用来支承齿轮、带轮等传动零件,以传递转矩或运动。

(2)对于7级精度、表面粗糙度Ra0.8~0.4μm的一般传动轴,其工艺路线是:正火-车端面钻中心孔-粗车各表面-精车各表面-铣花键、键槽-热处理-修研中心孔-粗磨外圆-精磨外圆-检验。

(3)轴类零件一般采用中心孔作为定位基准,以实现基准统一的方案。在单件小批生产中钻中心孔工序常在普通车床上进行。在大批量生产中常在铣端面钻中心孔专用机床上进行。

(4)中心孔是轴类零件加工全过程中使用的定位基准,其质量对加工精度有着重大影响。所以必须安排修研中心孔工序。修研中心孔一般在车床上用金刚石或硬质合金顶尖加压进行。

(5)对于空心轴(如机床主轴),为了能使用顶尖孔定位,一般均采用带顶尖孔的锥套心轴或锥堵。若外圆和锥孔需反复多次、互为基准进行加工,则在重装锥堵或心轴时,必须按外圆找正或重新修磨中心孔。

(6)轴上的花键、键槽等次要表面的加工,一般安排在外圆精车之后,磨削之前进行。因为如果在精车之前就铣出键槽,在精车时由于断续切削而易产生振动,影响加工质量,又容易损坏刀具,也难以控制键槽的尺寸。但也不应安排在外圆精磨之后进行,以免破坏外圆表面的加工精度和表面质量。

(7)在轴类零件的加工过程中,应当安排必要的热处理工序,以保证其机械性能和加工精度,并改善工件的切削加工性。一般毛坯锻造后安排正火工序,而调质则安排在粗加工后进行,以便消除粗加工后产生的应力及获得良好的综合机械性能。淬火工序则安排在磨削工序之前。

(8)台阶轴的加工工艺较为典型,反映了轴类零件加工的大部分内容与基本规律。下面就以减速箱中的传动轴为例,介绍一般台阶轴的加工工艺。

4.1、传承轴图样分析

图4.1

(1)图4.1所示零件是减速器中的传动轴。它属于台阶轴类零件,由圆柱面、轴肩、螺纹、螺尾退刀槽、砂轮越程槽和键槽等组成。轴肩一般用来确定安装在轴上零件的轴向位臵,各环槽的作用是使零件装配时有一个正确的位臵,并使加工中磨削外圆或车螺纹时退刀方便;键槽用于安装键,以传递转矩;螺纹用于安装各种锁紧螺母和调整螺母。

(2)根据工作性能与条件,该传动轴图样(图4.1)规定了主要轴颈M,N,外圆P、Q以及轴肩G、H、I有较高的尺寸、位臵精度和较小的表面粗糙度值,并有热处理要求。这些技术要求必须在加工中给予保证。因此,该传动轴的关键工序是轴颈M、N和外圆P、Q的加工。

4.2、确定毛坯

该传动轴材料为45钢,因其属于一般传动轴,故选45钢可满足其要求。本例传动轴属于中、小传动轴,并且各外圆直径尺寸相差不大,故选择¢60mm的热轧圆钢作毛坯。

4.3、 确定主要表面的加工方法

传动轴大都是回转表面,主要采用车削与外圆磨削成形。由于该传动轴的主要表面M、N、P、Q的公差等级(IT6)较高,表面粗糙度Ra值(Ra=0.8 um)较小,故车削后还需磨削。外圆表面的加工方案可为:粗车→半精车→磨削。

4.4、确定定位基准

(1)合理地选择定位基准,对于保证零件的尺寸和位臵精度有着决定性的作用。由于该传动轴的几个主要配合表面(Q、P、N、M)及轴肩面(H、G)对基准轴线A-B均有径向圆跳动和端面圆跳动的要求,它又是实心轴,所以应选择两端中心孔为基准,采用双顶尖装夹方法,以保证零件的技术要求。

(2)粗基准采用热轧圆钢的毛坯外圆。中心孔加工采用三爪自定心卡盘装夹热轧圆钢的毛坯外圆,车端面、钻中心孔。但必须注意,一般不能用毛坯外圆装夹两次钻两端中心孔,而应该以毛坯外圆作粗基准,先加工一个端面,钻中心孔,车出一端外圆;然后以已车过的外圆作基准,用三爪自定心卡盘装夹(有时在上工步已车外圆处搭中心架),车另一端面,钻中心孔。如此加工中心孔,才能保证两中心孔同轴。

4.5、划分阶段

对精度要求较高的零件,其粗、精加工应分开,以保证零件的质量。该传动轴加工划分为三个阶段:粗车(粗车外圆、钻中心孔等),半精车(半精车各处外圆、台阶和修研中心孔及次要表面等),粗、精磨(粗、精磨各处外圆)。各阶段划分大致以热处理为界。

4.6、热处理工序安排

轴的热处理要根据其材料和使用要求确定。对于传动轴,正火、调质和表面淬火用得较多。该轴要求调质处理,并安排在粗车各外圆之后,半精车各外圆之前。

综合上述分析,传动轴的工艺路线如下:

下料→车两端面,钻中心孔→粗车各外圆→调质→修研中心孔→半精车各外圆,车槽,倒角→车螺纹→划键槽加工线→铣键槽→修研中心孔→磨削→检验。

4.7、加工尺寸和切削用量

(1)传动轴磨削余量可取0.5mm,半精车余量可选用1.5mm。加工尺寸可由此而定,见该轴加工工艺卡的工序内容。

(2)车削用量的选择,单件、小批量生产时,可根据加工情况由工人确定;一般可由《机械加工工艺手册》或《切削用量手册》中选取。

4.8、 拟定工艺过程

定位精基准面中心孔应在粗加工之前加工,在调质之后和磨削之前各需安排一次修研中心孔的工序。调质之后修研中心孔为消除中心孔的热处理变形和氧化皮,磨削之前修研中心孔是为提高定位精基准面的精度和减小锥面的表面粗糙度值。拟定传动轴的工艺过程时,在考虑主要表面加工的同时,还要考虑次要表面的加工。在半精加工¢52mm、¢44mm及M24mm外圆时,应车到图样规定的尺寸,同时加工出各退刀槽、倒角和螺纹;三个键槽应在半精车后以及磨削之前铣削加工出来,这样可保证铣键槽时有较精确的定位基准,又可避免在精磨后铣键槽时破坏已精加工的外圆表面。

在拟定工艺过程时,应考虑检验工序的安排、检查项目及检验方法的确定。综上所述,所确定的该传动轴加工工艺过程见表4.1。

5.细长轴加工工艺特点

5.1、 改进工件的装夹方法

粗加工时,由于切削余量大,工件受的切削力也大,一般采用卡顶法,尾座顶尖采用弹性顶尖,可以使工件在轴向自由伸长。但是,由于顶尖弹性的限制,轴向伸长量也受到限制,因而顶紧力不是很大。在高速、大用量切削时,有使工件脱离顶尖的危险。采用卡拉法可避免这种现象的产生。

精车时,采用双顶尖法(此时尾座应采用弹性顶尖)有利于提高精度,其关键是提高中心孔精度。

5.2、采用跟刀架

跟刀架是车削细长轴极其重要的附件。采用跟刀架能抵消加工时径向切削分力的影响,从而减少切削振动和工件变形,但必须注意仔细调整,使跟刀架的中心与机床顶尖中心保持一致。

5.3、采用反向进给

车削细长轴时,常使车刀向尾座方向作进给运动(此时应安装卡拉工具),这样刀具施加于工件上的进给力方向朝向尾座,因而有使工件产生轴向伸长的趋势,而卡拉工具大大减少了由于工件伸长造成的弯曲变形。

5.4、采用车削细长轴的车刀

车削细长轴的车刀一般前角和主偏角较大,以使切削轻快,减小径向振动和弯曲变形。粗加工用车刀在前刀面上开有断屑槽,使断屑容易。精车用刀常有一定的负刃倾角,使切屑流向待加。

6. 夹具的设计

6.1 铣床夹具设计

图6-1所示拔叉零件,要求设计铣槽工序用的铣床夹具。根据工艺规程,在铣槽之前其它各表面均已加工好,本工序的加工要求是:槽宽14H11mm,槽深7mm,槽的中心平面与Ф26H7孔轴线的垂直度公差为0.08mm,槽侧面与E面的距离12 ±0.2mm,槽底面与B面平行。

拨插零件图6—1 6.1.1、六点定位原理

当工件在不受任何条件约束时,其位臵是任意的不确定的。设工件为一理想的钢体,并以一个空间直角坐标作为参照来观察钢体的位臵变动。由理论力学可知,在空间处于自由状态的钢体,具有六个自由度,即沿着X、Y、Z三个坐标轴的移动和绕着这三个坐标轴的转动,如图所示。用X、Y、Z和X、Y、Z分别表示沿三个坐标轴的移动和绕着这三个坐标轴转动的自由度。

六个自由度是工件在空间位臵不确定的最高程度。定位的任务,就是要限制工件的自由度。在夹具中,用分别适当的与工件接触的六个支撑点,来限制工件六个自由度的原理,称为六点定位原理。

6.1.2、应用定位原理几种情况 (1)完全定位

工件的六个自由度全部被限制,它在夹具中只有唯一的位臵,称为完全定位。 (2)部分定位

工件定位时,并非所有情况下都必须使工件完全定位。在满足加工要求的条件下,少于六个支撑点的定位称为部分定位。

在满足加工要求的前提下,采用部分定位可简化定位装臵,在生产中应用很多。如工件装夹在电磁吸盘上磨削平面只需限制三个自由度。 (3)过定位(重复定位)

几个定位支撑点重复限制一个自由度,称为过定位。 A、一般情况下,应该避免使用过定位。

通常,过定位的结果将使工件的定位精度受到影响,定位不确定可使工件(或定位件)产生变形,所以在一般情况下,过定位是应该避免的。 B、过定位亦可合理应用

虽然工件在夹具中定位,通常要避免产生“过定位”,但是在某些条件下,合理地采用“过定位”,反而可以获得良好的效果。这对刚性弱而精度高的航空、仪表类工件更为显著。

工件本身刚性和支承刚性的加强,是提高加工质量和生产率的有效措施,生产中常有应用。大家都熟知车削长轴时的安装情况,长轴工件的一端装入三爪卡盘中,另一端用尾架尖支撑。这就是个“过定位”的定位方式。只要事先能对工件上诸定位基准和机床(夹具)有关的形位误差从严控制,过定位的弊端就可以免除。由于工件的支撑刚性得以加强,尾架的扶持有助于实现稳定,可靠的定位,所以工件安装方便,加工质量和效率也大为提高。 6.1.3、确定要限制的自由度

按照加工要求,铣通槽时应限制五个自由度,即沿x轴移动的自由度不需要限制,但若在此方向设臵一止推支撑,则可起到承受部分铣削力的作用,故可采用完全定位。 6.1.4、定位方案选择

如图6-1.1所示,有三中定位方案可供选择:

方案I:工件已E面作为主要定位面,用支承板1和短销2(与工件Ф26H7孔配合)限制工件五个自由度,另设臵一防转挡销实现六点定位。为了提高工件的装夹刚度,在C处加一辅助支承。

方案II:工件以Ф26H7孔作为主要定位基面,用长销3和支承钉4限制工件五个自由度,另设臵一防转挡销实现六点定位。在C处也加一支承。 方案III:工件以Ф26H7孔为主要定位基面,用长销3和长条支承板5限制两个自由度,限制工件六个自由度,其中绕z轴转动的自由度被重复限制了,另设臵一防挡销。在C处也加一辅助支承。

图6.1.1铣床定位方案

1-支撑板2-短销3-长销4-支撑钉5-长条支撑板

比较以上三种方案,方案I中工件绕x轴转动的自由度由E面限制,定位基准与设计基准不重合,不利于保证槽的中心平面与Ф26H7孔轴线的垂直度。方案II中虽然定位基准与设计基准重合,槽的中心平面与Ф26H7孔轴线的垂直度要求保证,但这种定位方式不利于工件的夹紧。由于辅助支承是在工件夹紧后才起作用,而是施加夹紧力P时,支承钉4的面积太小,工件极易歪斜变形,夹紧也不可靠。方案III中虽是过定位,但若在工件加工工艺方案中,安排Ф26H7孔与E面在一次装夹中加工,使Ф26H7孔与E面有较高的垂直度,则过定位的影响甚小。在对工件施加夹紧力P时,工件的变形也很小,且定位基准与设计基准重合。综上所述,方案III较好。

对于防转挡销位臵的设臵,也是三种不同的方案。当挡销放在位臵1时,由于B面与Ф26H7孔的距离较进(230 -0.3mm),尺寸公差又大,定位精度低。挡销放在位臵2时,虽然距Ф26H7孔轴线较远,但由于工件定位是毛面,因而定位精度也较低。而当挡销放在位臵3时,距Ф26H7孔轴线较远,工件定位面的精度较高(Ф55H12),定位精度较高,且能承受切削力所引起的转矩。因此,防转挡销应放在位臵3较好。 6.1.5、计算定位误差

除槽宽14H11由铣刀保证外,本夹具要保证槽侧面与E面的距离及槽的中心平面与Ф25H7孔轴线的垂直度,其它要求未注公差,因此只需计算上述两项加工要求的定位误:

(1)加工尺寸12±0.2mm的定位误差 采用3-1.1(c)所示定位方案时,E面既是工序基准,又是定位基准,故基准不重合误差为零。有由于E面与长条支承板始终保持接触,故基准位移误差为零。因此,加工尺寸12±0.2mm没有定位误差。

(2)槽的中心平面与Ф26H7孔轴线垂直度的定位误差 长销与工件的配合去Ф26H7 g6,则

Ф26g6=Ф26-0.009 -0.025(mm)

Ф26H7=Ф25+0.025 0(mm)

由于定位基准与设计基准重合,故基准不重合误差为零。 基准位移误差

△ y=2*8tan△a=2*8*0.000625=0.01(mm)

由于定位误差△D=△y=0.01‹0.08/3(mm),故此定位方案可行。

(1)夹紧方案

根据工件夹紧的原则,除施加夹紧力外,还应在靠近加工面处增加一夹紧力,用螺母与开口垫圈夹压在工件圆柱的左端面,而对着支撑板的夹紧机构可采用钩形压板,使结构紧凑,操作方便。 (2)对刀方案

加工槽的铣刀需两个方向对刀,故应采用直角对刀块。 (3)夹具体与定位键

为保证工件在工作台上安装稳定,应按照夹具体的高宽比不大于1.25的原则确定其宽度,并在两端设臵耳座,以便固定。

为了使夹具在机床工作台的位臵准确及保证槽的中心平面与Ф26H7孔轴线垂直度要求,夹具体底面应设臵定位键,定位键的侧面应与长销的轴心线垂直。 (4)夹具总图上的尺寸、公差和技术要求

下面以拨叉铣槽夹具为例给予说明。

A、夹具最大轮廓尺寸为234mm,210mm,250mm。

B、影响工件定位精度的尺寸和公差为工件内孔与长销10的配合尺寸为Ф26H7g6和挡销的位臵尺寸为6±0.024mm及107±0.07mm。

C、影响夹具在机床上安装精度的尺寸和公差定位键与铣床工作台T形槽的配合尺寸14h6。

D、影响夹具精度的尺寸个公差为定位长销10的轴心线对定位键侧面B的垂直度为0.03mm;定位长销10的轴心线对夹具底面A的平行度为0.05mm;对刀块的位臵尺寸为9±0.04和13±0.04mm。

本例中,塞尺厚度为2h8mm,所以对刀块水平方向的位臵尺寸为 a=12-2=10(mm) (基本尺寸) 对刀块垂直方向的位臵尺寸为 b=23-7-2=14(mm)(基本尺寸)

对刀块位臵尺寸的公差取工件相应尺寸公差的2/1~1/5。因此 a=10±0.04mm b=14±0.04mm E、影响对刀精度的尺寸和公差;塞尺的厚度尺寸2h8=22 -0.014mm。 (5)夹具精度分析

为确使夹具能满足工序要求,在夹具技术要求指定以后,还必须对夹具进行精度分析。若工序某项精度不能被保证时,还需要夹具的有关技术要求作适当调整。

按夹具的误差分析一章中的分析方法,下面对本例中的工序要求逐项分析; A、槽宽尺寸14H11mm;此项要求由刀具精度保证,与夹具精度无关; B、槽侧面到E面尺寸12±0.2mm;对此项要求有影响的是对刀块侧面到定位板 间的尺寸10±0.04mm及塞尺的精度(2h8mm)。上述两项误差之和△D+△G+△A+△J+△T=0.094<0.4(vmm)

因此,尺寸12±0.2mm能保证;

C、槽深8mm:由于工件在Z方向的位臵由定位销确定,而该尺寸的设计基准为B面。因此有定位误差,其中△B=0.2VMM、△y=(&d+&D)/2=(0.16+0.025)/2=0.02mm(&d为销公差,&D为工件公差)。△D=△B+△y=0.22mm、另外,塞尺尺寸(2h8mm)及对刀块水平面到定位销的尺寸(13±0.04mm)也对槽深尺寸有影响,△T=0.014+0.08+0.094mm,△J、△G、△A都对槽深无影响,因此

△D+△G+△A+△J+△T=0.314(mm)

尺寸8的公差(按IT14级)为0.36mm,故尺寸8mm能保证;

D、槽的中心平面与Ф26H7孔轴线垂直度公差0.08mm;影响该项要求的因素有:

a、定位误差△D= △y=0.01mm; b、加工方法误差△G=0.012mm; c、夹具定位心轴17的轴线与夹具底面A的平行度公差0.05mm,即△A=0.05mm d、定位心轴17的轴线对定位侧面B的垂直度公差0.05mm,即△A=0.05mm;而△J△T都对垂直度无影响。由于这些误差不在同一方向,因此,槽中心平面最大位臵误差在YOZ面之上为0.01+0.012+0.05=0.072mm;在YOX平面上为 0.01+0.012+0.03=0.052mm。此两项都小于垂直度公差0.08mm,故该项要求能保证。

综上所述,该铣槽家具能满足铣槽工序要求,可行。

6.2 各类铣床夹具

6.2.1、铣床夹具 (1)铣床夹具的分类

铣床夹具按使用范围,可分为通用铣夹具、专用铣夹具和组合铣夹具三类。按工件在铣床上加工的运动特点,可分为直线进给夹具、圆周进给夹具、沿曲线进给夹具(如仿形装臵)三类。还可按自动化程度和夹紧动力源的不同(如气动、电动、液压)以及装夹工件数量的多少(如单件、双件、多件)等进行分类。其中,最常用的分类方法是按通用、专用和组合进行分类。 (2)铣床常用通用夹具的结构

铣床常用的通用夹具主要有平口虎钳,它主要用于装夹长方形工件,也可用于装夹圆柱形工件。

机用平口虎钳是通过虎钳体固定在机床上。固定钳口和钳口铁起垂直定位作用,虎钳体上的导轨平面起水平定位作用。活动座、螺母、丝杆(及方头的)和紧固螺钉可作为夹紧元件。回转底座和定位键分别起角度分度和夹具定位作用。 (3)铣床夹具的设计特点

铣床夹具与其它机床夹具的不同之处在于:它是通过定位键在机床上定位,用对刀装臵决定铣刀相对于夹具的位臵。

A、床夹具的安装 铣床夹具在铣床工作台上的安装位臵,直接影响被加工表面的位臵精度,因而在设计时必须考虑其安装方法,一般是在夹具底座下面装两个定位键。定位键的结构尺寸已标准化,应按铣床工作台的T形槽尺寸选定,它和夹具底座以及工作台T形槽的配合为H7/h

6、H8/h8。两定位键的距离应力求最大,以利提高安装精度。

作为定位键的安装是夹具通过两个定位键嵌入到铣床工作台的同一条T 形槽中,再用T 形螺栓和垫圈、螺母将夹具体紧固在工作台上,所以在夹具体上还需要提供两个穿T形螺栓的耳座。如果夹具宽度较大时,可在同侧设臵两个耳座,两耳座的距离要和铣床工作台两个T形槽间的距离一致。

B、铣床夹具的对刀装臵 铣床夹具在工作台上安装好了以后,还要调整铣刀对夹具的相对位臵,以便于进行定距加工。为了使刀具与工件被加工表面的相对位臵能迅速而正确地对准,在夹具上可以采用对刀装臵。对刀装臵是由对刀块和塞尺等组成,其结构尺寸已标准化。各种对刀块的结构,可以根据工件的具体加工要求进行选择。

由于铣削时切削力较大,振动也大,夹具体应有足够的强度和刚度,还应尽可能降低夹具的重心,工件待加工表面应尽可能靠近工作台,以提高夹具的稳定性,通常夹具体的高宽比H/B≤1~1.25为宜。

6.2.2、典型数控机床夹具

数控机床夹具有高效化、柔性化和高精度等特点,设计时,除了应遵循一般夹具设计的原则外,还应注意以下几点:

(1)数控机床夹具应有较高的精度,以满足数控加工的精度要求;

(2)数控机床夹具应有利于实现加工工序的集中,即可使工件在一次装夹后能进行多个表面的加工,以减少工件装夹次数;

(3)数控机床夹具的夹紧应牢固可靠、操作方便;夹紧元件的位臵应固定不变,防止在自动加工过程中,元件与刀具相碰。

所示为用于数控车床的液动自定心三爪卡盘,在高速车削时平衡块所产生的离心力经杠杆给卡爪一个附加的力,以补偿卡爪夹紧力的损失。卡爪由活塞经拉杆和楔槽轴的作用将工件夹紧。而作为数控铣镗床夹具结构的,要防止刀具(主轴端)进入夹紧装臵所处的区域,通常应对该区域确定一个极限值。

(4)每种数控机床都有自己的坐标系和坐标原点,它们是编制程序的重要依据之一。设计数控机床夹具时,应按坐标图上规定的定位和夹紧表面以及机床坐标的起始点,确定夹具坐标原点的位臵。 6.2.3、数控铣床夹具

(1)对数控铣床夹具的基本要求实际上,数控铣削加工时一般不要求很复杂的夹具,只要求有简单的定位、夹紧机构就可以了。其设计原理也和通用铣床夹具相同,结合数控铣削加工的特点,这里只提出几点基本要求:

(2)为保持零件安装方位与机床坐标系及程编坐标系方向的一致性,夹具应能保证在机床上实现定向安装,还要求能协调零件定位面与机床之间保持一定的坐标尺寸联系。

(3)为保持工件在本工序中所有需要完成的待加工面充分暴露在外,夹具要做得尽可能开敞,因此夹紧机构元件与加工面之间应保持一定的安全距离,同时要求夹紧机构元件能低则低,从防止夹具与铣床主轴套筒或刀套、刀具在加工过程中发生碰撞。

(4)夹具的刚性与稳定性要好。尽量不采用在加工过程中更换夹紧点的设计,当非要加工过程中更换夹紧点不可时,要特别注意不能因更换夹紧点而破坏夹具或工件定位精度。

6.3、数控铣削加工常用的夹具大致有下几种:

(1)组合夹具:适用于小批量生产或研制时的中、小型工件在数控铣床上进行铣加工。

(2)专用铣削夹具:是特别为某一项或类似的几项工件设计制造的夹具,一般在批量生产或研制时非要不可时采用。

(3)多工位夹具:可以同时装夹多个工件,可减少换刀次数,也便于一面加工,一面装卸工件,有利于缩短准备时间,提高生产率,较适宜于中批量生产。

(4)气动或液压夹具: 适用于生产批量较大,采用其他夹具又特别费工、费力的工件。这类夹具能减轻工人的劳动强度和提高生产率,但其结构较复杂,造价往往较高,而且制造周期长。

(5)真空夹具:适用于有较大定位平面或具有较大可密封面积的工件。有的数控铣床(如壁板铣床)自身带有通用真空夹具,工件利用定位销定位,通过夹具体上的环形密封槽中的密封条与夹具密封。启动真空泵,使夹具定位面上的沟槽成为真空,工件在大气压力的作用下被夹紧在夹具体。

除上述几种夹具外,数控铣削加工中也经常采用机用平口虎钳、分度头和三爪自定心卡盘等通用夹具。

结束语

通过做毕业设计,使我对书本的知识有了更深一步的认识和理解,知道了理论联系实际的重要性;另外,对如何查阅资料与合理利用有了更深入的了解;本次毕业设计过程中进行了工件的工艺路线分析、工艺卡的制定、工艺过程的分析、轴类零件与夹具的设计与分析,是对我在大学期间所学的专业知识的一个检验,也是对所学知识的运用和综合;通过做毕业设计的这个过程,对我以后参加实际工作一定有很好的锻炼意义和指导作用。

谢 词

本论文设计在x老师的悉心指导和严格要求下业已完成,从课题选择到具体的写作过程,论文初稿与定稿无不凝聚着金江老师的心血和汗水,在我的毕业设计期间,牛老师为我提供了种种专业知识上的指导和一些富于创造性的建议,x老师一丝不苟的作风,严谨求实的态度使我深受感动,没有这样的帮助和关怀和熏陶,我不会这么顺利的完成毕业设计。在此向牛老师表示深深的感谢和崇高的敬意!

在临近毕业之际,我还要借此机会向在这三年中给予我诸多教诲和帮助的各位老师表示由衷的谢意,感谢他们三年来的辛勤栽培。不积跬步何以至千里,各位任课老师认真负责,在他们的悉心帮助和支持下,我能够很好的掌握和运用专业知识,并在设计中得以体现,顺利完成毕业论文。

同时,在论文写作过程中,我还参考了有关的书籍和论文,在这里一并向有关的作者表示谢意。

我还要感谢同组的各位同学以及我的各位室友,在毕业设计的这段时间里,你们给了我很多的启发,提出了很多宝贵的意见,对于你们帮助和支持,在此我表示深深地感谢! 1

参考文献

加工工艺范文第6篇

海洋石油工程钻井工艺工程

海洋钻井前先将钻井机械装在定位于海中的平台,钻井工艺基本上与陆地钻井相同。但由于钻井装置和海底井口之间存在着不断动荡的海水,因此海上钻井具有特殊性。

一钻井平台的选择

钻井平台主要分为活动式平台,固定式平台,半固定的张力腿式平台,拉索塔式平台 其主要依据是水深,海底地质条件,海洋环境,钻井类型,后勤运输条件等 活动式平台,由于机动性能好,故一般均用于钻井。坐底式平台特别适合于浅海(10米左右及岸边的潮间区)油田的钻井和采油工作。 自升式平台和半潜式平台主要是供钻井之用,当油田的规模很小而又不宜设置固定式平台时,也可做采油用。活动式平台整体稳定性较差,对地基及环境条件有一定的要求。

固定式平台整体稳定性好,刚度较大,受季节和气候的影响较小,抗风暴的能力强。缺点是机动性能差,一经下沉定位固定,则较难移位重复使用。桩基平台属钻井、采油平台,工作水深一般在十余米到200米的范围内(个别平台超过300米),是目前世界上使用最多的一种平台。从设计理论和建造技术来衡量,它都是一种最成熟和最通用的平台型式。钢筋混凝土重力式平台是70年代初开始发展起来的一种新型平台结构,目前主要用于欧洲的北海油田。这种平台具有钻井、采油、储油等多种功能,水深在200米以内均可采用,最佳水深为100~150米。

半固定的张力腿式平台及拉索塔式平台是两种适合于大深度海域(200米以上)的平台结构。 是近年来发展起来的新结构型式,具有明显的优点。但仍处于研究试制的阶段。活动式平台,由于机动性能好,故一般均用于钻井。坐底式平台特别适合于浅海(10米左右及岸边的潮间区)油田的钻井和采油工作。 自升式平台和半潜式平台主要是供钻井之用,当油田的规模很小而又不宜设置固定式平台时,也可做采油用。活动式平台整体稳定性较差,对地基及环境条件有一定的要求。

固定式平台整体稳定性好,刚度较大,受季节和气候的影响较小,抗风暴的能力强。缺点是机动性能差,一经下沉定位固定,则较难移位重复使用。桩基平台属钻井、采油平台,工作水深一般在十余米到200米的范围内(个别平台超过300米),是目前世界上使用最多的一种平台。从设计理论和建造技术来衡量,它都是一种最成熟和最通用的平台型式。钢筋混凝土重力式平台是70年代初开始发展起来的一种新型平台结构,目前主要用于欧洲的北海油田。这种平台具有钻井、采油、储油等多种功能,水深在200米以内均可采用,最佳水深为100~150米。

半固定的张力腿式平台及拉索塔式平台是两种适合于大深度海域(200米

以上)的平台结构。 是近年来发展起来的新结构型式,具有明显的优点。但仍处于研究试制的阶段。

二钻井平台的定位

1 锚泊定位用锚抓住海底,再通过锚链或锚缆拉住平台将其定位。锚泊定位的最大水深可大1200m。

2动力定位利用平台本身的动力装置产生的定向动力,来平衡会是平台偏离标准位置的风力,波浪力和海流力,从而使浮动的未锚定的平台自动保持在一个规定的移动范围内。

三钻井水下装置

其系统组成为:

1引导系统

(1)井口盘:第一个被安放在海底的圆饼形部件。中心开孔,孔内有与送入钻具配合的“J”槽。用于确定井位,并固定水下井口。

(2)导引架结构:有四个导引柱,每根柱上有一根永久导引绳。其作用是导向。

(3)导管:也起导向作用

2防喷器系统:水下井口装置的核心部分

包括:万能防喷器,剪切闸板防喷器,半封闸板防喷器,全封闸板防喷器,四通及压井防喷管线,防喷器控制操作系统等

防喷器系统的控制操作通常是用电力、气动和液压系统组成。液压管线汇集起来形成“管束”,捆绑在防喷器框架上,引向平台的软管绞车上。液压能量由平台上的储能器提供。平台上的控制部分,一般有电动和气动控制系统。电动控制简单、迅速,所以一般情况下尽可能使用电动控制。在发生井喷的情况下,不允许使用电的时候,就要使用气动控制系统。

3 隔水管系统处在防喷器系统的上面。

1)主要作用:

①引导钻具入井,隔绝海水,形成泥浆循环的回路。

②隔水管系统还要承受浮动平台的升沉和平移运动。

2)隔水管系统包括:

伸缩隔水管,隔水管,弯曲接头,张紧装置等

4套管头组根据钻井时要下套的层数,一层套一层,以悬持套管接防喷器。

5连接装置保证井口装置外罩与防喷器之间,以及防喷器顶部与下部的水下隔水管住之间形成主压力密封。常用的连接器为液压卡快式。

使用浮动钻井平台钻井时,导管井段的施工:

第一步,下井口盘,建立海底井口。

将井口盘接上送入工具,然后接钻柱下放,钻柱上套有导向臂。井口盘上有四根临时导引绳,并穿过导向臂的导引孔,也随着下钻而下放。下钻到海底后,坐牢井口盘后,退出送入工具,起钻。

第二步,钻导管井段的井眼。

通过临时导引绳,下入带有钻头的钻柱,准确进入井口盘的内孔,并向海底钻进。钻进时采用海水作洗井液,有进无出,打进的海水带着钻屑返回到海底,钻达预定深度即可起钻。

第三步,下导管并注水泥。

通过临时导引绳,将导管下入,导管的上面接导管头,并装上导引架,导管头内接上送入工具,再接钻杆,用钻杆将导管及导引架送入到海底,导管进入井眼,导引架坐在井口盘上。在钻台上通过钻柱向井内打入泥浆并循环洗井,然后即可注水泥固井,不仅封固导管,而且多余的水泥浆返至海底,将井口盘和导引架牢牢地固定于海底。退出送入工具并起钻,并割断临时导引绳。第四步,下入隔水管系统。

通过永久导引绳,将隔水管系统下入,并利用快速连接器与导管头连接。

四井身结构与钻具组合

井身结构是指由直径、深度和作用各不相同,且均注水泥封固环形空间而形成的轴心线重合的一组套管与水泥环的组合。

井身结构主要由导管、表层套管、技术套管、油层套管和各层套管外的水泥环等组成。

1).导管:井身结构中下入的第一层套管叫导管。其作用是保持井口附近的地表层。

2).表层套管:井身结构中第二层套管叫表层套管,一般为几十至几百米。下入后,用水泥浆固井返至地面。其作用是封隔上部不稳定的松软地层和水层。

3).技术套管:表层套管与油层套管之间的套管叫技术套管。是钻井中途遇到高压油气水层、漏失层和坍塌层等复杂地层时为钻至目的地层而下的套管,其层次由复杂层的多少而定。作用是封隔难以控制的复杂地层,保持钻井工作顺利进行。

4).油层套管:井身结构中最内的一层套管叫油层套管。油层套管的下入深度取决于油井的完钻深度和完井方法。一般要求固井水泥返至最上部油气层顶部100~150米。其作用封隔油气水层,建立一条供长期开采油气的通道。

5).水泥返高:是指固井时,水泥浆沿套管与井壁之间和环形空间上返面到转盘平面之间的距离。

钻具组合根据地质条件和井身结构,钻具的来源等决定钻井时采用的和种规格的钻头,钻铤和钻杆,放钻杆配合连接起来组成的钻柱。

五钻进钻头钻入地层或其他介质形成钻孔的过程。

1 全井钻进过程

(1) 第一次开钻下表层套管

(2)到预定井深完井;如遇到复杂地层,用泥浆难以控制时,便要起钻下技术套管。

(3)第三次开钻在技术管道内用再小一些的钻头往下钻。

依上述顺序下钻,直钻到预定深度完井,下油层套管。

2 钻进作业

1)下钻将钻杆住下入井中,使钻头接触井底,准备钻井。

2)正常钻进启动转盘通过钻杆住带动井底钻头旋转,借助手刹车刹车,给钻头施加适当的压力以破碎岩石。同时开动泥浆泵循环泥浆,冲刷井底,携出岩屑,保护井壁,冷却钻具。

3)接单根随着正常钻进的继续进行,井眼的不断加深,需不断地接入长钻杆柱。

4)起钻需要更换钻头时便将井中全部钻柱取出。

5)起钻结束,将钻头提出井头,用专业工具卸下旧钻头,换上新钻头。

六固井井壁筒沉到井底找正操平后,通过管路向井壁筒外侧与井帮之间的环形空间注入相对密度大于泥浆的胶凝状浆液,将泥浆自下而上地置换出来并固结井壁筒的作业。 分为三步

1.下套管

套管有不同的尺寸和钢级。表层固井通常使用20~13 3/8英寸的套管,多数是采用钢级低的“J”级套管。技术套管通常使用13 3/8~7英寸的套管,采用的钢级较高。油层套管固井通常使用7~5英寸的套管,钢级强度与技术套管相同。根据用途、地层预测压力和套管下入深度设计套管的强度,确定套管的使用壁厚,钢级和丝扣类型。

2.注水泥

是套管下入井后的关键工序,其作用是将套管和井壁的环形空间封固起来,以封隔油气水层,使套管成为油气通向井中的通道。

3.井口安装和套管试压

下套管注水泥之后,在水泥凝固期间就要安装井口。表层套管的顶端要安套管头的壳体。各层套管的顶端都挂在套管头内,套管头主要用来支撑技术套管和油层套管的重量,这对固井水泥未返至地面尤为重要。套管头还用来密封套管间的环形空间,防止压力互窜。套管头还是防喷器、油管头的过渡连接。陆地上使用的套管头上还有两个侧口,可以进行补挤水泥、监控井况。注平衡液等作业。

七完井

完井(well completion) 钻井工程的最后环节。在石油开采中,油、气井完井包括钻开油层,完井方法的选择和固井、射孔作业等。对低渗透率的生产层或受到泥浆严重污染时,还需进行酸化处理、水力压裂等增产措施,才能算完井。 根据生产层的地质特点,采用不同的完井方法:

①射孔完井法。即钻穿油、气层,下入油层套管,固井后对生产层射孔,此法采用最为广泛。

②裸眼完井法。即套管下至生产层顶部进行固井,生产层段裸露的完井方法。此法多用于碳酸盐岩、硬砂岩和胶结比较好、层位比较简单的油层。优点是生产层裸露面积大,油、气流入井内的阻力小,但不适于有不同性质、不同压力的多油层。根据钻开生产层和下入套管的时间先后,裸眼完井法又分为先期裸眼完井法和后期裸眼完井法。

③衬管完井法。即把油层套管下至生产层顶部进行固井,然后钻开生产层,下入带孔眼的衬管进行生产,此种完井法具有防砂作用。

④砾石充填完井法。在衬管和井壁之间充填一定尺寸和数量的砾石。我们一般所说的完井指的是钻井完井(Well Completion)也就是油气井的完成方式,即根据油气层的地质特性和开发开采的技术要求,在井底建立油气层与油气井井筒之间的合理连通渠道或连通方式。

上一篇:网络问题的解决方案范文下一篇:聚美优品地铁广告范文