导数证明不等式方法

2022-08-27

第一篇:导数证明不等式方法

导数证明不等式的几个方法

1、直接利用题目所给函数证明(高考大题一般没有这么直接) 已知函数f(x)ln(x1)x,求证:当x1时,恒有

11ln(x1)x x1

如果f(a)是函数f(x)在区间上的最大(小)值,则有f(x)f(a(或)f(x)f(a)),那么要证不等式,只要求函数的最大值不超过0就可

2、作差构造函数证明

已知函数f(x)x2lnx.求证:在区间(1,)上,函数f(x)的图象在函数g(x)x3的图象的下方;

构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。

3、合理换元后构造函数可大大降低运算量以节省时间 (2007年,山东卷)

n1n21)3 都成立. 证明:对任意的正整数n,不等式ln(nn2312

4、从特征入手构造函数证明

若函数y=f(x)在R上可导且满足不等式xf(x)>-f(x)恒成立,且常数a,b满足a>b,求证:.af(a)>bf(b) 几个构造函数的类型:

5、隔离函数,左右两边分别考察

第二篇:用导数证明函数不等式的四种常用方法

本文将介绍用导数证明函数不等式的四种常用方法.

()x0). 例

1证明不等式:xln(x1证明

设f(x)xln(x1)(x0),可得欲证结论即f(x)f(0)(x0),所以只需证明函数f(x)是增函数. 而这用导数易证:

f(x)1所以欲证结论成立.

10(x0) x1注

欲证函数不等式f(x)g(x)(xa)(或f(x)g(x)(xa)),只需证明f(x)g(x)0(xa)(或f(x)g(x)0(xa)). 设h(x)f(x)g(x)(xa)(或h(x)f(x)g(x)(xa)),即证h(x)0(xa)(或h(x)0(xa)). 若h(a)0,则即证h(x)h(a)(xa)(或h(x)h(a)(xa)). 接下来,若能证得函数h(x)是增函数即可,这往往用导数容易解决. 例

2证明不等式:xln(x1). 证明

设f(x)xln(x1)(x1),可得欲证结论即f(x)0(x1). 显然,本题不能用例1的单调性法来证,但可以这样证明:即证f(x)xln(x1)(x1)的最小值是0,而这用导数易证:

f(x)11x(x1) x1x1

所以函数f(x)在(1,0],[0,)上分别是减函数、增函数,进而可得

f(x)minf(1)0(x1)

所以欲证结论成立. 注

欲证函数不等式f(x)()g(x)(xI,I是区间),只需证明f(x)g(x)()0x. (I设h(x)f(x)g(x)(xI),即证h(x)()0(xI),也即证h(x)min()0(xI)(若h(x)min不存在,则须求函数h(x)的下确界),而这用导数往往容易解决.

bex1例3

(2014年高考课标全国卷I理科第21题)设函数f(x)aelnx,曲线

xxyf(x)在点(1,f(1))处的切线为ye(x1)2.

(1)求a,b;

(2)证明:f(x)1.

x解

(1)f(x)aelnxaxbx1bx1e2ee. xxx题设即f(1)2,f(1)e,可求得a1,b2.

x(2)即证xlnxxe21(x0),而这用导数可证(请注意1): ee设g(x)xlnx(x0),得g(x)ming. 设h(x)xex1e1e12(x0),得h(x)maxh(1).

ee注

i)欲证函数不等式f(x)g(x)(xI,I是区间),只需证明f(x)ming(x)max(xI),而这用导数往往可以解决. 欲证函数不等式f(x)g(x)(xI,I是区间),只需证明f(x)ming(x)max(xI),或证明f(x)ming(x)max(xI)且两个最值点不相等,而这用导数往往也可以解决. ii)例3第(2)问与《2009年曲靖一中高考冲刺卷理科数学

(一)》压轴题第(3)问完全一样,这道压轴题(即第22题)是:

已知函数f(x)xlnx,g(x)xax3. (1)求函数f(x)在[t,t2](t0)上的最小值;

(2)对一切x(0,),2f(x)g(x)恒成立,求实数a的取值范围; (3)证明:对一切x(0,),都有lnx212成立. xeexln x例4 (2013年高考北京卷理科第18题)设L为曲线C:y=在点(1,0)处的切线.

x(1)求L的方程;

(2)证明:除切点(1,0)之外,曲线C在直线L的下方. 解 (1)(过程略)L的方程为y=x-1. lnxx1(当且仅当x1时取等号). xx2-1+ln xlnx(x0). 设g(x)x1,得g′(x)=

x2x(2)即证当01时,x2-1>0,ln x>0,所以g′(x)>0,得g(x)单调递增.

所以g(x)ming(1)0,得欲证结论成立. (2)的另解 即证仅当x1时取等号). 设g(x)xxlnx,可得g(x)2lnxx1(当且仅当x1时取等号),也即证x2xlnx0(当且x2x1(x1)(x0). x进而可得g(x)ming(1)0,所以欲证结论成立. (2)的再解 即证lnxx1(当且仅当x1时取等号),也即证lnxx2x(当且仅当xx1时取等号).

2如图1所示,可求得曲线ylnx与yxx(x0)在公共点(1,0)处的切线是yx1,所以接下来只需证明

lnxx1,x1x2x(x0)(均当且仅当x1时取等号)

前者用导数易证,后者移项配方后显然成立.所以欲证结论成立.

图1

例5

(2013年高考新课标全国卷II理21(2)的等价问题)求证:eln(x2). 分析

用前三种方法都不易解决本问题,下面介绍用导数证明函数不等式的第四种常用方法. 设f(x)e(x2),g(x)ln(x2)(x2),我们想办法寻找出一个函数h(x),使得f(x)h(x)g(x)(x2)且两个等号不是同时取到. 当然,函数h(x)越简洁越好. 但h(x)不可能是常数(因为函数g(x)ln(x2)(x2)的值域是R),所以我们可尝试h(x)能否为一次函数,当然应当考虑切线. 如图2所示,可求得函数f(x)e(x2)在点A(0,1)处的切线是yx1,进而可得f(x)h(x)(x2);还可求得函数g(x)ln(x2)(x2)在点B(1,0)处的切线也是yx1,进而可得h(x)g(x)(x2).

xxx

图2 进而可用导数证得f(x)h(x)g(x)(x2)且两个等号不是同时取到,所以欲证结论成立. 当然,用例2的方法,也可给出该题的证明(设而不求):

x设f(x)eln(x2),得f(x)ex1(x2). x2可得f(x)是增函数(两个增函数之和是增函数),且1fe20,f(1)e10,所以函数g(x)存在唯一的零点x0(得2(x02)ex01,x02ex0,ex01),再由均值不等式可得 x02f(x)minf(x0)ex0ln(x02)11lnex0x0220x02x02

(因为可证x01)所以欲证结论成立. x例6 求证:elnx2.

x证法1

(例5的证法)用导数可证得ex1(当且仅当x0时取等号),x1lnx2(当且仅当x1时取等号),所以欲证结论成立.

x证法2

(例2的证法)设f(x)elnx,得f(x)ex1(x0). x可得f(x)是增函数且g11110,g(0)0,所以函数g(x)存在唯2e1.52一的零点x0(得ex01,x0ex0),再由均值不等式可得 x011lnex0x02(因为可证x01)x0x0 f(x)minf(x0)ex0lnx0所以欲证结论成立. 注

欲证函数不等式f(x)g(x)(xI,I是区间),只需寻找一个函数h(x)(可以考虑曲线yh(x)是函数yf(x),yg(x)的公切线)使得f(x)h(x)g(x)(x2)且两个等号不是同时取到,而这用导数往往容易解决. 下面再给出例5和例6的联系.

对于两个常用不等式exx1,lnxx1,笔者发现yex与ylnx互为反函数,yx1与yx1也互为反函数,进而得到了本文的几个结论.

定理

已知f(x),g(x)都是单调函数,它们的反函数分别是f1(x),g1(x). (1)若f(x)是增函数,f(s)g(s)恒成立,则f1(t)g1(t)恒成立;

11(2)若f(x)是减函数,f(s)g(s)恒成立,则f(t)g(t)恒成立; 11(3)若f(x)是增函数,f(s)g(s)恒成立,则f(t)g(t)恒成立; 11(4)若f(x)是减函数,f(s)g(s)恒成立,则f(t)g(t)恒成立. 证明

下面只证明(1),(4);(2),(3)同理可证. (1)设不等式f(s)g(s)中s的取值范围是A,当sA时,f(s),g(s)的取值范围分别是fA,gA,得不等式f1(t)g1(t)中t的取值范围是fAgA,所以

1tfAgA,x0A,tgx(0x),gt. ()0由f(s)g(s)恒成立,得g(x0)f(x0). 由f(x)是增函数,得

f1(x)也是增函数,所以f1(g(x0))f1(f(x0))x0g1(g(x0)),即f1(t)g1(t). 得tfAgA,f1(t)g1(t),即欲证结论成立. (4)设不等式f(s)g(s)中s的取值范围是A,当sA时,f(s),g(s)的取值范围分别是fA,gA,得不等式f1(t)g1(t)中t的取值范围是fAgA,所以

1tfAgA,x0A,tgx(0x),t. ()0g由f(s)g(s)恒成立,得g(x0)f(x0). 由f(x)是减函数,得

f1(x)也是减函数,所以f1(g(x0))f1(f(x0))x0g1(g(x0)),即f1(t)g1(t). 得tfAgA,f1(t)g1(t),即欲证结论成立. 推论1

已知f(x),g(x)都是单调函数,它们的反函数分别是f1(x),g1(x). (1)若f(x),g(x)都是增函数,则f(s)g(s)恒成立f1(t)g1(t)恒成立; (2)若f(x),g(x)都是减函数,则f(s)g(s)恒成立f1(t)g1(t)恒成立. 证明

(1)由定理(1)知“”成立.下证“”:

因为g(x)是增函数,g1(t)f1(t)恒成立,g1(x),f1(x)的反函数分别是g(x),f(x),所以由“”的结论得g(s)f(s)恒成立,即f(s)g(s)恒成立. (2)同(1)可证.

推论2

把定理和推论1中的“,”分别改为“,”后,得到的结论均成立. (证法也是把相应结论中的“,”分别改为“,”.)

在例5与例6这一对姊妹结论“eln(x2),lnxe2”中ye与ylnx互为

x反函数,yln(x2)与ye2也互为反函数,所以推论2中的结论“若f(x),g(x)都11是增函数,则f(s)g(s)恒成立f(t)g(t)恒成立”给出了它们的联系.

xxx

第三篇:构造函数,结合导数证明不等式

摘 要:运用导数法证明不等式首先要构建函数,以函数作为载体可以用移项作差,直接构造;合理变形,等价构造;分析(条件)结论,特征构造;定主略从,减元构造;挖掘隐含,联想构造等方法进行证明.

关键词:构造函数;求导;证明;不等式

利用导数证明不等式是四川高考压轴题的热点题型之一,此类问题的特点是:问题以不等式形式呈现,“主角”是导数,而不等式的证明不仅技巧性强,而且方法灵活多变,因此构造函数成为证明不等式的良好“载体”,如何有效合理地构造函数是证明不等式的关键所在,下面以实例谈谈如何构造函数的若干解题策略.

注:此题也可用数学归纳法证明.

解后感悟:函数隐藏越深,难度就越大,如何去寻找证明不等式的“母函数”是解决问题的关键,通过合理变形,展开思维联想的翅膀,发现不等式背后的隐藏函数,便会柳暗花明.

结束语:导数为证明不等式问题开辟了新方法,使过去不等式的证明方法,从特殊技巧变为通性通法,合理构造函数,能使解题更具备指向性,剑之所指,所向披靡.

第四篇:证明不等式方法

不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。 1比较法

比较法是证明不等式的最基本方法,具体有"作差"比较和"作商"比较两种。基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)

例1已知a+b≥0,求证:a3+b3≥a2b+ab

2分析:由题目观察知用"作差"比较,然后提取公因式,结合a+b≥0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。

∵(a3+b3)(a2b+ab2)

=a2(a-b)-b2(a-b)

=(a-b)(a2-b2)

证明: =(a-b)2(a+b)

又∵(a-b)2≥0a+b≥0

∴(a-b)2(a+b)≥0

即a3+b3≥a2b+ab2

例2 设a、b∈R+,且a≠b,求证:aabb>abba

分析:由求证的不等式可知,a、b具有轮换对称性,因此可在设a>b>0的前提下用作商比较法,作商后同"1"比较大小,从而达到证明目的,步骤是:10作商20商形整理30判断为与1的大小

证明:由a、b的对称性,不妨解a>b>0则

aabbabba=aa-bbb-a=(ab)a-b

∵ab0,∴ab1,a-b0

∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba

练习1 已知a、b∈R+,n∈N,求证(a+b)(an+bn)≤2(an+1+bn+1) 2基本不等式法

利用基本不等式及其变式证明不等式是常用的方法,常用的基本不等式及变形有:

(1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时,取等号)

(2)若a、b∈R+,则a+b≥ 2ab(当且仅当a=b时,取等号)

(3)若a、b同号,则 ba+ab≥2(当且仅当a=b时,取等号)

例3 若a、b∈R, |a|≤1,|b|≤1则a1-b2+b1-a2≤

1分析:通过观察可直接套用: xy≤x2+y2

2证明: ∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1

∴b1-a2+a1-b2≤1,当且仅当a1+b2=1时,等号成立

练习2:若 ab0,证明a+1(a-b)b≥

33综合法

综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。

例4,设a0,b0,a+b=1,证明:(a+1a)2+(B+1b)2≥252

证明:∵ a0,b0,a+b=1

∴ab≤14或1ab≥

4左边=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2

=4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252

练习3:已知a、b、c为正数,n是正整数,且f (n)=1gan+bn+cn

3求证:2f(n)≤f(2n)

4分析法

从理论入手,寻找命题成立的充分条件,一直到这个条件是可以证明或已经证明的不等式时,便可推出原不等式成立,这种方法称为分析法。

例5:已知a0,b0,2ca+b,求证:c-c2-ab

分析:观察求证式为一个连锁不等式,不易用比较法,又据观察求证式等价于 |a-c|

要证c-c2-ab

只需证-c2-ab

证明:即证 |a-c|

即证 (a-c)2

即证 a2-2ac<-ab

∵a>0,∴即要证 a-2c<-b 即需证2+b<2c,即为已知

∴ 不等式成立

练习4:已知a∈R且a≠1,求证:3(1+a2+a4)>(1+a+a2)

25放缩法

放缩法是在证明不等式时,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式,是证明不等式的重要方法,技巧性较强常用技巧有:(1)舍去一些正项(或负项),(2)在和或积中换大(或换小)某些项,(3)扩大(或缩小)分式的分子(或分母)等。

例6:已知a、b、c、d都是正数

求证: 1

2分析:观察式子特点,若将4个分式商为同分母,问题可解决,要商同分母除通分外,还可用放缩法,但通分太麻烦,故用放编法。

证明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>

ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=

1又由ab0)可得:ba+b+c

∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<

b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2

综上知:1

练习5:已知:a<2,求证:loga(a+1)<1

6换元法

换元法是许多实际问题解决中可以起到化难为易,化繁为简的作用,有些问题直接证明较为困难,若通过换元的思想与方法去解就很方便,常用于条件不等式的证明,常见的是三角换元。

(1)三角换元:

是一种常用的换元方法,在解代数问题时,使用适当的三角函数进行换元,把代数问题转化成三角问题,充分利用三角函数的性质去解决问题。

7、若x、y∈R+,且 x-y=1 A=(x-1y)(y+1y)。1x,求证0

1证明: ∵x,y∈R+, 且x-y=1,x=secθ, y=tanθ ,(0<θ

∴ A=(secθ-1secθ(tanθ+1tanθ·1sec2θ

=1-cos2θcosθ·s2m2θ+cos2θcosθ·s2mθ·cos2θ

=sinθ

∵0<θ

复习6:已知1≤x2+y2≤2,求证:12 ≤x2-xy+y2≤

3(2)比值换元:

对于在已知条件中含有若干个等比式的问题,往往可先设一个辅助未知数表示这个比值,然后代入求证式,即可。

例8:已知 x-1=y+12=z-23,求证:x2+y2+z2≥431

4证明:设x-1=y+12=z-23=k

于是x=k+1,y=zk-1,z=3k+

2把上式代入x2+y2+z2=(k+1)2(2k-1)2+(3k+2)2

=14(k+514)2+4314≥4314

7反证法

有些不等式从正面证如果不好说清楚,可以考虑反证法,即先否定结论不成立,然后依据已知条件以及有关的定义、定理、公理,逐步推导出与定义、定理、公理或已知条件等相矛盾或自相矛盾的结论,从而肯定原有结论是正确的,凡是"至少"、"唯一"或含有否定词的命题,适宜用反证法。

例9:已知p3+q3=2,求证:p+q≤

2分析:本题已知为p、q的三次,而结论中只有一次,应考虑到用术立方根,同时用放缩法,很难得证,故考虑用反证法。

证明:解设p+q>2,那么p>2-q

∴p3>(2-q)3=8-12q+6q2-q

3将p3+q3 =2,代入得 6q2-12q+6<0

即6(q-1)2<0 由此得出矛盾∴p+q≤

2练习7:已知a+b+c>0,ab+bc+ac>0,abc>0.求证:a>0,b>0,c>0

8数学归纳法

与自然数n有关的不等式,通常考虑用数学归纳法来证明。用数学归纳法证题时的两个步骤缺一不可。

例10:设n∈N,且n>1,求证: (1+13)(1+15)…(1+12n-1)>2n+12

分析:观察求证式与n有关,可采用数学归纳法

证明:(1)当n=2时,左= 43,右=52

∵43>52∴不等式成立

(2)假设n=k(k≥2,k∈n)时不等式成立,即(1+13)(1+15)…(1+12k-1)>2k+12 那么当n=k+1时,(1+13)(1+15)…(1+12k-1)(1+12k+1)>2k+12·(1+12k+1)①

要证①式左边>2k+32,只要证2k+12·

2k+22k+1>2k+32②

对于②〈二〉2k+2>2k+1·2k+3

〈二〉(2k+2)2> (2k+1)(2k+3)

〈二〉4k2+8k+4>4k2+8k+3

〈二〉4>3③

∵③成立 ∴②成立,即当n=k+1时,原不等式成立

由(1)(2)证明可知,对一切n≥2(n∈N),原不等式成立

练习8:已知n∈N,且n>1,求证: 1n+1+1n+2+…+12n>132

49构造法

根据求证不等式的具体结构所证,通过构造函数、数列、合数和图形等,达到证明的目的,这种方法则叫构造法。

1构造函数法

例11:证明不等式:x1-2x

证明:设f(x)=x1-2x-x2 (x≠0)

∵f (-x)

=-x1-2-x+x2x-2x2x-1+x

2=x1-2x- [1-(1-2x)]+x2=x1-2x-x+x2

=f(x)

∴f(x)的图像表示y轴对称

∵当x>0时,1-2x<0 ,故f(x)<0

∴当x<0时,据图像的对称性知f(x)<0

∴当x≠0时,恒有f(x)<0 即x1-2x

练习9:已知a>b,2b>a+c,求证:b- b2-ab

2构造图形法

例12:若f(x)=1+x2 ,a≠b,则|f(x)-f(b)|< |a-b|

分析:由1+x2 的结构可知这是直角坐标平面上两点A(1,x),0(0,0)的距离即 1+x2 =(1-0)2+(x-0)2

于是如下图,设A(1,a),B(1,b)则0A= 1+a2 0B=1+b2

|AB|=|a-b|又0A|-|0B<|AB|∴|f(a)-f(b)|<|a-b|

练习10:设a≥c,b≥c,c≥0,求证 c(a-c)+c(b-c)≤ab

10添项法

某些不等式的证明若能优先考虑"添项"技巧,能得到快速求解的效果。

1倍数添项

若不等式中含有奇数项的和,可通过对不等式乘以2变成偶数项的和,然后分组利用已知不等式进行放缩。

例13:已知a、b、c∈R+,那么a3+b3+c3≥3abc(当且仅当a=b=c时等号成立) 证明:∵a、b、c∈R+

∴a3+b3+c3=12 [(a3+b3)+(b3+c3)+(c3+a3)]≥12 [(a2b+ab2)+(b2c+bc2)+(c2a+ca2)]=12[a(b2+c2)+b(c2+a2)+c(a2+b2)]≥12(a·2bc+b·2ca+c·2ac)=3abc

当且仅当a=b,b=c,c=a即a=b=c时,等号成立。

2平方添项

运用此法必须注意原不等号的方向

例14 :对于一切大于1的自然数n,求证:

(1+13 )(1+15 )…(1+12n-1> 2n+1 2)

证明:∵b > a> 0,m> 0时ba> b+ma+m

∵ [(1+13 )(1+15 )…(1+12n-1)]2=(

43、65…2n2n-1)(

43、65…2n2n-1)> (

54、76…2n+12n)(

43、65…2n2n-1)=2n+13> 2n+14>

∴(1+13 )(1+15 )…(1+12n-1)>2n+1 2)

3平均值添项

例15:在△ABC中,求证sinA+sinB+sinC≤3

32分析:∵A+B+C=π,可按A、B、C的算术平均值添项sin π

3证明:先证命题:若x>0,y<π,则sinx+siny≤2sin x+y2(当且仅当x=y时等号成立)∵0

2∴上式成立

反复运用这个命题,得sinA+sinB+sinC+sin π3≤2sinA+B2+2sinc+π32≤2·2sinA+B2+c+π322 =4sinπ3=332

∴sinA+sinB≠sinC≤332

练习11 在△ABC中,sin A2sinB2sinC2≤18

4利用均值不等式等号成立的条件添项

例16 :已知a、b∈R+,a≠b且a+b=1,

求证a4+b4> 18

分析:若取消a≠b的限制则a=b= 12时,等号成立

证明:∵a、b∈R+∴a4+3(12)4 ≥ 44a4 [(12)4]3=12a①

同理b4+3(12)4 ≥b②

∴a4+b4≥12(a+b)-6(12)4=12-6(12)4=18③

∵a≠b ∴①②中等号不成立∴③中等号不成立∴ 原不等式成立

1.是否存在常数c,使得不等式 x2x+y+yx+2y≤c≤xx+2y+y2x+y对任意正数x,y恒成立? 错解:证明不等式x2x+y+ yx+2y≤xx+2y+y2x+y恒成立,故说明c存在。

正解:x=y得23 ≤c≤23,故猜想c= 23,下证不等式 x2x+y+ yx+2y≤23≤xx+2y+y2x+y恒成立。 要证不等式xx+2y+xx+2y≤23 ,因为x,y是正数,即证3x(x+2y)+3y(2x+y)≤2(2 x+y)(x+2y),也即证3x2+12xy+3y2 ≤2(2x2+2y2+5xy),即2xy≤x2+y2 ,而此不等式恒成立,同理不等式 23≤xx+2y+y2x+y也成立,故存在c=23 使原不等式恒成立。

6.2已知x,y,z∈R+ ,求证:x2y2+y2z2+z2x2x+y+z ≥ xyz

错解:∵ x2y2+y2z2+z2x2≥ 3 3x2y2y2z2z2x2=3xyz3xyz 又x+y+z ≥ 3xyz ∴x2y2+y2z2+z2x2x+y+z≥ 3xyz33xyz33xyz=xyz

错因:根据不等式的性质:若a >b> 0,c >d >0,则ac bd,但 ac>bd却不一定成立 正解:x2y2+y2z2≥ 2x y2z,

y2z2+z2x2≥ 2x yz2,

x2y2+z2x2≥ 2x 2yz,

以上三式相加,化简得:x2y2+y2z2+z2x2≥xyz(x+y+z),

两边同除以x+y+z:

x2y2+y2z2+z2x2x+y+z ≥ xyz

6.3 设x+y>0, n为偶数,求证yn-1xn+xn-1yn≥

1x 1y

错证:∵yn-1xn+xn-1yn-1x-1y

=(xn-yn)(xn-1-yn-1)xnyn

n为偶数,∴ xnyn >0,又xn-yn和xn-1-yn-

1同号,

∴yn-1xn+xn-1yn≥ 1x-1y

错因:在x+y>0的条件下,n为偶数时, xn-yn和xn-1-yn-1不一定同号,应分x、y同号和异号两种情况讨论。

正解:应用比较法:

yn-1xn+xn-1yn-1x-1y=(xn-yn)(xn-1-yn-1)xnyn

① 当x>0,y>0时, (xn-yn)(xn-1-yn-1) ≥ 0,(xy)n >0

所以(xn-yn)(xn-1-yn-1)xnyn

≥0故:yn-1xn+xn-1yn≥ 1x-1y

② 当x,y有一个是负值时,不妨设x>0,y<0, 且x+y>0,所以x>|y|

又n为偶数时,所以(xn-yn)(xn-1-yn-1)>0 又 (xy)n >0,所以(xn-yn)(xn-1-yn-1)xnyn ≥0即 yn-1xn+xn-1yn≥ 1x-1y

综合①②知原不等式成立

第五篇:不等式的证明方法

几个简单的证明方法

一、比较法:

ab等价于ab0;而ab0等价于a

b1.即a与b的比较转化为与0

或1的

比较.使用比较发时,关键是要作适当的变形,如因式分解、拆项、加减项、通分等,这是第一章中许多代数不等式的证明及其他各章初等不等式的证明所常用的证明技巧.二、综合法与分析法:

综合法是由因导果,即是由已知条件和已知的不等式出发,推导出所要证明的不等式;分析法是执果索因,即是要逐步找出使结论成立的充分条件或者充要条件,最后归结为已知的不等式或已知条件.对于条件简单而结论复杂的不等式,往往要通过分析法或分析法与综合法交替使用来寻找证明的途径.还要注意:第一,要熟悉掌握第一章的基本不等式和后面各章中著名的各种不等式;第二,要善于利用题中的隐含条件;第三,不等式的各种变性技巧.三、反证法:

正难则反.设所要证的不等式不成立,从原不等式的结论的反面出发,通过合理的逻辑推理导出矛盾,从而断定所要证的不等式成立.要注意对所有可能的反面结果都要逐一进行讨论.四、放缩法:

要证ab,又已知(或易证)ac,则只要证cb,这是利用不等式的传递性,将原不等式里的某些项适当的放大或缩小,或舍去若干项等以达证题目的.放缩法的方法有: ①添加或舍去一些项,如:a21a;n(n1)n;

②将分子或分母放大(或缩小);

③利用基本不等式,如:

log3lg5(

n(n1)lg3lg522)2lglglg4; n(n1);

④利用常用结论:

k1k

1k1

1k

11k1k

12k

1k

;

1k(k1)

1k1

1k

1k1

1k

1k(k1)1k

;



(程度大)

1k

1

(k1)(k1)

2k1

(

) ; (程度小)

五、换元法:

换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元.如:

已知x2y2a2,可设xacos,yasin;

已知x2y21,可设xrcos,yrsin(0r1); 已知

xaxa

2

2

ybyb

22

1,可设xacos,ybsin;

22

22

已知

1,可设xasec,ybtan;

六、数学归纳法法:

与自然数n有关的许多不等式,可考虑用数学归纳法证明,数学归纳法法证明不等式在数学归纳法中有专门的研究.但运用数学归纳法时要注意:

第一,数学归纳法有多种形式.李大元就证明了下述七种等价的形式:设P(n)是与n有关的命题,则

(1)、设P(n0)成立,且对于任意的kn0,从P(k)成立可推出P(k1)成立,则P(n)对所有大于n0的n都成立.(2)、设m是任给的自然数,若P(1)成立,且从P(k)(1km)成立可推出

P(k1)成立,则P(n)对所有不超过m

的n都成立.(3)、(反向归纳法)设有无穷多个自然数n(例如n2m),使得P(n)成立,且从P(k1)成立可推出P(k)成立,则P(n)对所有n成立.

(4)、若P(且P(n)对所有满足1nk的n成立可推出P(k1)成立,1)成立,则P(n)对所有n成立.(5)、(最小数原理)自然数集的非空子集中必有一个最小数.

(6)、若P)且若P(k),P(k1)成立可推出P(k2)成立,则P(n)1(,P(2)成立,对所有n成立.(7)、(无穷递降法)若P(n)对某个n成立可推出存在n1n,使得P(n1)成立,则P(n)对所有n成立.

此外,还有螺旋归纳法(又叫翘翘板归纳法):设有两个命题P(n),Q(n),若

P(1)

成立,又从P(k)成立可推出Q(k)成立,并且从Q(k)成立可推出P(k1)成

立,其中k为任给自然数,则P(n),Q(n)对所有n都成立,它可以推广到两个以上的命题.这些形式虽然等价,但在不同情形中使用各有方便之处.在使用它们时,若能注意运用变形和放缩等技巧,往往可收到化难为易的奇效.

对于有些不等式与两个独立的自然数m,n有关,可考虑用二重数学归纳法,即若要证命题P(m,n)对所有m,n成立,可分两步:①先证P(1,n),P(m,1)对所有m,n成立;②设P(m1,n),P(m,n1)成立,证明P(m1,n1)也成立. 第二,数学归纳法与其它方法的综合运用,例如,证明

n

k

11k

sinkx0,(0x)

就要综合运用数学归纳法,反证法与极值法;有时可将n换成连续量x,用微分法或积分法.

第三,并不是所有含n的不等式都能用数学归纳法证明的.

七、构造法:

通过构造函数、方程、数列、向量或不等式来证明不等式;证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.笔者将在第三章中详细地介绍构造法.八、利用基本不等式:

善于利用已知不等式,特别是基本不等式去发现和证明新的不等式,是广泛应用的基本技巧.这种方法往往要与其它方法结合一起运用.

22

例1 已知a,bR,且ab1.求证:a2b2

252

.

证法一:(比较法)a,bR,ab1

b1a

a2b2

22

252

ab4(ab)

22

92

122(a

12)0

a(1a)4

92

2a2a

12

即a22b22

证法二:(分析法)

252

(当且仅当ab时,取等号).

a22B2

252

ab4(ab)8

22

252

b1a

225122

(a)0a(1a)4822

显然成立,所以原不等式成立.

点评:分析法是基本的数学方法,使用时,要保证“后一步”是“前一步”的充分条件.

证法三:(综合法)由上分析法逆推获证(略).

证法四:(反证法)

假设(a2)2(b2)2

252

,则 a2b24(ab)8

252

252

.

由ab1,得b1a,于是有a2(1a)212

1

所以(a)0,这与a0矛盾.

22

.

所以a2b2

252

.

证法五:(放缩法)

∵ab1

∴左边=a2b2

a2b221252ab4

222

=右

边.

点评:根据不等式左边是平方和及ab1这个特点,选用基本不等式

ab

ab2.

2

证法六:(均值换元法)

∵ab1,

所以可设a

12t

,b

12

t, 1

∴左边=a2b2(t2)2(t2)2

5525252

=右边. tt2t

2222

22

当且仅当t0时,等号成立.

点评:形如ab1结构式的条件,一般可以采用均值换元.

证法七:(利用一元二次方程根的判别式法)

设ya2b2,由ab1,有y(a2)2(3a)22a22a13, 所以2a22a13y0,

因为aR,所以442(13y)0,即y故a2b2

22

252

.

252

.

下面,笔者将运用数学归纳法证明第一章中的AG不等式.在证明之前,笔者先来证明一个引理.

引理:设A0,B0,则(A+B)nAn+nA(n-1)B,其中nN. 证明:由二项式定理可知

n

(A+B)=AniBiAn+nA(n-1)B

n

i0

(A+B)A+nA

nn(n-1)

B

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:打扫实验室活动总结下一篇:冬天里的一把火文章