航空技术创新范文

2024-05-03

航空技术创新范文第1篇

关键词:航空电子通信;发展;优势;问题;关键技术

0 引言

航空电子通信包括数字通信、模拟通信等,具有很强的抗干扰性能、保密性能等,是确保航空、航天安全、稳定运行的关键。随着电子科技的发展,互联网技术的不断成熟,当前的航空电子通信技术已经不能满足航空、航天事产业发展的需要。研究航空电子通信关键技术,是为了将新科技更好地应用与航天、航空,更好地确保飞机等飞行器飞行的安全、可靠,更好地规避航空风险,为航空事业带来更大的契机和成就。

1 航空电子通信技术概述

1.1 航空电子通信技术的发展与现状

航空通信包括数字通信、模拟通信等技术,我国的航空通信起步于在上世纪七八十年代,当时主要应用语音通信保持地对空、空对空的联系,采用的技术手段主要包括对讲机、雷达、卫星电话等,通过信息联系实现地面对空中飞机的制导,如紧急定位等。这个时期地面对空中飞行的影响不是很大,但却非常重要。随着电子科技的发展,航空电子通信技术进入数字化技术阶段,电子通信在航空、航天过程中的作用更加重要。这一阶段的通信技术是将飞行需要的信息编辑成若干个模块,通过关键的技术手段,实现各个模块数据信息的统一、实时,并将所有的信息进行综合化处理,这些信息能够帮助飞机驾驶员更准确的判断飞行的状态及周边环境,以便做出正确的驾驶选择。直到目前,数字通信仍然是飞行通信的主要技术手段,电子科技的发展极大地提高了航空通信技术水平。随着互联网的发展,航空电子通信系统的研究更为复杂化,互联网支持下的航空通信系统能够实现空中与全世界的紧密联系,使飞机、空间、地面的联系更紧密。例如,美国的3GEVDO gogo网,可以为飞机提供高质量的通服务,旅客可以通过网络连接进行上网娱乐、观看视频、语音通信等。我国的“飞天网”也具有这样的用途。只是航空电子通信的互联网模式当前还不成熟,并未得到广泛的推广和应用,即便在飞机飞行过程中有使用,客舱和驾驶舱也有一道防火墙隔绝,网络信息完全不能流入驾驶舱内。如何实现互联网在航空电子通信中的更广范围应用,这是航空电子通信系统研究的主要课题,也是航空电子系统发展的趋势。

1.2 航空电子通信技术的优势

航空电子通信系统具有数据记录、存储、传播、分析等功能,一方面,这些数据隐含信息,能够帮助飞行员做出正确判断。航空电子系统将这些数据信息进行整理、分析,在显示出来,这个过程庞大的工作量、运算量是人力所不能达成的,这些结果将成为飞机驾驶员宝贵的驾驶经验材料,通过对这些数据信息、通信内容的研究,能够提高驾驶员的驾驶水平,能够使驾驶员、维修人员提前发现飞行器存在的安全隐患,能够使相关工作人员将一些飞行故障排除在萌芽阶段,确保了飞机飞行更加安全、可靠。另一方面,航空电子通信技术实现了飞行资源共享,这对于航空、航天事业的发展极为关键,为相关研究准备了一手资料。因此,很多人认为航空电子系统关键技术的研究是未来战争的核心技术研究,这方面的研究和发展对于综合信息技术、自动传输技术、信息共享技术的发展极为关键。总之,航空电子通信技术的发展使航空、航天行为更方便、快捷、安全、可靠,同时带动了相关产业的发展,使高科技更好地服务于人类。

2 航空电子通信系统关键技术发展存在的问题分析

航空电子系统关键技术的发展存在不少的问题有待解决,例如,航空电子系统综合化技术发展还不成熟,在进行语言、图像、多媒体、高速数据传输过程中要携带很多设备,增加了飞机重量。同时,航空电子系统的网组结构极为复杂,这就造成了航空电子系统维护、维修难度增加,航空电子系统运行的运行成本大,人力物力投入多。此外,数据传输的安全问题也是航空电子通信系统发展面临的一大难题。这些原因影响了航空电子通信系统运行的安全性、最优化,致使航空电子数据传输率较低,应用效益低,不能实现现代通信业务的全面服务。又如,互联网通讯发展到今天已经很成熟了,在地面上,人们的工作、生活离不开互联网,而空中,互联网的应用却很不成熟,我国和美国虽然开发了空中互联网系统用以支持航空通信,但是相关技术还不成熟,应用过程中存网络安全等问题,因此,空中互联网只应用于客舱,为了保护机载设备的安全客舱互联网与驾驶舱之间有一道单项的防火墙,禁止客舱信息流入驾驶舱机载设备。此外,航天电子系统的电子设备逐渐复杂化、多元化,其业务量大,子系统较多,对系统的运行造成了一定的隐患,要保证航天电子系统的稳定安全运行,还有很多问题有待解决。同时,航空电子系统相关的软硬件换代频率高,这就需要相关人员随时关注航空电子系统关键技术的发展,随时掌握相关软硬件的更新换代,以便全面掌握整个通信系统的特点、状态,使航空电子通信系统的效益发挥到最大。

3 航空电子通信系统关键技术分析

3.1 航空电子系统通信控制技术

航空电子系统通信控制技术的研究是为了更好地将语言、图像、信息等数据传输、交换,以达到资源共享的目的,使航空电子通信系统的抗干扰能力、保密性能更好。当前采用模块控制技术,将航空电子通信系统分为几个模块,然后再进行连接,最后通过总线将信息通信内容反馈给工作人员。这些子系统与主系统连接,实现综合化通信要求。航空电子通信系统的这一特点使整个系统的运行综合性能提高,但若是某一个子系统出现问题,很容易造成整个系统的瘫痪。因此,在航空电子通信系统设计时,航天电子系统的控制技术非常关键。当前采用的方法是动态总线控制方案,经过一段时间总线控制器就会发生改变,这样某一个子系统发生故障,就很容易对系统进行重组,确保了系统的正常运行。这种动态的控制方案极大的提高了航空电子通信系统的安全性、可靠性,其发展还有很大的空间,未来航空电子系统控制技术将达到更高的智能化和综合控制,航空电子通信系统的运行和应用也会更安全、更可靠、更便捷,使航天、航空飛行更安全、稳妥。

3.2 航空電子通信系统时钟同步技术

航空电子通信系统是由不同的子系统构成的,每个子系统都有各自独立的计时器,而航行过程中驾驶员、AOC办公人员需要得到实时的、及时的、综合的信息反馈,这就要求航空电子通信系统各个子系统之间的时钟保持同步,既时钟同步技术。时钟同步技术开发的目的是消除各子系统之间的时间误差,使航空电子通信系统的数据信息传递具有更高的实时性,整个系统会用一个统一的时间记时,这样才能确保各个子系统信息时间的统一性和一致性。当前的技术手段是总线在整个系统的控制过程中分配给各个子系统一个统一的时间长度,也就是总线控制器在通电后会将总线实时时间发送到各个子系统,子系统开始计时,这样就能最大可能的确保各个系统计时的统一性、同时性,实现了航空电子通信系统的时钟同步,使整个系统的运行状态更稳定,系统对数据的采集、传输等有更大的利用价值和利用效率。

3.3 航空电子通信系统通信安全技术

航空电子通信系统的运行会收到众多的干扰,在系统运行过程中会发生各种各样的故障,这些故障会影响系统运行的稳定性和安全性。在故障处理上,总线会判断临时故障或永久性故障,然后对故障进行处理。有些故障通过系统的重组可以消除,有些故障不能消除,就只能将子系统下网。航空电子通信系统会将故障位置等进行标志、记录,然后在适当的条件下再进行处理。对于航空电子通信系统遭受的干扰,只能通过技术的几步和网络安全技术的发展来解决,这一技术最大程度地确保了航空电子系统运行的安全,使飞行更安全、可靠。

4 结语

综上所述,航空电子通信系统的关键技术主要集中在数据的综合处理和应用,以及系统运行的安全性、可靠性、实时性。同时,航空电子通信系统又是航空电子系统的核心部分,对于航空电子通信技术的研究应该着眼未来,将其放在大环境中,以飞机、空间和地面三个环境的信息交流、信息共享为出发点,全面的考虑系统组织的简约、高效、安全。在此基础上,一方面,研究人员要有效地借鉴其他国家先进的技术经验,另一方面研究人员要勇于创新,结合航空活动的实践,将理论应用与实践联系起来,以促进我国航天事业更好地发展。

参考文献

[1]曹雷.航空装备机载电子通信系统关键技术浅析[J].中国新技术新产品,2016(21):15-16.

[2]李振,李峭,熊华刚.基于使命任务分解的航空电子跨平台通信组织与仿真[J].航空电子技术,2015(01):10-14.

[3]梁延俊.航空电子通信系统中的关键技术研究[J].科技风,2018(28):63.

航空技术创新范文第2篇

环境保障体系的必要性

众所周知,海军是拥有多种高技术装备的特殊军种,海洋水体发生的“热盐”运动,如温、盐、密、跃层等及海流、海浪、内波、潮汐、水色、海底沉积物、海底地质构造等是影响海上武器装备设计、试验和作战训练的基本要素,对于海军充分发挥高技术装备的效率极为关键。例如海上风暴和大浪会使水面舰艇偏离航向;海上污损生物会使潜艇壳体增厚,航速下降;潜艇潜航、跟踪和鱼雷布放等受海水温度的影响很大,强大的温度跃层会给潜艇下沉和航行带来困难,甚至造成潜艇颠覆,减慢其移动速度;强而厚的跃层又是潜艇的天然屏障,因为它对声波、无线电波具有很强的折射作用,使隐匿于跃层之下的潜艇不易被雷达发现。然而,上下水层水温的差异,又直接影响鱼雷的使用效果。再例如海洋中普遍存在着对声波在水中传播特别有效的声道,它直接影响声纳探测潜艇的作用距离和性能。因为在声道之外,声波发生强烈的折射或被吸收,声纳根本接收不到潜艇信号,海水中声道的位置则与海水温度、跃层、水团、流系密切相关。根据水声与温度和盐度的函数关系,声波在水中的传播速度可经计算得出,从而可以大致确定声道位置。

海洋卫星水色扫描仪和红外通道遥感器(如欧洲遥感卫星上的沿轨迹扫描辐射计和先进甚高分辨率辐射计等)可提供海表温度和水色等数据,雷达高度计可提供大地水准面、大洋流和海浪等数据,合成孔径雷达可提供海浪谱、内波和海冰等数据,散射计可提供海面风场数据,微波辐射计可提供海表温度、海面风速、大气中水蒸气含量等数据,完全可为海上军事活动提供各种环境保障服务。

当前美国海军已建立较完善的海上战场、训练场和试验场环境保障体系。其职责是:海军气象海洋司令部负责向战斗部队提供最准确和最新的海洋信息,下属的海军海洋局和舰队数值气象海洋中心专门负责全球海洋数据的处理,生产海上军事活动所需的各类海洋信息产品。舰队数值气象海洋中心已建立西太平洋、大西洋、印度洋和南北极水文气象数据库、水声环境参数数据库,主要处理国防气象卫星专用遥感器(SSM/I及其改进型SSMIS)和散射计(如AMI风模式、NSCAT)的数据,生产海冰冰情和风矢量产品等。而海军海洋局侧重于高度计卫星(如测地卫星、托佩克斯/海神和后续型测地卫星等)、先进甚高分辨率辐射计遥感器、水色卫星(如沿海水色扫描仪和海洋宽视场水色扫描仪等)、陆地卫星和斯波特卫星高分辨率图像等数据和资料的处理以及海表温度、海水清澈度及海水光学特性、海洋锋和涡漩图等产品的制作与分发。

1997年2月,美国海军研究署成立了海军空间科学技术办公室,其主要任务是组织和协调军内外为海洋战场环境保障提供技术支撑的空间科学技术研究。至此,美国海军海上战场环境空间科学技术支撑体系和保障体系基本形成。

二、水色卫星的军事应用

海洋水色遥感已成为近些年国际海洋遥感的热点,取得了显著技术进步,水色遥感从多光谱扫描遥感器(如沿海水色扫描仪)发展到超光谱遥感器(如沿海海洋成像光谱仪),光谱通道从6个发展到210个,空间分辨率从1千米提高到30米,信噪比可达700:1,仪器灵敏度将有很大提高,水色卫星的技术进步为军事应用奠定了基础。

美国海军空间科学技术办公室正在策划的“海军地图观测者”卫星就是世界上第一颗水色军用卫星。该卫星将采用600千米高的太阳同步圆形轨道,星载超光谱遥感器沿海海洋成像光谱仪有200个光谱波段(有报道称为210个),波段宽度为0.4-2.5微米,扫描数据采样宽度为30千米,地面采样距离为60米(可选择为30米)。它可提供作战海区,敌点区域不可达到的海区、尤其是沿海地区(距海岸50千米范围内)动态水体光学参数、浅海水深以及地形、地貌、海区上空大气参数等海军舰艇活动不可缺乏的实时环境数据。

三、高度计卫星的军事应用

高度计卫星最早引起美国海军的重视。1985年3月12日,美国海军发射测地卫星,星载有效载荷为13.5吉赫的雷达高度计和微波辐射计,可获得海面高度和风速测量数据,通过数据反演可获得海洋重力场数据,从而对提高潜艇弹道导弹发射命中率具有重要意义。其军事使命是:

1改进大地水准面高度和垂直偏差等的测量及飞行中重力制图补偿;

2确定需要船舶进行地球物理与地质详查的特定区域;

3发现潜艇水下航行可能发生的水深突变灾害区。

工作于Ku波段的测地卫星共运行了5年(1985-1989年),前18个月军事使命于1986年9月30日结束,轨道重复周期为3天。后经过1个月的轨道调整,进入17天精确重复轨道,执行民用科学研究使命。但是前18个月的3.5厘米精度的海面高度测量数据长期处于保密状态。

在经过长达8年的间断之后,美国海军于1998年2月发射了测地卫星的后续星GFO,其科学有效载荷与前者相同,海面高度测量精度优于3.5厘米。星上另一有效载荷为双频微波辐射计(工作于22和37吉赫),主要用于高度计数据水汽影响订正。该卫星2000年11月交付海军卫星业务中心控制,它采用17天精度重复轨道向海军提供中尺度海洋锋和涡漩等海面地形数据,改善海军全球海洋预报模式。GFO卫星重量仅为300千克,有效载荷重47千克,总功耗121瓦,将对美国海军军用小卫星的发展产生深远影响。

四、合成孔径雷达

卫星的军事应用

海洋卫星对海上军事活动的重大贡献之一或许是合成孔径雷达对内波的监测。内波对潜艇水下航行的安全至关重要。由于不了解潜艇活动海域内波运动规律,历史上曾发生过隐蔽待命的潜艇被突然抛出海面或突然被摔向海底,造成艇毁人亡的惨剧。在合成孔径雷达图像中,内波在亮背景(假设是在粗糙海面条件下)要么呈现暗色,要么在暗背景下(无风条件)呈现亮色,或者在介于两者之间的海况条件下呈亮暗相间的条带。这表明,在不同海况条件下,内波都可能在合成孔径雷达图像中呈像。因此,星载合成孔径雷达成为迄今为止海洋内波有效监测的唯一手段。

合成孔径雷达在军事上的另一应用是对全球海洋水面舰艇的监视。众多水面舰艇航行,往往激起浪花飞溅的尾流,航行海域的海面粗糙度发生改变,雷达高度计和合成孔径雷达都有可能探测到这一变化。加拿大雷达卫星星载合成孔径雷达有7种工作模式以及不同入射角(在20-60度之间),可探测船长23-225米的各类船舶。在该卫星的合成孔雷达图像上,船只以海洋暗背景下的亮目标出现,然而,舰艇探测与舰艇的物理性质,与相对于雷达观测方向的定向和风速有关。随着风速增强,海面后向散射也增强,舰艇亮目标回波与海面类似亮回波之间的对比度下降,探测效果受影响。近此年,美国科学家根据船尾迹的合成孔径雷达图像密度谱和波浪斜率谱的变化,开展运动船只船体外形识别研究,取得了一定的进展。

此外,多年来美国一直致力于星载合成孔径雷达潜艇探测及跟踪技术研究。目前美国已能够在近海小风速海况下找出巡航中潜艇航行的尾迹,正在开发任何海况条件下星载合成孔径雷达探潜的新方法。

合成孔径雷达卫星近些年所取得的技术突破也为军事应用开拓了广阔前景。合成孔径雷达遥感器已实现多波段、多极化、多投射角和多工作模式,仪器分辨率有极大提高(从现在的25米将提高到1-3米),而且仪器重量轻、体积小、功耗及成本低、寿命长。尽管至今未见到美国合成孔径雷达卫星计划的报道,但是1996年美国航宇局正式提出了轻型合成孔径雷达卫星计划,这显然是技术水平更高的合成孔径雷达卫星。据称,高技术水平的轻型合成孔径雷达卫星具有海洋军事动态监测(船舶调动)、重点战区军事动态侦察等功能。

五、结论与建议

美国海军最近10多年建立起来的以航天遥感技术为技术支撑的环境保障服务体系应引起国家决策部门的高度重视。特别是布什政府视中国为“竞争对手”,派遣军用侦察机抵近中国近海侦察,国家决策部门应重视采用高技术手段,捍卫星国家主权和领土完整。下面略举数例,说明美国海军环境保障服务体系对中国海域主权的在威胁。

11991年以美国为首的多国部队发动海湾战争,集结航空母舰4艘,各类战舰247艘。这次战争既考验了美国海军拥有的高技术装备,同时也检验了美国海军的战争服务保障体系。美国海军舰队数值气象海洋中心实时接收多颗卫星数据,一天两次发布沙漠地区和海湾地区上空24-36小时的风速风向预报,改善了6天以上的海洋天气预报,表明现代高技术条件下的战争不能没有像海洋卫星一类的高技术应用卫星的支持;同时也表明美国现有技术条件已可获得中国海洋环境信息。

2上世纪90年代初,美国海军制订了“沿海和半封闭海计划”,毫不掩饰地宣称,其目的是为了“研究高度变化的沿海和浅水滨海环境对水陆两栖战、特殊战争以及自卫反击战的影响”。该计划将海洋水文、海洋动力、海洋生物和海洋光学等要素数据的获取列为重要目标。

3美国海军上世纪90年代开始将西太平洋列为全球大洋海温、盐度及跃层预报的重心海区,我国黄海、东海和南海被列入其中。显而易见,美国海军发布黄海、东海和南海水温、盐度、海流预报的数据来自卫星遥感。

笔者针对来自中国海域上空的潜在威胁,提出如下几点建议以供有关部门参考:

1在卫星海洋应用“十五”计划和15年规划中,应充实军事遥感应用的指标和项目,使“军民结合”原则落实到实处,在岛礁、水深及浅海地形测绘方面应以军事应用为主;

2海军应从自身需要出发,制定“海洋军事遥感规划和计划”,明确战略目标和技术需求,引导国内现有的遥感技术力量为军事服务;

3海军应加强对海洋环境保障技术跟踪及其对策研究的支持力度,为国家决策部门提供针对性较强,有分析、有一定参考可靠的依据。

航空技术创新范文第3篇

【摘要】通过分析联合式航空电子系统存在的问题,介绍综合化航空电子系统的基本结构。综合核心处理机是综合化航空电子系统的核心组成部分,通过比较SMP结构与MPP结构在综合核心处理机上应用的特点,得出了MPP是未来发展方向的结论。

【关键词】综合化航空电子系统;SMP;MPP

1.引言

现代航空电子系统是一个由多个系统、多种环境、多项任务、多种资源构成的相互关联、相互支持、相互集成和相互制约的复杂系统,具有多目标、多信息、多专业、多任务、多功能、多资源和多过程支持的显著特征。在这个前提下,如何满足复杂系统功能、品质、能力、成本等要素的综合优化需求,是新一代航空电子系统发展面临的严峻挑战。

航空电子系统在第三代战机中基本使用联合式架构(又称属地管理架构),在第四代战机中又提出了航空电子系统的综合化技术。航空电子系统综合化技术就是针对复杂系统特征,根据系统目标、信息、任务、资源、过程特征和一体化思维,通过各自能力的权衡与系统能力组合,通过各自过程效率组织与系统效率集成,通过各自数据融合与系统信息效能合成,实现系统能力、功能、品质、效率和成本最优化的系统技术。

2.联合式航空电子系统

2.1 联合式航空电子系统基本结构

第三代战机的航空电子系统多使用联合式构架。在联合式航空电子系统架构中通信、导航、探测以及飞行控制系统等功能子系统中的信息处理和操作均由各自的专用机载计算机完成,各子系统作为功能部件连接到机载多路数据传输总线(1553B)总线上。显示和控制的信息通过数据总线与各子系统进行交换,所有信息由一个平视显示器和若干个多功能显示器显示。飞行员通过座舱控制系统输入控制信息。

2.2 联合式航空电子系统存在的问题

航空电子系统各子系统内部资源独立配置,各系统独立管理,各个系统使用通信总线进行交互。这样的结构造成了很多问题,具体如下:

1)系统中资源使用频度不同,各部分资源分时使用以及各个系统之间的资源不能共享,造成了各系统中的资源多数时候被闲置,造成资源浪费。

2)任务构成专门化。由于任务需求不同,各航空电子系统中的机载计算机多为专用定制设计,研发成本高,研制周期长。但是功能构件不能通用或公用,而是只针对特定系统而设计使用。

3)子系统独立构成,存在大量的计算重复,各子系统之间计算结果(最终结果和中间结果)共享度较低。

4)系统组织固态化,任务、功能、状态、资源构成固态化,缺乏管理与调整空间。随着系统规模以及复杂度的提高,故障、失效、异常等带来的系统可靠性问题非常严重。

5)信息能力与处理模式固化,缺乏融合与固化的空间。

3.综合化航空电子系统

系统综合化技术不但解决了联合式架构中存在的问题,而且拥有以下三方面的优势:集成各子系统的优点和能力、增强子系统之间的协同和支持、提升系统处理的品质和效率。它是面向复杂系统组成与特征形成的系统优化技术。综合化航空电子系统基本结构。

综合化航空电子系统包括综合化的射频与传感器单元以及综合化的核心处理单元,其中综合核心处理机具备数据、信号、图形图像视频的综合处理能力,综合的飞机管理单元、任务管理单元,综合显示单元等等;由统一的高速航空电子网络将各部分连接起来。这样的结构节省了系统资源,提高了处理能力,增加了系统可靠性,降低了研制成本和维护费用,射频与光电孔径综合还提高了战机的隐身能力。

4.综合核心处理系统

在综合化航空电子系统中综合核心处理系统是航空电子系统综合化技术发展的核心技术,也是航空电子系统任务和功能运营与管理的平台。综合核心处理系统是指:利用一套通用模块(软件和硬件),通过接口和外部非通用的传感器前端、效应器、接口、显控设备、应用软件等组合,能够被使用到任何一个航空电子系统上,满足降低生命期成本,提高互用性等要求。综合核心处理系统包含了飞行器最主要的处理功能,包括信号处理、数据处理、图像处理、海量存储、通信网络、电源供给等等。当前航空电子系统对综合核心处理系统的性能要求越来越高。

在美国第四代战机F35的航空电子系统中,其综合核心处理单元总的数据处理速度为40.8DMIPS,信号处理速度为75.6G每秒浮点运算次数(FLOPS)。如此高的性能要求对于传统的单机处理模式已经无法完成,需要引入并行计算机技术来实现。

5.并行计算技术

当前并行计算技术中有多种体系结构:对称多处理机SMP、并行向量机PVP、大规模并行处理机MPP和集群Cluster等。

其中SMP系统与MPP系统结构技术成熟,应用广泛,相对于其他并行结构更适合在机载环境下使用。SMP系统与MPP系统结构在航空电子处理方面有着各自的优势,也存在很多不足。

5.1 对称多处理机SMP

SMP系统使用商业化微处理器(具有片上或外置高速缓存),它们经由系统总线(或交叉开关)连向共享存储器。这种结构中,多个处理器运行同一个操作系统,并共享计算机上包括存储器、系统总线在内的一切资源。每个处理器通过系统总线平等地访问共享存储器、I/O设备和外部中断。

对称多处理系统技术成熟,实现起来比较容易,系统处理规模也比较适合当前航空电子系统的性能要求。但是SMP系统所有处理节点共享一套总线(或者交叉开关),由于这两种网络互连方式传输带宽有限,当处理器数增多时,访问贮存的冲突概率会加大。一般情况下系统的处理机数目限定在2-16个之间。这决定了SMP系统的处理能力无法满足未来航空电子系统发展的要求。另外SMP结构的扩展性能差,系统使用动态互连技术(总线或交叉网络),在互连网络中实现cache一致性等功能,整个系统一旦做成很难再扩展。SMP结构中所有处理机共享一套总线设备、存储器和操作系统,如果这些设备出现问题,整个系统可能崩溃,这对于可靠性要求极高的航空电子系统是无法接受的。对于SMP系统可靠性不高的问题,可以采用多级交叉网络替换总线或者交叉开关结构,提高互连网络的可靠性,同时多级交叉网络还可以增加互连网络的传输带宽,增强系统的处理能力。而子系统多余度设计技术可以提高整个系统冗余度和可靠性,使其可靠性满足航空电子系统要求。

5.2 大规模并行计算MPP

MPP指使用专有的非商品化的硬件和软件,耦合紧密的分布存储多计算机系统,系统中多个处理节点通过高带宽低延迟互连网络紧密连接,使用专用或非专用通信协议进行通信的定制网络。系统中的互连网络是与处理机的I/O相连,实现节点间的通信,而共享存储并行计算机系统中的互连网络是与处理机的局存相连,每个处理机都能直接访问其他局存单元。基本结构如图2所示。

相对于共享存储结构,MPP系统扩展能力强,计算能力完全可以满足未来航空电子系统发展的要求。其系统内部各节点独立工作,冗余度高,模块化强,适合航空电子系统中应用。互连网络采用静态网络或者交叉开关、多级网络等形式,可靠性高,一个处理节点发生异常并不影响整个系统正常工作。

相对于共享存储器的紧耦合方式,MPP结构中为存储器松散耦合,处理效率低于SMP结构等共享存储模式。此外MPP系统规模一般比较大,计算能力强,当需要处理的数据达到一定规模时MPP系统优势明显。

6.结论

综合化航空电子系统已经成为发展的趋势。综合化的航空电子系统需要一系列的关键技术支撑,综合核心处理系统就是其中最重要的关键技术之一。而随着航空电子系统的不断发展,综合核心处理系统处理能力不断调高,采用MPP结构是未来必然的发展趋势,MPP系统结构的小型化也将成为未来发展中的重要挑战。

参考文献

[1]王国庆.航空电子系统综合化技术的发展与思考[J].国际航空,2011(8).

[2]袁晓晗.航空电子综合核心处理技术研究[J].航空电子技术,2004(3).

[3]熊华钢,王中华.先进航空电子综合技术[M].北京:国防工业出版社,2009,1.

[4]陈健,郑卫华.高速互连技术综述[R].2008年全国高性能计算学术年会.

作者简介:李乔杨(1985—),男,陕西商洛人,在读硕士研究生,现供职于中航工业第631研究所,主要从事计算机应用研究。

航空技术创新范文第4篇

根据目前基础地理空间数据生产技术发展和用户的需要, 基础地理空间数据产品主要包括以下四种基本模式:数字线划图 (DLG) 、数字正射影像图 (DOM) 、数字栅格地图 (DRG) 、数字高程模型 (DEM) , 简称为“4D”。这些产品可根据需要以数字和模拟二种形式提供。根据用户的需要可形成复合产品, 如数字线划图与数字正射影像图叠加可形成数字影像地形图。

(1) 数字线划图, 简称为DLG:是地形图上基础要素信息的矢量格式数据集, 其中保存着要素的空间关系和相关的属性信息。数字线划图可满足各种空间分析要求, 与其他信息叠加, 可进行空间分析和决策。

(2) 数字正射影像图, 简称为DOM:是利用数字高程模型对扫描处理后的数字化的航空像片或遥感影像, 逐像元进行辐射纠正、微分纠正和镶嵌, 按标准分幅的地形图范围进行裁切生成的影像数据, 带有公里格网和内、外图廓整饰和注记的影像平面图, 具有地图的几何精度和影像特征。DOM具有精度高、信息丰富、直观真实的特点, 可作为背景控制信息、评价其它数据的精度、现势性和完整性;从中可提取自然资源和社会经济发展信息或派生出新的信息, 可用于地形图的更新。

(3) 数字高程模型, 简称为DEM:是在高斯投影平面上规则或不规则格网点的平面坐标 (X, Y) 及其高程 (Z) 的数据集。为控制地表形态, 可配套提供离散高程点数据。

(4) 数字栅格地图, 简称为DRG:是以栅格数据格式存储和表示的地图图形数据文件。在内容、几何精度、规格和色彩等方面与地形图图形基本保持一致, 可用于DLG数据的采集、评价和更新, 也可与DOM, DEM等数据叠加使用, 从而提取、更新地图数据和派生出新的信息。

2 基本特征

2.1 数据格式

基础地理空间数据的数据格式主要分为矢量和栅格二种, 数字线划图为矢量数据集, 每一地理要素分别采用点、线、面描述其几何特征, 并赋予属性, 同时按要素分类分为若干数据层, 提供地理信息系统做空间检索、空间分析使用。数字正射影像图、数字高程模型和数字栅格地图为栅格数据集, 数据结构就是像元阵列, 每个像元由行列号确定它的位置, 且具有表达实体属性的类型或值的编码。

矢量数据能全面地描述地表目标, 可随机的进行数据选取和显示, 与其它信息叠加, 可进行空间分析、决策。具有严密的数据结构, 数据量小, 可完整地描述数据的拓扑关系, 便于深层次分析, 输出质量好, 数据精度高, 但其数据结构复杂、技术要求高。栅格数据具有数据结构简单, 空间数据的叠加简便, 易于进行空间分析, 相对来说图形数据量大, 数据和信息量受像元大小的限制。

2.2 基本内容

考虑到基础地理空间数据采集时间和产品的提供周期, 基础地理矢量数据可分为三个层次:第一层次分为核心地形要素;第二层次为在核心地形要素的基础上, 根据各地不同的需要, 选取更多的其它要素 (可选要素) ;第三层次为全部地形图要素 (全要素) 。

矢量数据的基本内容:大地控制测量数据 (包括平面控制点、高程控制点、天文点、重力点) 、水系及附属设施、建筑物及附属设施、交通运输与管线设施、境界、地表覆盖、地貌。栅格数据:DEM格网数据, 格网间距5m或12.5m;DOM影像数据, 地面分辨率为1m;DRG图形数据, 分辨率不低于250dpi。文本数据:地名数据, 含地名位置、类型、行政区划、经济信息等;元数据, 说明数据内容、质量、状况和其他有关特征的背景信息, 是数据自身的描述信息。

3 航空遥感数据生产流程及关键技术研究

基于全数字摄影测量的空间数据生产流程如图1所示。

3.1 资料准备

航摄资料如航摄底片、控制点资料、相关的地形图、航摄机鉴定表、航摄验收报告等应收集齐全;对影像质量、飞行质量和控制点质量应进行分析, 检查航摄仪参数是否完整等。

3.2 影像扫描

根据航摄底片的具体情况, 设置与调整扫描参数, 使反差适中、色调饱满、框标清晰, 灰度直方图基本呈正态分布, 扫描范围应在保证影像完整 (包括框标影像) 的前提下尽可能地小, 以减少数据量。影像扫描分辨率根据下面公式确定。

影像扫描分辨率R=地面分辨率/航摄比例尺分母。

3.3 定向建模

自动搜寻框标点, 放大切准框标点进行内定向, 对定向可由计算机自动完成, 人机交互完成绝对定向如不符合要求, 需重新定向, 直至符合限差要求。

检查定向精度, 需满足要求;完成定向后需检查坐标残差。

3.4 数据采集

(1) 立测判读采集, 需严格切准目标点要求按中心点、中心线采集的要素, 其位置必须准确, 点状要素准确采集其定位点, 线状要素上点的密度以几何形状不失真为原则, 密度应随着曲率的增大而增加。每个像对的数据必须接边, 自动生成的匹配点、等视差曲线或大格网点、内插的小格网点均需漫游检查, 保证其准确性, 为提高DEM精度, 需人工加测地形特征点、线和水域等边界线。 (2) 采集的数据应分层, 进行图形和属性编辑, 矢量数据线条要光滑, 关系合理, 拓扑关系正确, 属性项、属性值正确;利用DEM数据, 采用微分纠正法对影像重采样获得DOM数据。 (3) DEM和DOM数据需进行单模型数据拼接, 检查拼接处接边差是否符合要求;同样矢量数据接边应符合要求各属性值要一致, 任何不符合要求的数据均需重新采集, 修改正确的数据按图幅裁切, 生成最终的以幅为单位的数据, 提供检查和验收。

3.5 元数据制作

可由相应的专业软件进行计算输入各属性项中, 无法自动输入的内容由人工输入。

摘要:本文研究探讨了航空遥感数据产品生产流程及其中所涉及的关键技术, 文章首先对空间数据产品的模式和基本特征进行了详细的阐述, 而后给出了基于航空遥感的空间数据生产流称, 最后结合笔者工作经验, 重点探讨了流程中所涉及的关键技术, 全文既是笔者长期工作实践基础上的经验总结, 同时也是在实践基础上的理论升华, 相信对从事相关工作的同行有着重要的参考价值和借鉴意义。

航空技术创新范文第5篇

发动机的试车都是由发动机的承制厂或承修厂在厂内的固定试车台进行试车检查与调整, 交付用户使用后安装于飞机上受空间限制很多测试点无法连接测试设备, 导致某些发动机故障无法在装机状态检查, 需要频繁将发动机安装到飞机上或者拆下, 影响到部队的作战能力。移动试车台在外场的应用可以有效解决这一矛盾, 能够减少排故过程中对部队的依赖, 减少部队配合的工作量, 大大提升装备完好率。战时, 可以在相对安全区域进行战伤抢修, 提高部队作战能力。

1 移动试车台的构成

移动试车台与露天试车台类似, 无须考虑排气系统, 其他系统的基本功能都应该具备。具体来说主要有以下几个部分。

1.1 台架系统

台架安装系统包括发动机、飞机附件机匣的固定及进气装置部分, 采用吊式结构, 与飞机预装车配合使用实现发动机拆装, 减小对外部设备的需求。台架部分考虑到实际工作环境不需要自身拥有牵引系统, 短距离实现可拖拽, 需要长距离移动可采用拖车运输。固定方式可参考飞机地面试车时采用的地面系留来实现, 通过预先建设的地脚及钢缆将台架可靠固定。

1.2 数据采集系统

数据采集系统采用电子计算机开放通讯构架 (VXI结构) , 充分利用数据扫描阀集传感器与数据转换于一身的功能、多个功能相似的通道可以集成的特性, 将数据采集系统高度集成化, 降低故障率。另外扫描阀还具有自校验功能可以减少日常维护工作量。数据采集系统具备将发动机测试压力测量通道、温度测量通道、转数测量通道、流量测量通道, 角度测量通道, 及其它测量通道的数据进行记录与分析功能, 连续记录全部试车数据, 用于对突发瞬态故障分析;进行发动机主要性能指标计算, 对发动机主要性能参数进行评估;进行发动机振动的二次分析, 真实评估发动机振动水平。发动机测试系统相关管路连接采用快速管路耦合板, 提高管路连接速并减少故障发生概率。

1.3 发动机状态控制系统

发动机状态控制系统采用先进的电子计算机可编程逻辑程序控制, 可以节约物理开关和指示灯的连接与存放空间, 对开关量和指示灯的定义可以进行软件实现使控制部分具备良好的维护性。发动机状态控制用的油门杆采用直流电机控制的电动油门杆, 减轻交流电干扰信号对油门杆的影响。

1.4 辅助系统

辅助系统包含试车台的主要配套设施, 包括燃油储存、过滤系统、供给系统、供电系统、增压系统及应急系统等。

2 移动试车台的试车

移动试车台的试车时首先将发动机从飞机上脱下至拆装托车上, 利用拆装托车将发动机装到试车台架上, 将台架上各测试点接头与发动机相连, 利用快速管路耦合板将台架与测试、控制系统相连, 连接相关辅助设备, 就可以实现发动机的试车。在进行发动机试车前需要对测试系统进行检测, 以对数据采集系统的准确性进行检查;对发动机电气系统进行检测, 以确认发动机电气系统工作可靠;对发动机控制系统进行检测, 以确认发动机控制可靠;对台架地面系留固定, 及相关系统的连接可靠进行检查, 确保安全;对试车文件进行确认, 对技术质量体系的相符性进行确认。

3 结语

综上所述对航空发动机外场移动试车台的结构及试车过程进行了阐述, 对于发动机移动试车技术在外场的应用的方式进行了介绍, 为发动机在外场维护增加检测、调整、及故障排除手段, 对于提高发动机外场可维护性、提高军事装备的完好率具有重要意义。通过外场移动试车技术的实现, 为发动机的维修、维护创造了一个新的外场工作平台, 从技术发展的角度来说是非常必要的和有实际工程意义的。

摘要:现代化战争中, 军事装备抢修的快慢, 间接或直接决定了战争的胜负关系, 如何加强军事战伤抢修能力一直是各国十分关注的课题, 当今国际形势条件下, 高技术战争中最为关键的因素就是比保障能力, 就是比战伤抢修能力。发动机移动试车台是进行航空发动机主要性能评定、故障判定的重要设备, 在外场配备移动试车台并大力开展外场深度修理能力, 是实现航空发动机快速保障的基础。本文详细分析了某型移动试车台的结构原理分析。通过分析移动试车台具体构造, 对于提高发动机外场检测手段、增强发动机可维护性, 都具有非常重要的意义。

关键词:移动试车台,台架,数据采集,状态控制

参考文献

[1] GJB241-87.航空涡轮喷气和涡轮风扇发动机通用规范[S].

[2] 王惠儒.大型航空发动机试验及试验设备研究[J].燃气涡轮试验与研究, 2008.

[3] 樊思齐.航空推进系统控制[M].西北工业大学出版社, 1995.

上一篇:教育学教学下一篇:竣工档案