函数教案范文

2023-06-29

函数教案范文第1篇

§1:函数与方程

教学分析:课本选取探究具体的一元二次方程的根与其对应二次函数的图像与x轴交点的横坐标之间的关系作为本节的入口。其意图是让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系。 教学目标:

1、让学生明确“方程的根”与“函数的零点”的密切联系,学会结合函数图像性质判断方程根的个数,学会用多种方法求方程的根和函数的零点。

2、通过本节学习让学生掌握“由特殊到一般”的认识规律,在今后学习中利用这一规律探索更多的未知世界。 重点难点:根据二次函数图像与x轴的交点个数判断一元二次方程的根的个数;函数零点的概念。 复习引入:

同学们好,今天我们来进行第四章函数应用的学习,这一节课我们先来学习第一节函数与方程。在讲新课之前,我们已经学习过一元一次方程、一元二次方程,并会对它们进行求解。现在来看几个方程:①ax+b=0(a0) 这是一个一元一次方程,我们能很容易求出方程的解是x=-.②ax2+bx+c=0(a0) 这是一个一元二次方程,在对一ab元二次方程求解时我们会先用判别式△=b2-4ac来判断方程是否有实解。当△>0时,一元二次方程有两个不相等的实数根,x1≠x2;当△=0时,一元二次方程有两个相等的实数根,x1=x2;当△<0时,一元二次方程没有实数根。当方程有实数根时,我们可以通过求根公式求出一元二次方程的根:x=

bb4ac2a2。③x5+4x3+3x2+2x+1=0

- 1函数的零点。

说明:①零点是所在函数图像与x轴交点的横坐标。

②零点是一个实数,并不是一个点。 ③函数的零点就是相应方程的根。

④函数零点的个数与相应方程的根的个数相等。

学习过零点概念及以上4点说明,我们已经学会判断零点:要求函数的零点就要看函数图像与x轴是否有交点,也即相应方程是否有实根。因此得到判断零点的方法。

2. 判断零点的方法:方程f(x)=0有实根函数y=f(x)的图像与x轴有交点函数y=f(x)有零点。可得出:方程f(x)=0的实根与函数y=f(x)的零点是一一对应的。

那如果所给的函数的图像不易画出,又不能求出其对应方程的根时,我们怎样判断函数有没有零点呢?

观察例1中第一个方程的对应图像:f(x) = x2-2x-3 从图像上看,我们知道函数f(x) = x2-2x-3有两个零点:-1,3.而能找到区间[-2,0]使零点-1在[-2,0]内,区间[2,4]使零点3在[2,4]内。且有f(-2)=5>0,f(0)=-3<0, f(-2)×f(0)<0; f(2)=-3<0, f(4)=5>0, f(2)×f(4)<0.可以发现f(-2)×f(0)<0,函数f(x) = x2-2x-3在区间(-2,0)内有零点-1是方程x2-2x-3=0的一个根;同样地,f(2)×f(4)<0,函数f(x) = x2-2x-3在区间(2,4)内有零点3是方程x2-2x-3=0的另一个根。因此可以得到以下结论:

3.零点存在性定理: 若函数y=f(x)在闭区间[a,b]的图像是连续曲

- 35,一个小于2。

分析:转化判断函数f(x) =(x-2)(x-5)-1在区间(-∞,2)和(5, +∞) 内各有一个零点。

解:考虑函数f(x) =(x-2)(x-5)-1,有f(2) =(2-2)(2-5)-1=-1<0,f(5) =(5-2)(5-5)-1=-1<0,又因为f(x)的图像是开口向上的抛物线,在(-∞,2)内存在一点a,使f(a)>0;在(5, +∞)内存在一点b,使f(b)>0,所以抛物线与横轴在(a,2)内有一个交点,在(5, b)内也有一个交点,而该交点即是方程的解。所以方程(x-2)(x-5)=1有两个相异的实数解,且一个大于5,一个小于2。

四、 零点存在性定理说:“若f(a)×f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应的方程f(x)=0在区间(a,b)内至少有一个实数解”,它只指出了方程f(x)=0实数解的存在,并不能判断具体有多少个实数解。那改为f(a)×f(b)>0时,

问题:如果函数y=f(x) 在区间[a,b]上的图像是连续不断的一条曲线,并且f(a)×f(b)>0,那么函数y=f(x) 在区间(a,b)内是否有零点?可能有几个零点?

函数教案范文第2篇

教学目标:

1:是学生分清楚变量与常量,以及会判断哪些量是变量

2:理解函数的概念,分清自变量以及应变量,同时会判断一个变量是不是另一个的函数, 3:能从实际题目中抽象出函数关系,并且会列出函数解析式 4:理解函数的定义域,并会求函数的定义域,以及函数值 5:理解函数的记号yf(x)

教学重点:

1:函数的概念

2:由题目写出函数解析式以及会求定义域和函数值

教学难点:

1:函数的概念

2:函数的本质:一个变量取定一个值,另一个变量有且只有唯一的一个值与之对应 3:函数的记号:yf(x)

教学过程

1:量、数、数量

在物理中我们学过很多“量”,比如说:质量,长度,重量,面积,体积,密度,速度,路程,时间等等很多,

而“量”是表示事物的某些属性,比如:质量

同时我们用“数”来表示“量”的大小,将“数”与“度量单位”合在一起就是“数量”,比如说:一个物体质量为5kg,一个圆的半径是5cm等等 2:变量与常量

请同学们看课本52页的问题1 题中的r0是一个不变的值,而r和a都是可以取不同的值,正如我们以前学的用字母表示数,这个字母可以表示不同的数,它是一个变化的,不是确定的。而这样的在我们的研究过程中,可以取不同数值的量叫做“变量”,与之相对的保持数值不变的量叫做“常量”(或常数)

a2此题中我们可以得到:rr0(米),我们可以看出r与a是有关系的,也就是说在a在变化时r也在变化,当a确定时,r也随之确定,即:r与a之间存在一种依赖关系。 同学们再看53页的问题2 请同学回答 问题3

如图等腰直角三角形ABC,其

中∠C=90°,AB=10cm,E为BC上一点,设BE等于x,求阴影部分的面积y,并求x 的取值范围

3:函数的概念

通过三个问题我们引出函数的概念:

一般地,设在一个变化过程中有两个变量x、y,如果在变量x的允许取值范围内,变量y随着x的变化而变化,且对于x的每一个值,y都有唯一的值与它对应,那么我们就说,变量y是变量x的函数. X称为自变量,y称为应变量(因变量),我们知道问题1,2,3中的两个变量就是一种函数关系。

注:自变量不一定都用x表示,应变量不一定都用y表示,x、y是常用的表示

问题1,2,3中的两个变量之间是用数学式子表示出来的,我把这种用数学式子表示出两个变量之间的函数关系的式子称为函数解析式

提问:是不是所有的函数都可以用函数解析式表示呢? 同学们请看例题

1、2:请同学回答

CEADB例1中的变量就是t和T 注:例题

1、2告诉我们不是所有的函数关系都可以用数学式子表示出来的,表示函数的表示方法有三种:图像法(例题1),列表法(例题2),解析法(问题1,2,3) 例题:课本55页的第4题

4:函数的定义域和函数值

考虑:函数y2x5和yx

对第一个函数x可以取任意实数,但是第二个函数的x不能去负数,因为在实数范围内,当x<0时yx没有意义。

我们前面在叙述函数的定义的时候提到一句话:如果在变量x的允许取值范围内 我们把:函数的自变量允许取值的范围,叫做函数的定义域

每个函数都有定义域,对于用解析式表示的函数,如果不加说明,那么这个函数的定义域是能使这个函数解析式有意义的所有实数,但是在实际问题中,除了是函数解析式有意义外,还要使实际问题有意义。

1、求下列函数中自变量x的取值范围.(使解析式有意义的x的取值范围)

2(1)y5x

3(2)y3x

1x11xx2

2(3)y

(4)y

(5)yx

1(6)y2xa

(7)y1x2x82 例

2、问题3中x的取值范围就是定义域

3、57页的例题4,(使实际问题有意义的x的取值范围) 解:yx10,定义域为:4x10

4、如图,用一个30米长的篱笆围成一个长靠在20米长墙的矩形羊圈,设宽为x,面积为y,写出函数解析式,并求出定义域。 解:yx(302x)2x230x

定义域:5

在例4这个函数中,取x=6时,y=108 取x=10时,y=100 我们可以看出:在定义域:5

如果变量y是自变量x的函数,那么对于x在定义域内取定的一个值a,变量y的对应值叫做当x=a时的函数值,同样:一个函数所有函数值组成的范围叫做值域 5:函数的记号yf(x)

“y是x的函数”用记号yf(x)来表示,其中x表示自变量,f表示表示y随着x变化而变化的规律,即y与x之间的对应关系, 比如:例3,例4中

注:在同一问题中同时研究几个不同的函数时,表示函数的记号中,括号外的字母课采用不同的字母,如:f、g、h以及大写的F、G、H等 补充:函数的三要素:定义域、对应关系f、值域

在例4这个函数中,取x=6时,y=108,有了记号yf(x)后,我们就可以更简单的记为 f(6)108,即:我们用f(a)表示当x=a时的函数值。

x例5:课本57页中的例题5(先求出函数的定义域)

例6:课本58页的练习2 例7:已知f(x)2x3x4,g(x)x5,定义h(x)f(x)g(x),

函数教案范文第3篇

1.知识与技能

会识别相关量之间的反比例关系,理解反比例函数的意义,能确定简单的反比例函数关系式.

2.过程与方法

通过对实际问题的分析、类比、归纳,培养学生分析问题的能力,并体会函数在实际问题中的应用.

3.情感、态度与价值观

让学生体会数学来源于生活,又能为社会服务,在实际问题的分析中感受数学美. 教学重点 :理解反比例函数的意义,确定反比例函数的解析式 难点:反比例函数的解析式的确定 教学方法:自主、合作、探究 教学用具:多媒体 教学过程:

一、复习旧知

1.在一个变化的过程中,如果有两个变量x和y,当x在其取值范围内任意取一个值时, y

都有唯一确定的值与之对应

,则称x为

自变量

,y叫x的

函数

.

2、正比例函数一般形式是y=

(

≠0) , 它的图象是一条过原点的

3、一次函数一般形式是y=

(

≠0) 它的图象是一条

二、新知引入

师:提出问题,让学生先独立思考完成,再合作交流,经历探索反比例函数意义的过程。 下列问题中,变量间的对应关系可用怎样的函数关系式表示?

(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;

(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化; (3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.

1、上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么? 生:(1)

(2) (3)S=

2、这三个函数关系式可以叫正比例函数吗?可以叫一次函数吗? 生:

不可以,也不可以

师:这就是我们这节课要探讨学习的新内容:板书:反比例函数。

二、新知讲解

1、【分析】

上述问题中的函数关系式都有 的形式,其中k为常数.

归纳

一般地,形如 (k为常数,且k•≠0)•的函数称为反比例函数。

注意

在 中,自变量x是 分式的分母,当x=0时,分式 无意义,所以x•的取值范围

x≠0 .

探究

在上面的三个问题中,两个变量的积均是一个常数(或定值),这也是识别的两个量是否成反比例函数关系的关键. 注意:三种等价形式:

3、例题讲解

例1 已知y是x的反比函数,并且当x=2时,y=6. (1)写出y关于x的函数解析式

(2)当x=4时,求y的值. 解:(1)设 ,因为当x=2时,y=6, 所以有

解得K=12 因此

(2)把x=4代入 得

【点拨】(1)由题意,可设y= ,把x=2,y=6代入即可求得k,进而求得y关于x的函数关系式.(2)在(1)所求得的函数关系式中,把x=4代入即可求得y的值

三、当堂训练

[学生独立完成 ,集体进行评议]

1.若函数y=xm-3是反比例函数,则m的值为(

)

3、在下列函数中,y是x的反比例函数 的是(

)

(A)

(B)

(C)

(D)

1.用函数解析式表示下列问题中变量间的对应关系:

(1)一个游泳池的容积为 2 000 m3,游泳池注满水所用时间 t(单位:h)随注水速度 v(单位:m3/h)的变化而变化;

(2)某长方体的体积为 1 000 cm3,长方体的高 h(单位:cm)随底面积 S(单位:cm2)的变化而变化;

(3)一个物体重 100 N,物体对地面的压强 p(单位:Pa)随物体与地面的接触面积 S(单位:m2)的变化而变化.

四、归纳小结

1、反比例函数的定义:形如

(k为

常数,k≠0)的函数称为反比例函数,自

变量

的取值范围是

.

2、反比例函数有时也写成 或 (k为常数,k≠0)的形式.

五、强化训练

1、下列哪个等式中的y是x的反比例函数? A

B

C

D

2、反比例函数经过点(2,-3),则这个反比例函数关系式为 ____

五、强化训练

3、下列函数关系中,是反比例函数的是:

A 、圆的面积s与半径r的函数关系

B、三角形的面积为固定值时(即为常数)

C、人的年龄与身高关系

D、小明从家到学校,剩下的路程s与速度v的函数关系

五、强化训练

4、矩形的面积为4,一条边的长为

,另

一条边的长为y,则y与

的函数解析式为_________

5、已知y是

的反比例函数,当

=2时

(1)求y与

的函数关系式;

(2)当 时,求y的值;

(3)当 时,求

的值 拓展练习

3.已知 y 与 x2 成反比例,并且当 x=3 时,y=4.

(1)写出 y 关于 x 的函数解析式;

(2)当 x=1.5 时,求 y 的值;

函数教案范文第4篇

本节课以提升数学核心素养的为目标任务,树立学科育人的教学理念,以层层递进的“问题串”引导学生学习,运用从特殊到一般的研究策略,进行教学流程的 “再创造”,积极启发学生思考。

2、教学分析

在本节课之前,已经学习了函数概念与性质,研究并掌握了部分基本初等函数,接下来就要研究函数的应用。函数的应用,教材分三步来展开,第一步,建立一般方程与相应的函数的本质联系.第二步,在用二分法求方程近似解的过程中,通过函数图象和性质研究方程的解,进一步体现函数与方程的关系.第三步,在函数模型的应用过程中,通过建立函数模型以及模型的求解,更全面地体现函数与方程的关系逐步建立起函数与方程的联系.

3、教学目标

(1)经历函数零点概念生成过程,理解函数的零点与方程的根之间的本质联系;

(2)经历零点存在性定理的发现过程,理解零点存在定理,会判断函数在某区间内是否有零点;

(3)积极培养学生良好的学习习惯,提升数学核心素养。

4、教学重点、难点

教学重点:零点的概念及零点存在性的判定。

教学难点:探究判断函数的零点个数和所在区间的方法。

5、教学过程

环节一:利用一个学生不能求解的方程来创设问题情境,激发学生的求知欲,引导学生将复杂的问题简单化,从已有认知结构出发来思考问题

环节二:建立一元二次方程的根与相应二次函数图象的关系,突出数形结合的思想方法,并引导学生从特殊到一般,得到方程的根与相应函数零点的本质联系

环节三:利用二次函数的图象与性质,从直观到抽象,具体到一般,得到判断函数零点存在的充分条件(即函数的零点存在性定理)

环节四:学会判断函数在某区间内是否存在零点

教学过程与操作设计: 环节

教学内容设置 师生双边互动 创

《方程的根与函数的零点》教学设计先来观察几个具体的一元二次方程的根及其相应的二次函数的图象: 方程与函数 方程与函数 方程与函数

师:引导学生解方程,画函数图象,分析方程的根与图象和轴交点坐标的关系,引出零点的概念.

二次函数的零点: 二次函数

.

1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. 2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流.

师:上述结论推广到一般的一元二次方程和二次函数又怎样?

环节

教学内容设置 师生双边互动 组

究 函数零点的概念:

对于函数,把使成立的实数叫做函数的零点.

函数零点的意义:

函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标. 即:

方程有实数根函数的图象与轴有交点函数有零点.

函数零点的求法: 求函数的零点:

(代数法)求方程的实数根;

(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

师:引导学生仔细体会左边的这段文字,感悟其中的思想方法.

生:认真理解函数零点的意义,并根据函数零点的意义探索其求法:

代数法;

几何法.

环节

教学内容设置 师生互动设计 探 究 与 发 现

零点存在性的探索:

(Ⅰ)观察二次函数的图象:

在区间上有零点______; _______,_______, ·_____0(<或>).

在区间上有零点______; ·____0(<或>).

由以上探索,你可以得出什么样的结论?

怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点.

生:根据函数零点的意义探索研究二次函数的零点情况,形成结论.

师:引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系. 环节

教学内容设置 师生互动设计 例 题 研 究

例1.求函数的零点个数. 问题:

1)你可以想到什么方法来判断函数零点个数?

2)判断函数的单调性,由单调性你能得该函数的单调性具有什么特性?

《方程的根与函数的零点》教学设计

师:引导学生探索判断函数零点的方法,指出可以借助计算机或计算器来画函数的图象,结合图象对函数有一个零点形成直观的认识.

生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用函数单调性判断零点的个数.

函数教案范文第5篇

教学内容

一元一次不等式与一次函数

柳河中学八年级 尹正明

一、教学目的与要求

1.体会一元一次不等式的知识在现实生活中的应用;

2.通过用不等式的知识去解决实际问题来提高学生解决问题的能力;

3.通过具体问题的解答,进一步体会一元一次不等式与一次函数的内在联系。 4.把培养探究兴趣贯穿于教学之中,让学生更喜欢学习数学。

二、教学重点与难点

重点:通过建立函数模型解决一元一次不等式问题;

难点:弄清一元一次不等式与一次函数的内在联系,灵活利用图像解题。

三、教程设计

(一)创设情境,激发兴趣

出示一道一元一次不等式与一次函数的应用题。要求学生根据题意完成:

1.作出y=6x-6图象,并用图象法求出当x取何值时,

(1)6x-6>0 (2)6x-6<0。

2. 用直接解不等式的方法求上题中的有两个不等式的解集,并比较两种方法的结果看是否相同。

师生交流:两种方法的解答结果完全一样,图像法更为直观、便利。当然,有的问题也有一定的难度,如果能够准确画出图像,再用图象法去研究就十分有趣、易解了。

(二)师生互动,积极探究

学校为了开展冬季跑步锻炼,有意组织了一次

八、九年级趣味赛跑,九年级张刚先让八年级王强9m,然后自己才开始跑,已知王强每秒跑3m,张刚每秒跑4m,请列出函数关系式,画出函数图象,观察图象回答下列问题: (1)何时王强跑在张刚前面? (2)何时张刚跑在王强前面? (3)谁先跑过20m?谁先跑过100m?

以学习小组为单位探究,每组派一名同学在全班交流解法,在交流中出现的错误,教师随后纠正。对完成出色的小组提出表扬并奖励掌声。

展示函数图像,板书答案:

y1=4x,y2=9+3x. (1)9秒前王强在张刚前。

(2)9秒后张刚跑在王强前。

(3)王强先跑过20m处,张刚先跑过100m处。

教师点评:

(1)运用图象法解题,关键是要读懂函数图象所反应的题意。

(2)本题中同一时刻谁在前面,关于谁的函数图象就更高一些,否则就矮一些。

(三)强化训练,解题比拼

分组完成下题(

一、二组用图像法解,

三、四组用代数法解):

某公司到水果基地购买优质水果慰问教师。果品基地对购买量在 3000 千克以上 ( 含 3000 千克 ) 的顾客用两种销售方案。 甲方案 : 每千克 9 元 ,由基地送货上门 ; 乙方案 : 每千克 8 元 , 由顾客自己租车运回。已知该公司租车从基地到公司的运输费用为 5000 元 。(1) 分别写出该公司两种购买方案的付款金额 y 元与所购买的水果量 X 千克之间的函数关系示 ,并写出自变量 X 的取值范围 。(2) 当购买量在哪一范围时, 选择哪种购买方案付款最少 ? 并说明理由。

学生解答完成,每组抽查1—2名同学的解答,将发现的问题全班指出,学生再作修改后,每组推荐一份优秀作业在全班展示。(奖励热烈掌声)

略解: (1) y 甲 = 9x( x ≥ 3000 ) y 乙 =8x+5000(x ≥3000) (2)方法一: 当 y 甲 =y 乙 时.9x=8x+5000 解得x=5000 ∴当 x=5000 千克 时. 两种方案付款一样 . 当 y 甲 < y 乙 时 9x< 8x+5000 解得 X<5000 ∴ 当 x < 5000 时选择甲方案付款最少 方法二 : 作出它们的函数图象 . 当购买量大于等于 3000 千克小于 5000 千克时选择甲方案付款最少 . 当购买量等于 5000 千克时 . 两种方案付款一样多 . 当购买量大于 5000 千克时 , 选择乙方案付款数量少 .

四、评价与小结:利用图像法解不等式一定要抓住以下三个步骤:①画图象 ②找交点 ③定位置。然后在已经具备的数形结合概念基础上解决应用问题那就容易得多了。

五、巩固练习: 课后习题、《练习册》14.3.2

上一篇:糖果教案下一篇:初二教案